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ABSTRACT Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has been increasingly
used for lesion detection in breast cancer diagnosis for its capability to provide spatial-temporal information.
However, the massive and complex 4D spatial-temporal DCE-MRI data make the diagnosis process lengthy
and error-prone. Moreover, normal fibroglandular tissue is occasionally enhanced through background
parenchymal enhancement (BPE), which can degrade the performance of current algorithms. We propose a
newmethod using a 3D Clifford analytic signal (CAS) approach for breast lesion segmentation of DCE-MRI
data. A 2D temporal image is constructed from all the 2D DCE-MRI slices at different scanning time points
on a given transverse plane, according to the CAS approach. Then, a 3D Clifford temporal image (CTI) is
constructed by successively stacking temporal images. The proposed CTI can distinguish lesion regions both
visually and quantitatively compared to the traditional DCE-MRI subtraction image. Finally, we employ a
fully convolutional network (FCN) model for breast lesion segmentation using the CTI as one of the inputs.
Experimental results on an independent public dataset (TCIAQIN breast DCE-MRI) and a private household
breast DCE-MRI dataset (TBD) show that the proposed method can achieve superior performance over
current methods, both qualitatively and quantitatively.

INDEX TERMS Breast DCE-MRI, breast lesion segmentation, fully convolutional network, clifford analytic
signal, clifford temporal image.

I. INTRODUCTION
Dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI) is one of the most important imaging modal-
ities for breast cancer diagnosis. It has been increasingly
used, considering the enhancement kinetics on the 4D
spatial-temporal DCE-MRI data can provide high sensi-
tivity and accuracy for lesion detection in breast cancer
diagnosis [1].

Although accurate detection or segmentation of lesions is
not a prerequisite for cancer diagnosis [2]–[4], the lesion
results allow interactive diagnosis and facilitate the
use of diagnosis algorithms with fewer false positives.
Early computer-aided techniques for lesion detection
include region-growing algorithms [5], fuzzy c-means
approaches [6], and level set methods [7]. These methods
work well mainly on breast lesions with sharp borders [8].
To better exploit the information of DCE-MRI sequences,
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it is necessary to deal with the background parenchymal
enhancement (BPE), for which normal fibroglandular tissue
is occasionally enhanced for some reasons (e.g., patient age
and day of menstrual cycle). Because of BPE, lesions with
low enhancement, such as non-mass lesions, can hardly
be detected by these early methods, which usually adopt
manually tuned parameters.

Deep learning-based methods offer better accuracy and
reliability for breast lesion segmentation tasks [2]–[4], [9].
Although model parameters can be trained automatically,
most approaches still have preprocessing problems, such as
2D/3D slice or region of interest (ROI) selection, mass-type
and non-mass enhancement (NME) data selection, and time
point selection of DCE-MRI sequences to produce the sub-
traction image.

For the problem of 2D/3D slice or ROI selection,
Zhang et al. [10], [11] used a 2D-based slice-by-slice method
for whole breast segmentation by a convolutional net-
work on DCE-MRI and DWI sequences and used both
2D and 3D DCE-MRI data for breast tumor segmentation.
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Also, a 3D voxel-wise hierarchical lesion segmenta-
tion method was proposed via fully convolutional net-
work (FCN) to obtain lesion segmentation probability
maps with the help of a nipple landmark identification
approach [12].

For the problem of mass-type and NME data selec-
tion, the analysis of NME is one of the difficulties of
breast lesion segmentation, and several deep learning-based
methods [8], [13] can only deal with the mass-type
lesion segmentation problem. For NME lesion segmentation,
Gallego-Otriz et al. [14] used a graph-modeling approach
based on given 2D ROIs for feature representation of non-
mass-like lesions. Illan et al. [9] adopted independent com-
ponent analysis (ICA) for voxel feature extraction and a
support vector machine (SVM) for classification of non-
mass-like lesions. Dalmış et al. [15] used the spatial
information on early-phase DCE-MRI sequences and the
symmetry information of the two sides of the breast for both
mass and NME lesion segmentation by convolutional neural
networks (CNNs).

For the problem of DCE-MRI time point selection,
although the data contain several temporal enhanced 3D
sequences, few lesion-segmentation algorithms can be
directly applied to all these temporal sequences. This is
usually alleviated by applying the algorithms on a subtrac-
tion image obtained by subtracting two sequences before
and after contrast injection. The subtraction image from the
first post-contrast sequence and pre-contrast sequence of
DCE-MRI was used in [16]. For segmentation, the breast
ROI was first extracted from T1-weighted anatomical data,
then ResNet [17] and Q-network [18] were used to obtain
a focus of attention on the lesion ROI. In another study,
Maicas et al. [19] segmented the lesion from a breast ROI
of the DCE-MRI subtraction image by minimizing an energy
function based on a CNN prior, mean shape, and piecewise
constant Mumford Shah model [20]. Other methods, such
as salient region proposition from a deep learning model,
and a weakly label-based method, were proposed for malig-
nant lesion segmentation in recent studies [21], [22]. These
methods all use one time point of the post-contrast and
pre-contrast DCE-MRI sequence to produce the subtraction
image. However, one subtraction image cannot eliminate
enhanced vessels and fibroglandular tissue because of BPE.
The problem is somewhat alleviated based on the temporal
gradient information by manually selecting one best time
point of the DCE-MRI sequence [23], but manual selection
is time-consuming.

Approaches with manual pre-selection of lesion ROI and
type (mass and NME) are generally inconvenient in real
clinical applications. Moreover, approaches that do not use
multiple or sufficient time points of DCE-MRI sequences
may overlook important temporal information for lesion seg-
mentation [16], [19], [21]–[23]. An end-to-end framework
that can fully utilize the temporal information from multiple
DCE-MRI data to segment both mass-type and NME lesions
is still lacking.

This paper makes two major contributions. First, we pro-
pose a 3D biquaternion Clifford analytic signal (CAS)
approach and its realizable form for practical application.
We further propose a 3D Clifford temporal image (CTI)
construction method by applying the CAS to the 4D
spatial-temporal DCE-MRI data, which can automati-
cally combine all the temporal information of DCE-MRI
sequences. Especially, we observe that the response of
non-lesion tissues can be relatively suppressed from the 3D
CTI. Second, we develop a parameter-free end-to-end frame-
work with two successive FCNs for lesion segmentation that
is suitable for both mass-type and NME data. The entire
breast segmentation, from pre-contrast sequence by using
FCN is implemented as the first step. Then the 3D CTI and
the whole breast mask are combined as inputs to train another
FCN for lesion segmentation. Our method outperformed cur-
rent methods both qualitatively and quantitatively on a private
dataset (224 patients) and public dataset (seven patients).

II. METHODS
The decomposition property of analytic signals has been
successfully applied to 2D ultrasound envelope detection [24]
and myocardium motion estimation of 2D MRI images [25].
In this study, the decomposition property of a 3D complex
analytic signal is adopted to extract the temporal informa-
tion of 4D spatial-temporal DCE-MRI data. In this way,
DCE-MRI sequences of all time points are taken into account
in obtaining the 3D CTI data, which is suitable for breast
lesion segmentation.

The general scheme of our method is shown in Fig. 1.
First, the 4D DCE-MRI data are regrouped into several sets
of 3D image data by a given transverse plane. Therefore,
each 3D image data contains all time point slices of a fixed
transverse plane, which are used as the input for the CAS
approach. Hence, eight CAS elements of the input 3D data are
split out by the CAS approach. Then, using one of the CAS
elements, a 2D temporal image of the given transverse plane
is constructed. Finally, we can obtain a 3D CTI from the input
4D DCE-MRI data by stacking all the 2D temporal images.
Based on these CTI sequences, we train two successive FCNs.
For the input DCE-MRI data, the ROI of the whole breast
is first estimated from the pre-contrast sequence through the
first FCN. Then the breast ROIs and the extracted 3D CTI are
fed into the second FCN to get the lesion segmentation result.

A. 1D AND 3D COMPLEX ANALYTIC SIGNAL
To understand our method, we will first review the complex
analytic signal (AS) [26] for 1D and 3D cases. The complex
AS of a 1D real signal f (t) can be presented as

ψ(t) = f (t) ?
(
δ(t)+

i
π t

)
= f (t)+ iH{f (t)}, (1)

where i is the complex imaginary part (i.e., i2 = −1), and
? is the 1D convolution. The real part of ψ(t) is the input
signal itself. H{·} is the Hilbert transform, which represents
the imaginary part of ψ(t).
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FIGURE 1. General scheme of the proposed method.

According to all the DCE-MRI sequences, the 2D images
from all time points at a fixed transverse plane can be defined
by a real signal f (x, y, t), where x, y represent the image
coordinates, and t is the time point. Based on the theory of the
single-orthant analytic signal [26], the full spatial-temporal
information of f (x, y, t) can be represented by four ASs:

ψ1(x, y, t)

= f (x, y, t) ? ? ?
{[
δ(x)+

i
πx

][
δ(y)+

i
πy

][
δ(t)+

i
π t

]}
,

(2)

ψ2(x, y, t)

= f (x, y, t) ? ? ?
{[
δ(x)+

i
πx

][
δ(y)−

i
πy

][
δ(t)+

i
π t

]}
,

(3)

ψ3(x, y, t)

= f (x, y, t) ? ? ?
{[
δ(x)+

i
πx

][
δ(y)+

i
πy

][
δ(t)−

i
π t

]}
,

(4)

ψ4(x, y, t)

= f (x, y, t) ? ? ?
{[
δ(x)+

i
πx

][
δ(y)−

i
πy

][
δ(t)−

i
π t

]}
,

(5)

where ψ(·) are obtained from a single-orthant of Fourier
spectra of f (x, y, t), and ? ? ? represents 3D convolution.
Taking ψ1(x, y, t) as an example, we obtain

ψ1(x, y, t)

= f (x, y, t) ? ? ?
{
δ(x)δ(y)δ(t)+ i

δ(x)δ(y)
π t

+ i
δ(x)δ(t)
πy

−
δ(x)
π2yt

+ i
δ(y)δ(t)
πx

−
δ(y)
π2xt

−
δ(t)
π2xy

− i
1

π3xyt

}

=
(
f − Hxy{f } − Hxt {f } − Hyt {f }

)
+ i

(
Hx{f } + Hy{f } + Ht {f } − H{f }

)
= a1eiϕ1 = a1 cosϕ1 + ia1 sinϕ1, (6)

where H{f } is the total Hilbert transform of f (x, y, t); Hx{f },
Hy{f }, andHt {f } are the partial Hilbert transforms of f (x, y, t)
for one direction of x, y, and t , respectively; Hxy{f }, Hxt {f },
and Hyt {f } are the partial Hilbert transform of f (x, y, t) for
two directions (x, y), (x, y), and (y, t), respectively; and a1
and ϕ1 are the modulus and phase, respectively, of the polar
form of ψ1.

Similarly, the other 3D ASs of the single-orthant of Fourier
spectra defined in (3)-(5) are as follows:

ψ2(x, y, t) =
(
f + Hxy{f } − Hxt {f } + Hyt {f }

)
+ i

(
Hx{f } − Hy{f } + Ht {f } + H{f }

)
= a2eiϕ2 = a2 cosϕ2 + ia2 sinϕ2, (7)

ψ3(x, y, t) =
(
f − Hxy{f } + Hxt {f } + Hyt {f }

)
+ i

(
Hx{f } + Hy{f } − Ht {f } + H{f }

)
= a3eiϕ3 = a3 cosϕ3 + ia3 sinϕ3, (8)

ψ4(x, y, t) =
(
f + Hxy{f } + Hxt {f } − Hyt {f }

)
+ i

(
Hx{f } − Hy{f } − Ht {f } − H{f }

)
= a4eiϕ4 = a4 cosϕ4 + ia4 sinϕ4. (9)

Generally, we can observe that the Hilbert transforms and
the phases and modulus of AS have a mathematical relation.
Next, these formulations will be extended to 3D CAS.

B. 3D CLIFFORD ANALYTIC SIGNAL
As discussed in section II-A, an AS is defined based on one
imaginary unit i. In the framework of Clifford algebra, an AS
can be called a 1D Clifford signal with one generator e1
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(i.e., e1 = i). We propose a 3D CAS under the framework
of Clifford algebra with three generators.

1) DEFINITION OF 3D CAS IN CLIFFORD
BIQUATERNION FORM
Based on the work in [27], Clifford biquaternions are used to
define a 3DCAS. Three generators, e1, e2, and e3, are defined
to generate eight elements of a full algebra:

[1, i = e2e3, j = e3e1, k = e1e2,

ε = −e1e2e3, εi = e1, εj = e2, εk = e3 ], (10)

with ε2 = 1, e21 = e22 = e23 = −1.
For a 3D input real signal f (x, y, t), the 3D CAS can be

defined in Clifford biquaternion form as

ψcas(x, y, t)

= f (x, y, t) ? ? ?
{[
δ(x)+

e1
πx

][
δ(y)+

e2
πy

][
δ(t)+

e3
π t

]}
. (11)

Similar to (6), we develop ψcas(x, y, t) and obtain

ψcas(x, y, t) = f + iHyt {f } + j(−Hxt {f })+ kHxy{f }

+ ε(−H{f })+εiHx{f } + εjHy{f }+εkHt {f },

(12)

where e1, e2, and e3 are the imaginary units related as in (10).
The eight elements constitute a biquaternion. The biquater-

nion form of the CAS separates the input signal into eight
elements. It can be noticed that the elementHt {f (x, y, t)}with
the imaginary unit εk in (12) is a partial Hilbert transform of
f (x, y, t) for one direction of t . Therefore, Ht {f (x, y, t)} can
be considered a kind of temporal information of f (x, y, t). To
applyHt {f (x, y, t)} for DCE-MRI temporal image extraction,
we deduce a practical way to obtain Ht {f (x, y, t)} by conven-
tional Fourier transformation.

2) PRACTICAL REALIZATION OF DEFINITION OF 3D CAS IN
CLIFFORD BIQUATERNION FORM
The polar form of AS in (6)-(9) can be obtained practically
using a conventional Fourier transformation method. Further,
all the elements of ASs and CAS can be represented by
Hilbert transforms of the input signal. As a result, from (6)-
(9) and (12), the 3D CAS can be represented by the modulus
and phases of the four ASs:

ψcas(x, y, t)

=
1
4
[(a1 cosϕ1 + a2 cosϕ2 + a3 cosϕ3 + a4 cosϕ4)

+ i (−a1 cosϕ1 + a2 cosϕ2 + a3 cosϕ3 − a4 cosϕ4)

+ j (a1 cosϕ1 + a2 cosϕ2 − a3 cosϕ3 − a4 cosϕ4)

+ k (−a1 cosϕ1 + a2 cosϕ2 − a3 cosϕ3 + a4 cosϕ4)

+ ε (a1 sinϕ1 − a2 sinϕ2 − a3 sinϕ3 + a4 sinϕ4)

+ εi (a1 sinϕ1 + a2 sinϕ2 + a3 sinϕ3 + a4 sinϕ4)

+ εj (a1 sinϕ1 − a2 sinϕ2 + a3 sinϕ3 − a4 sinϕ4)

+ εk (a1 sinϕ1+a2 sinϕ2−a3 sinϕ3 − a4 sinϕ4)]. (13)

Hence we obtain

Ht {f (x, y, t)}

=
1
4
(a1 sinϕ1 + a2 sinϕ2 − a3 sinϕ3 − a4 sinϕ4). (14)

C. 3D CLIFFORD TEMPORAL IMAGE
The DCE-MRI sequences of all time points can be defined
as 4D data I (x, y, z, t), where (x, y) represents the axis of the
transverse plane, z is the position of the transverse plane, and t
is the time point. A 3DCTI IC (x, y, z) is calculated using CAS
for lesion segmentation. Each transverse plane of IC (x, y, z)
is obtained from (14). Given a transverse plane zm, we obtain
the difference between the maximum and minimum voxel
intensity on each position of (x, y) from Ht {I (x, y, zm, t)}
along the time axis:

IC (x, y, zm) = max
t∈[1,Tn]

{Ht {I (x, y, zm, t)}}

− min
t∈[1,Tn]

{Ht {I (x, y, zm, t)}} . (15)

To better illustrate the principle of the proposed CTI,
we present an example in Fig. 2. Fig. 2(a) and (b) show
example slices of I (x, y, z, t) and Ht {I (x, y, z, t)}, respec-
tively, on two time points. The dashed arrows indicate the
lesion ROIs on the slices from one side of the breast, and the
solid arrows indicate the normal ROIs on the similar position
from the other side. Fig. 2(c) and (d) show the time-intensity
curves of a lesion ROI (dashed lines) and normal ROI (solid
lines) from all time points. From the curves of the proposed
CTI results in Fig. 2(d), we can find that the intensity of the
lesion curve (dashed line) can be well distinguished from the
curve (solid line) of a normal ROI. Examples of IC (x, y, zm)
are shown in the first column of Fig. 3 and Fig. 4.

III. EXPERIMENTS AND RESULTS
A. DATASET
Two datasets were used in this study. What we will call the
Tencent breast DCE-MRI (TBD) dataset was collected from
more than 200 patients by our collaborating hospital from
2014 to 2018. What we will call QIN DCE is a public dataset
with 20 studies of 10 patients from the Cancer Imaging
Archive (TCIA) Quantitative Imaging Network (QIN) Breast
DCE-MRI [28]. Data with surgery, non-visible lesions on
DCE-MRI sequences, and sequences with very heavy bias
fields or incomplete scanning were not considered. We used
data of 224 patients in our TBD dataset and 12 studies of
seven patients from QIN DCE for the experiments. From
the TBD dataset, the training, validation, and test data were
from 184, 20, and 20 patients, respectively. All the QIN
DCE data were used as independent test data, which can
validate the generalization of the proposed method. Specif-
ically, for the TBD dataset, we had one pre-contrast time
point and five post-contrast time points for each patient. They
are the transverse plane images acquired from a Siemens
Skyra 3T MRI scanner. The image size on each transverse
plane was 448 × 448, with a pixel spacing of 0.8 mm. The
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FIGURE 2. Case BC01_2 of QIN DCE dataset. (a) two slices on different
time points from DCE-MRI sequence data I(x, y, z, t), and (b) from its
partial Hilbert transform on direction t : Ht {I(x, y, z, t)}; (c) time-intensity
curves from DCE-MRI sequences, in cyan, and (d) from Ht {I(x, y, z, t)},
in red. The dashed lines correspond to the lesion ROI indicated by dashed
arrows in (a) and (b). solid lines correspond to normal ROI indicated by
solid arrow in (a) and (b).

number of transverse plane images from each sequence was
around 80, with slice spacing ranging from 1.6 mm to 2 mm.
The voxel-wise lesion annotations were performed by an
experienced radiologist and reviewed by another radiologist.

FIGURE 3. Two examples from QIN DCE dataset: slices of CTI (upper-left)
and DCE-MRI subtraction image (upper-right) and their profiles (bottom).
(a) case BC01_2; (b) case BC10_1.

For the QIN DCE dataset, there were one pre-contrast time
point and about 30 post-contrast time points for a treatment.
Each patient had theMRI data of two independent treatments.
The MRI data were acquired using a Siemens 3T TIM Trio
system on the transverse plane. The transverse plane image
size was 320 × 320, with a pixel spacing of around 1.0 mm.
Each sequence had 112∼120 transverse plane slices, with a
slice spacing of 1.4 mm. The voxel-wise lesion annotations
are provided for each treatment. Table 1 shows the details of
the two datasets.
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TABLE 1. Details of adopted datasets.

B. EFFECTS OF 3D CLIFFORD TEMPORAL IMAGE
In our experiment, no preprocessing was applied to the
DCE-MRI sequences. The CTI IC (x, y, z) was computed at
all six DCE-MRI time points from the TBD dataset. For the
QIN DCE dataset, each study contained more than 20 time
points of DCE-MRI sequences, and all were used to compute
the CTI. Since the subtraction image is used in conventional
methods [16], [19], [21]–[23], the post-contrast sequence at
peak enhancement time point and the pre-contrast sequence
were used to obtain the best subtraction image in our experi-
ment.

Figure 3 shows two examples of a CTI and DCE-MRI sub-
traction image on one slice from the QIN DCE dataset. The
normalized pixel intensity of a horizontal profile is shown.
The background pixel intensity of CTI is clearly lower than
that of the DCE-MRI subtraction image. Therefore, better
contrast can be obtained by the proposed method.

In addition, to obtain the general performance of the 3D
CAS approach for imaging quality improvement, we adopted
the structural similarity index (SSIM) [29] for image quality
assessment, which simulates human visual perception and is
highly adapted for extracting structural information from a
scene. The ground-truth lesion segmentations were used as
the reference for SSIM. The calculation of SSIM considers
image luminance, structure, and contrast [29]. The mean
SSIM of the proposed CAS images was compared with that
of subtraction images in two scenarios on both datasets: with
and without breast mask. Specifically, we calculated SSIM
for lesion areas within: 1) only the breast region area; or
2) the entire image. The results are shown in Table 2. It can be
observed that the proposed CTI has a higher SSIM than the
DCE-MRI subtraction image on both datasets; for example,
0.831 vs 0.827 on QIN DCE, and 0.837 vs 0.830 on TBD.
Note that when calculating the SSIMon the entire image (e.g.,
without breast mask in Table 2), the SSIM value is very small.
One of the main reasons could be the strong noises and large
highlight volume in the heart area. Above all, the proposed
CTI consistently outperforms the subtraction image.

C. APPLICATION FOR BREAST DCE-MRI LESION
SEGMENTATION
For breast lesion segmentation, two successive FCNs were
trained. The first FCN (FCN1) was trained for segmentation
of the whole breast area, and the second (FCN2) for breast
lesion segmentation. Specifically, 3DU-net [30] architecture,

TABLE 2. SSIM results form QIN DCE and TBD datasets.

which has attracted considerable attention for superior perfor-
mance in biomedical image segmentation, was employed for
both FCN1 and FCN2. U-net consists of a contracting path
to capture context information and a symmetric expansive
path that enables precise localization. The contracting path
contains three down-convolution blocks, each with two 3 ×
3× 3 convolutional layers with a rectified linear unit (ReLU)
and a 2 × 2 × 2 max pooling operation with stride 2 for
downsampling. The number of feature channels is doubled at
each downsampling step. The expansive path has symmetric
four up-convolution blocks, each consisting of an upsampling
of the feature map followed by a 2 × 2 × 2 convolution that
halves the number of feature channels, and two 3 × 3 × 3
convolutions, each followed by a ReLU. U-net concatenates
the feature maps of each down-convolution block to its cor-
responding up-convolution block (a.k.a. a skip connection),
to recover lost spatial information that can be used by upsam-
pling operations for precise localization.

The input of the FCN1 is a one-channel 3D pre-contrast
sequence. The whole breast ROIs were first detected
by FCN1 [12]. For more efficient convergence of the
FCN2 model, the left and right halves were used to separate
the left and right side breast on each of the coronal planes of
the detected breast ROI image, thus obtaining a rough single
breast 3D ROI to train the FCN2 model.

The input of FCN2 is two-channel data. One channel
is the single breast ROI image. The second is the same
ROI from CTI, IC (x, y, z). The input data were normalized
to 160× 160× 160 with a common spacing resolution to
0.8× 0.8× 0.8 mm3.
For a fair comparison with existing subtraction image-

based methods [16], [19], [21]–[23], the breast ROI and
subtraction image were used to train another lesion seg-
mentation FCN network; we call this the DCE-MRI sub-
traction image-based (DS) method in this paper. In addi-
tion, the DeepMedic (DM) method [31] was adopted as a
whole chain method for comparison. This method developed
a dual pathway multi-scale 3D CNN for lesion segmenta-
tion with multi-channel input of MRI data. Its performance
has achieved top ranking on the public benchmarks BRATS
2015 [32] and ISLES 2015 [33]. The input of DM con-
sists of two channels: the 3D pre-contrast sequence and the
post-contrast sequence at the peak enhancement time point.
As DM requested, intensity normalization and voxel size
normalization are performed for preprocessing the QIN and
TBD datasets. To compare the performance of DM inside
the whole breast region, we used the stage-one results of
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FIGURE 4. Example images on the transverse plane with lesion in the
indicated ROI. From left to right: proposed CTIs, subtraction images, and
post-contrast sequences. (a) case BC01_2 from QIN DCE dataset;
(b) case 1 from TBD test dataset.

the proposed method (the whole breast mask) to filter DM
results, enabling the evaluation of false positives of DM in
the whole breast region. The DM with whole breast mask is
called DM + BM in this paper.

Two examples from the QIN dataset are shown in Fig. 4.
From left to right are the proposed CTIs, subtraction images,
and post-contrast images, on one transverse plane. An ROI
on one side breast indicates the region of lesions. Table 3
shows the quantity segmentation metric in terms of the dice
similarity coefficient (DICE) and average symmetric surface
distance (ASSD) on the QIN DCE and TBD datasets.

There are 32 test sequences in total, 12 from the QIN
dataset and 20 from the TBD dataset. The proposed method
obtains an average DICE of 0.813, which is 11.5%, 11.3%,
and 8.5% higher than those of DS, DM, and DM + BM,
respectively. For the average ASSD results, the proposed
method reduces the error by 5.3, 19.9, and 15.4 pixels, respec-
tively, compared to DS, DM, and DM + BM.

The proposed method outperforms the others on each
dataset. On DICE, the improvement ranges from 7.3%
(0.870 vs. 0.797) against DM + BM on TBD to 17.6%
(0.718 vs. 0.542) against DM on QIN. On ASSD,
the improvement ranges from 3.64 pixels error (1.445 vs.
5.084) against DS on TBD to 28.62 pixels error (1.667 vs.
30.287) against DM on QIN.

Considering the whole breast region, it can be observed
that the average DICE of DM + BM is 2.8% higher than
that of DM. This is because several false-positive regions
were filtered by the breast mask of the DM + BM method.
Although DM+ BM is better than DM, the proposed method
still has obvious advantages that validate the effectiveness of
the combination of CTI and successive FCNs.

Since all the methods were trained using only the TBD
dataset, the results on QIN are lower than those on TBD.

TABLE 3. Global DICE and ASSD results from QIN DCE and TBD datasets.

FIGURE 5. Lesion segmentation results from QIN DCE dataset on a 2D
transverse plane ((a),(c),(e)) and a 3D view ((b),(d),(f)). From left to right:
proposed method (red), DS method (green), DM method (blue), and
ground truth (cyan). (a)(b) case BC01_2; (c)(d) case BC10_1; (e)(f) case
BC14_2.

However, we can observe that the proposed method is more
robust than the other methods. From the results of the pro-
posed method, the difference value of DICE between the QIN
and TBD datasets (0.870−0.718) is lower than that from the
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FIGURE 6. Lesion segmentation results from TBD test dataset on a 2D
transverse plane ((a),(c),(e)) and a 3D view ((b),(d),(f)). From left to right:
proposed method (red), DS method (green), DM method (blue), and
ground truth (cyan). (a)(b) case 1; (c)(d) case 2; (e)(f) case 3.

DMmethod (0.795−0.542) and from the DM+ BMmethod
(0.797 − 0.614), and is similar to that from the DS method
(0.745 − 0.618). Moreover, the difference value of ASSD
between QIN and TBD datasets from the proposed method
(1.667 − 1.445) is much lower than those from all the other
compared methods.

Some examples of segmentation results on an ROI of the
2D transverse plane and in a 3D view are shown in Fig. 5
and Fig. 6. The corresponding results of DICE and ASSD of
each single case are shown in Table 4. It can be observed that
both the DS and DM methods obtain several false positives

TABLE 4. Performance of QIN DCE and TBD cases.

(Fig. 5(d) and (f)). Moreover, for the three cases of the TBD
dataset in Fig. 6, it can be observed that the NME regions
around the lesion ROI are suppressed by the proposed CTI
slices (see first column in Fig. 6(c)and (e)), thus avoiding the
false positives. The results of the proposed method are closest
to the ground truth for both large and small lesions. Above
all, the proposed CTI shows good capability in suppressing
non-lesion enhancement of the breast DCE-MRI sequences.
It therefore enables the segmentation algorithm to obtain a
better lesion segmentation result.

IV. CONCLUSION
In this work, we proposed a 3D CTI generating method
that splits temporal features by using the 3D biquaternion
CAS approach. By applying the CTI to 4D spatial-temporal
breast DCE-MRI data, the response of non-lesion regions
is effectively suppressed. Moreover, by using CTI and two
successive FCNs, our method obtains a good accuracy
improvement over current methods in the task of lesion seg-
mentation. Future research will improve the lesion segmen-
tation framework by adopting multiple modalities of MRI
data. This may be achieved by using a single FCNmodel with
multiple input channels, such as the multi-phase T1-weighted
series, T1-weighted nonfat-saturated sequence, T2-weighted
sequence, and 3DCTI frommulti-b-value diffusion-weighted
series.
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