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Abstract

Modeling human motor control and predicting how humans will move in novel environments is a
grand scientific challenge. Despite advances in neuroscience techniques, it is still difficult to measure
and interpret the activity of the millions of neurons involved in motor control. Thus, researchers
in the fields of biomechanics and motor control have proposed and evaluated motor control models
via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model.
Typically, researchers have developed control models that encode physiologically plausible motor control
hypotheses and compared the resulting simulation behaviors to measurable human motion data. While
such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g.
walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment
cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic
and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a
foundation for modeling these complex control processes and controlling a diverse repertoire of human
movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to
model human control. In this paper, we review the current state of neuromechanical simulations, along
with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a
scientific competition and accompanying software platform, which we have organized to accelerate the
use of reinforcement learning in neuromechanical simulations. This “Learn to Move” competition, which
we have run annually since 2017 at the NeurIPS conference, has attracted over 1300 teams from around
the world. Top teams adapted state-of-art deep reinforcement learning techniques to produce complex
motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before
in neuromechanical simulations without utilizing reference motion data. We close with a discussion of
future opportunities at the intersection of human movement simulation and reinforcement learning and
our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration
in modeling human motor control for biomechanics and rehabilitation research.

Keywords: neuromechanical simulation, deep reinforcement learning, motor control, locomotion,
biomechanics, musculoskeletal modeling, academic competition

Introduction1

Predictive neuromechanical simulations can produce motions without directly using experimental2

motion data. If the produced motions reliably match how humans move in novel situations, predic-3

tive simulations can be used to accelerate research on assistive devices, rehabilitation treatments, and4
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physical training. Neuromechanical models represent the neuro-musculo-skeletal dynamics of the hu-5

man body and can be simulated based on physical laws to predict body motions (Fig. 1). Although6

advancements in musculoskeletal modeling [1, 2] and physics simulation engines [3, 4, 5] allow us to7

simulate and analyze observed human motions, understanding and modeling human motor control re-8

mains a hurdle for accurately predicting motions. In particular, it is difficult to measure and interpret9

the biological neural circuits that underlie human motor control. To overcome this challenge, one can10

propose control models based on key features observed in animals and humans and investigate these11

models in neuromechanical simulations by comparing the simulation results to human data. With12

such physiologically plausible neuromechanical control models, today we can simulate many aspects of13

human motions, such as locomotion, in a predictive manner [6, 7, 8]. Despite this progress, developing14

controllers for more complex tasks, such as adapting to dynamic environments and those that require15

long-term planning, remains a challenge.16

Training artificial neural networks using deep reinforcement learning (RL) in neuromechanical sim-17

ulations provides an alternative way of developing control models. In contrast to developing a control18

model that captures certain physiological features and then running simulations to evaluate the results,19

deep RL can be thought of as training a black-box controller that produces motions of interest. Recent20

breakthroughs in deep learning make it possible to develop controllers with high-dimensional inputs21

and outputs that are applicable to human musculoskeletal models. Despite the discrepancy between22

artificial and biological neural networks, such means of developing versatile controllers could be useful23

in investigating human motor control [9]. For instance, one could train a controller (i. e., a policy in RL24

terminology) implemented on an artificial neural network using deep RL in a physiologically plausible25

simulation environment, and then investigate or reverse engineer the resulting network. One could also26
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Figure 1: Neuromechanical simulation. A neuromechanical simulation consists of a control model and a muscu-
loskeletal model that represent the central nervous system and the body, respectively. The control and musculoskeletal
models are forward simulated based on physical laws to produce movements.
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train controllers to mimic human motion (e.g., using imitation learning, where a controller is trained to27

replicate behaviors demonstrated by an expert [10]) or integrate an existing neuromechanical control28

model with artificial neural networks to study certain aspects of human motor control. While there are29

recent studies that used deep RL to produce human-like motions with musculoskeletal models [11, 12],30

little effort has been made to study the underlying control.31

We organized the Learn to Move competition series to facilitate developing control models with32

advanced deep RL techniques in neuromechanical simulation. It has been an official competition at the33

NeurIPS conference for the past three years. We provided the neuromechanical simulation environment,34

OpenSim-RL, and participants developed locomotion controllers for a human musculoskeletal model.35

In the most recent competition, NeurIPS 2019: Learn to Move - Walk Around, the top teams adapted36

state-of-the-art deep RL techniques and successfully controlled a 3D human musculoskeletal model to37

follow target velocities by changing walking speed and direction as well as transitioning between walking38

and standing. Some of these locomotion behaviors were demonstrated in neuromechanical simulations39

for the first time without using reference motion data. While the solutions were not explicitly designed40

to model human learning or control, they provide means of developing control models that are capable41

of producing realistic complex motions.42

This paper reviews neuromechanical simulations and deep RL, with a focus on the materials relevant43

to modeling the control of human locomotion. First, we review control models of human locomotion that44

have been studied in computer simulations and discuss how to evaluate their physiological plausibility.45

By reviewing human control models, we hope to inspire future studies using computational approaches,46

such as deep RL, to encode physiologically plausible features. We also introduce deep RL approaches47

for continuous control problems (the type of problem we must solve to predict human movement) and48

review their use in developing locomotion controllers. Then, we present the Learn to Move competition49

and discuss the successful approaches, simulation results, and their implications for locomotion research.50

We conclude by suggesting promising future directions for the field and outline our plan to extend the51

Learn to Move competition.52

Computer simulations of human locomotion53

This section reviews computer simulation studies that propose control models of human locomotion.54

We first present the building blocks of musculoskeletal simulations and their use in studying human55

motion. We next review the biological control hypotheses and neuromechanical control models that56

embed those hypotheses. We also briefly cover studies in computer graphics that have developed57

locomotion controllers for human characters. We close by discussing the means of evaluating the58

plausibility of control models and the limitations of current approaches.59

Musculoskeletal simulations60

A musculoskeletal model typically represents a human body with rigid segments and muscle-tendon61

actuators [13, 14, 15] (Fig. 2-a). The skeletal system is often modeled by rigid segments connected62

by rotational joints. Hill-type muscle models [16] are commonly used to actuate the joints, capturing63

the dynamics of biological muscles, including both active and passive contractile elements [17, 18, 19,64

20] (Fig. 2-b). Hill-type muscle models can be used with models of metabolic energy consumption65

[21, 22, 23] and muscle fatigue [24, 25, 26] to estimate these quantities in simulations. Musculoskeletal66

parameter values are determined for average humans based on measurements from a large number of67

people and cadavers [27, 28, 29, 30] and can be customized to match an individual’s height, weight, or68

CT and MRI scan data [31, 32]. OpenSim [1], which is the basis of the OpenSim-RL package [33] used69

in the Learn to Move competition, is an open-source software package broadly used in the biomechanics70

community (e.g., it has about 40,000 unique user downloads) to simulate musculoskeletal dynamics.71
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Figure 2: Musculoskeletal models for studying human movement. a. Models implemented in OpenSim [1] for
a range of studies: lower-limb muscle activity in gait [34], shoulder muscle activity in upper-limb movements [15], and
knee contact loads for various motions [35]. b. A Hill-type muscle model typically consists of a contractile element (CE),
a parallel elastic element (PE), and a series elastic element (SE). The contractile element actively produces contractile
forces that depend on its length and velocity and are proportional to the excitation signal. The passive elements act as
non-linear springs where the force depends on their length.

Musculoskeletal simulations have been widely used to analyze recorded human motion. In one72

common approach, muscle activation patterns are found through various computational methods to73

enable a musculoskeletal model to track reference motion data, such as motion capture data and74

ground reaction forces [36, 37, 38], while achieving defined objectives, like minimizing muscle effort.75

The resulting simulation estimates body states, such as individual muscle forces, that are difficult to76

directly measure with an experiment. This approach has been extensively used to analyze human77

locomotion [36, 38], to estimate body state in real-time to control assistive devices [39, 40], and to78

predict effects of exoskeleton assistance [41] and surgical interventions [42] on muscle coordination.79

However, such simulations track recorded motions and do not produce new movement.80

Alternatively, musculoskeletal simulations can produce motions without reference motion data using81

trajectory optimization methods. Instead of modeling the motor control system, this approach directly82

optimizes muscle activations that can actuate the musculoskeletal model and produce desired motions.83

While this approach does not take into account the structures or constraints of the human nervous84

system, the approach has been successful in reproducing well-practiced, or well-optimized, motor tasks.85

For example, normal walking and running motions can be produced by optimizing the muscle activations86

of a musculoskeletal model to move at a target speed with minimum muscle effort [43, 24, 25, 44].87

Although this approach provides biomechanical insights by presenting theoretically optimal gaits for88

specific objectives, it is not suitable for predicting suboptimal behaviors that emerge from the underlying89

controller such as walking in unusual environments or reacting to unexpected perturbations.90

Neuromechanical control models and simulations91

A neuromechanical model includes a representation of a neural controller in addition to the muscu-92

loskeletal system (Fig. 1). To demonstrate that a controller can produce stable locomotion, neurome-93

chanical models are typically tested in a forward physics simulation for multiple steps while dynamically94

interacting with the environment (e.g., the ground and the gravitational force). Researchers have used95

neuromechanical simulations to test gait assistive devices before developing hardware [45, 46] and to96

understand how changes in musculoskeletal properties affect walking performance [26, 7]. Moreover,97
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Figure 3: Locomotion control. The locomotion controller of animals is generally structured hierarchically with two
layers. Reflexes and central pattern generators are the basic mechanisms of the lower layer controller.

the control model can be directly used to control bipedal robots [47, 48, 49] and assistive devices98

[50, 45, 51].99

Modeling human motor control is crucial for a predictive neuromechanical simulation. However,100

most of our current understanding of human locomotion control is extrapolated from experimental101

studies of simpler animals [52, 53] as it is difficult to measure and interpret the activity of the millions102

of neurons involved in human motor control. Therefore, human locomotion control models have been103

proposed based on a few structural and functional control hypotheses that are shared in many animals104

(Fig. 3). First, locomotion in many animals can be interpreted as a hierarchical structure with two105

layers, where the lower layer generates basic motor patterns and the higher layer sends commands to the106

lower layer to modulate the basic patterns [52]. It has been shown in some vertebrates, including cats107

and lampreys, that the neural circuitry of the spinal cord, disconnected from the brain, can produce108

steady locomotion and can be modulated by electrical stimulation to change speed, direction and gait109

[54, 55]. Second, the lower layer seems to consist of two control mechanisms: reflexes [56, 57] and central110

pattern generators (CPGs) [58, 59]. In engineering terms, reflexes and CPGs roughly correspond to111

feedback and feedforward control, respectively. Muscle synergy, where a single pathway co-activates112

multiple muscles, has also been proposed as a lower layer control mechanism that reduces the degrees113

of freedom for complex control tasks [60, 61]. Lastly, there is a consensus that humans use minimum114

effort to conduct well-practiced motor tasks, such as walking [62, 63]. This consensus provides a basis115

for using energy or fatigue optimization [24, 25, 26] as a principled means of finding control parameter116

values.117

Most neuromechanical control models are focused on lower layer control using spinal control mecha-118

nisms, such as CPGs and reflexes. CPG-based locomotion controllers consist of both CPGs and simple119

reflexes, where the CPGs, often modeled as mutually inhibiting neurons [64], generate the basic muscle120

excitation patterns. These CPG-based models [65, 66, 67, 68, 69, 8] demonstrated that stable locomo-121

tion can emerge from the entrainment between CPGs and the musculoskeletal system, which are linked122

by sensory feedback and joint actuation. CPG-based models also have been integrated with different123

control mechanisms, such as muscle synergies [68, 69, 8] and various sensory feedback circuits [66, 68].124

On the other hand, reflex-based control models consist of simple feedback circuits without any temporal125

characteristics and demonstrate that CPGs are not necessary for producing stable locomotion. Reflex-126

based models [70, 18, 6, 71, 72] mostly use simple feedback laws based on sensory data accessible at127

the spinal cord such as proprioception (e.g., muscle length, speed and force) and cutaneous (e.g., foot128

contact and pressure) data [53, 57]. A reflex-based control model combined with a simple higher layer129

controller that regulates foot placement to maintain balance produced diverse locomotion behaviors130

including walking, running, and climbing stairs and slopes [6] and reacted to a range of unexpected131
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Figure 4: Reflex-based neuromechanical model. a. A reflex-based control model produced walking with human-like
kinematics, dynamics, and muscle activations when optimized to walking with minimum metabolic energy consumption
[6]. b. The model produced diverse locomotion behaviors when optimized at different simulation environments with
different objectives. c. The same model optimized for minimum metabolic energy consumption reacted to various
disturbances as observed in human experiments [73].

perturbations similarly to humans [73] (Fig. 4). Reflex-based controllers also have been combined with132

CPGs [71] and a deep neural network that operates as a higher layer controller [72] for more control133

functions, such as speed and terrain adaptation.134

Human locomotion simulations for computer graphics135

Human locomotion simulations have been widely developed in computer graphics to automate the136

process of generating human-like locomotion for computer characters. A number of controllers have137

been developed for characters to perform desired behaviors in physics simulations [74, 75, 76, 77, 78]. A138

variety of techniques have been proposed for simulating common behaviors, such as walking and running139

[79, 80, 81, 82]. Reference motions, such as motion capture data, were often used in the development140

process to produce more natural behaviors [83, 84, 85, 86]. Musculoskeletal models also have been141

used to achieve naturalistic motions [87, 88, 89], which makes them very close to neuromechanical142

simulations. The focus of these studies is producing natural motions rather than accurately representing143

the underlying biological system. However, the computer graphics studies and physiologically plausible144

neuromechanical simulations may converge as they progress to produce and model a wide variety of145

human motions.146

Plausibility and limitations of control models147

There are several ways to evaluate the physiological plausibility of control models. Plausibility of148

control models is of vital importance for the credibility of scientific knowledge the model produce and149

the implications of model predictions for rehabilitation research. Models that include neurophysiological150

details could be investigated more directly. For instance, a model that represents individual neurons151

and neural properties can be evaluated at the individual neuron level using neural recordings [90]152

and at the neuroanatomy level by assessing functions and connections of model parts that represent153

different areas of the brain and the spinal cord [91]. However, most of the control models tested in154

neuromechanical simulations focus on how motions emerge from motor control hypotheses rather than155
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capturing the neural details. These models can be evaluated by the neuromechanical simulation results156

and the control features encoded in the models.157

The plausibility of a neuromechanical control model can be assessed by the resulting simulation158

behavior. First of all, generating stable locomotion in neuromechanical simulations is a challenging159

control problem [92, 53] and thus has implications for the controller. For instance, a control model160

that cannot produce stable walking with physiological properties, such as nonlinear muscle dynamics161

and neural transmission delays, is likely missing some important aspects of human control [93]. Once162

motions are successfully simulated, they can be compared to measurable human data. We can say a163

model that produces walking with human-like kinematics, dynamics, and muscle activations is more164

plausible than one that does not. A model can be further compared with human control by evaluating its165

reactions to unexpected disturbances [73] and its adaptations in new conditions, such as musculoskeletal166

changes [26, 7], external assistance [45, 46], and different terrains.167

We also can discuss whether a control model is constructed in a plausible manner. It is plausible168

for a control model to use sensory data that are known to be used in human locomotion [53, 57] and to169

work with known constraints, such as neural transmission delays. Models developed based on control170

hypotheses proposed by neuroscientists, such as CPGs and reflexes, partially inherit the plausibility of171

the corresponding hypotheses. Showing that human-like behaviors emerge from optimality principles172

that regulate human movements, such as minimum metabolic energy or muscle fatigue, also increases173

the plausibility of the control models [24, 25, 26].174

Existing neuromechanical control models are mostly limited to modeling the lower layer control and175

producing steady locomotion behaviors. Most aspects of the motor learning process and the higher176

layer control are thus missing in current neuromechanical models. Motor learning occurs in daily life177

when acquiring new motor skills or adapting to environmental changes. For example, the locomotion178

control system adapts when walking on a slippery surface, moving a heavy load, walking on a split-belt179

treadmill [94, 95], and wearing an exoskeleton [96, 97]. The higher layer control processes environment180

cues, plans long-term motion strategies, and coordinates basic motor skills to navigate in dynamic181

and complex environments. While we will discuss other ideas for explicitly modeling motor learning182

and higher layer control in neuromechanical simulations in the sec:future section, deep RL may be an183

effective approach to developing controllers for challenging environments and motions.184

Deep reinforcement learning for motor control185

This section highlights the concepts from deep reinforcement learning relevant to developing models186

for motor control. We provide a brief overview of the terminology and problem formulations of RL187

and then cover selected state-of-art deep RL algorithms that are relevant to successful solutions in the188

Learn to Move competition. We also review human locomotion simulation studies that have used deep189

RL.190

Deep reinforcement learning191

Reinforcement learning is a machine learning paradigm for solving decision-making problems. The192

objective is to learn an optimal policy π that enables an agent to maximize its cumulative reward193

through interactions with its environment [98] (Fig. 5). For example, in the case of the Learn to Move194

competition, the environment was the musculoskeletal model and physics-based simulation environ-195

ment, and higher cumulative rewards were given to solutions that better followed target velocities with196

lower muscle effort. Participants developed agents, which consists of a policy that controls the mus-197

culoskeletal model and a learning algorithms that trains the policy. For the general RL problem, at198

each timestep t, the agent receives an observation ot (perception and proprioception data in the case of199

our competition; perception data includes information on the target velocities) and queries its policy200

π for an action at (excitation values of the muscles in the model) in response to that observation. An201
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Figure 5: Reinforcement learning. In a typical RL process, an agent takes a reward and observation as input and
trains a policy that outputs an action to achieve high cumulative rewards.

observation ot is the full or partial information of the state st of the environment. The policy π(at|ot)202

can be either deterministic or stochastic, where a stochastic policy defines a distribution over actions at203

given a particular observation ot [99]. The agent then applies the action in the environment, resulting204

in a transition to a new state st+1 and a scalar reward rt = r(st, at, st+1). The state transition is205

determined according to the dynamics model ρ(st+1|st, at). The objective for the agent is to learn an206

optimal policy that maximizes its cumulative reward, or return.207

One of the crucial design decisions in applying RL to a particular problem is the choice of policy208

representation. While a policy can be modeled by any class of functions that maps observations to209

actions, the recent use of deep neural networks to model policies demonstrated promising results in210

complex problems and has led to the emergence of the field of deep RL. Policies trained with deep RL211

methods achieved human-level performance on many of the 2600 Atari video games [100] and overtook212

world champion human players in the game of Go [101, 102].213

State-of-the-art deep RL algorithms used in Learn to Move214

Model-free deep RL algorithms (Fig. 6) are widely used for continuous control tasks, such as those215

considered in the Learn to Move competition where the actions are continuous values of muscle exci-216

tations. Model-free algorithms do not learn an explicit dynamics model of state transitions; instead,217

they directly learn a policy to maximize the expected return. In these continuous control tasks, the218

policy specifies actions that represent continuous quantities such as control forces or muscle excitations.219

Policy gradient algorithms incrementally improve a policy by first estimating the gradient of the ex-220

pected return using trajectories collected from rollouts (forward simulations in our case) of the policy,221

and then updating the policy via gradient ascent [103]. While simple, the standard policy gradient222

update has several drawbacks, including stability and sample efficiency. First, the gradient estimator223

can have high variance, which can lead to unstable learning, and a good gradient estimate may require224

a large number of training samples. Popular algorithms such as TRPO [104] and PPO [105] improve225

the stability of policy gradient methods by limiting the change in the policy’s behavior after each up-226

date step, as measured by the relative entropy between the policies [106]. Another limitation of policy227

gradient methods is their low sample efficiency, often requiring millions of samples to solve relatively228

simple tasks. Off-policy gradient algorithms, which utilize rollouts collected from previous policies,229

have been proposed to substantially reduce the number of samples required to learn effective policies230

[107, 108, 109]. Off-policy algorithms, such as DDPG [107], typically fit a Q-function, Q(s, a), which231

is the expected return of performing an action a in the current state s. These methods differentiate232

the learned Q-function to approximate the policy gradient, then use it to update the policy. Recent233

off-policy methods, such as TD3 and SAC, build on this approach and propose several modifications234

that further improve sample efficiency and stability.235
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learn value function
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Model-based RL

learn model
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Policy search

learn policy
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Policy gradient
DDPG

SAC
TD3

Policy optim. Q-Learning Evolutionary algorithm

Figure 6: Reinforcement learning algorithms for continuous action space. The diagram is adapted from [110]
and presents a partial taxonomy of RL algorithms for continuous control, or continuous action space. This focuses on
a few modern deep RL algorithms and some traditional RL algorithms that are relevant to the algorithms used by the
top teams in our competition. TRPO: trust region policy optimization [104]; PPO: proximal policy optimization [105];
DDPG: deep deterministic policy gradients [107]; TD3: twin delayed deep deterministic policy gradients [108]; SAC:
soft-actor critic [109].

Deep RL for human locomotion control236

Human motion simulation studies have used various forms of RL (Fig. 6). A number of works in237

neuromechanical simulation [67, 6] and computer graphics studies [87, 88] reviewed in the sec:simLoco238

section used policy search methods [111] with derivative-free optimization techniques, such as evo-239

lutionary algorithms, to tune their controllers. The control parameters are optimized by repeatedly240

running a simulation trial with a set of control parameters, evaluating the objective function from the241

simulation result, and updating the control parameters using an evolutionary algorithm [112]. This242

approach makes very minimal assumptions about the underlying system and can be effective for tuning243

controllers to perform a diverse array of skills [113, 6]. However, these algorithms often struggle with244

high dimensional parameter spaces (i.e., more than a couple of hundred parameters), therefore some245

care is required to design controllers that expose a relatively low-dimensional but expressive set of pa-246

rameters for optimization. Selecting an effective set of parameters can require a great deal of expertise,247

and the selected set of parameters tend to be specific for particular skills, limiting the behaviors that248

can be reproduced by the character.249

Walk Run

Cartwheel Spin-kick

Roll Kick-up

Back-flip Front-flip

Figure 7: Computer graphics characters performing diverse human motions. Dynamic and acrobatic skills
learned to mimic motion capture clips with RL in physics simulation [10].
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Recently, deep RL techniques have demonstrated promising results for character animation, with250

policy optimization methods emerging as the algorithms of choice for many of these applications [103,251

107, 105]. These methods have been effective for training controllers that can perform a rich repertoire252

of skills [114, 10, 115, 116, 117, 118]. One of the advantages of deep RL techniques is the ability to253

learn controllers that operate directly on high-dimensional, low-level representations of the underlying254

system, thereby reducing the need to manually design compact control representations for each skill.255

These methods have also been able to train controllers for interacting with complex environments256

[114, 119, 120], as well as for controlling complex musculoskeletal models [121, 11]. Reference motions257

continue to play a vital role in producing more naturalistic behavior in deep RL as a form of deep258

imitation learning, where the objective is designed to train a policy that mimics human motion capture259

data [10, 117, 11] (Fig. 7). These studies show the potential of using deep RL methods to develop260

versatile controllers for musculoskeletal models and studying human motor control.261

Learn to Move competition262

The potential synergy of neuromechanical simulations and deep RL methods in modeling human263

control motivated us to develop the OpenSim-RL simulation platform and to organize the Learn to264

Move competition series. OpenSim-RL [33] leverages OpenSim to simulate musculoskeletal models and265

OpenAI Gym, a widely used RL toolkit [122], to standardize the interface with state-of-the-art RL266

algorithms. OpenSim-RL is open-source and is provided as a Conda package [123], which has been267

downloaded about 42,000 times (counting multiple downloads from the same users) over the past three268

years. Training a controller for a human musculoskeletal model is a difficult RL problem considering269

the large-dimensional observation and action spaces, delayed and sparse rewards resulting from the270

highly non-linear and discontinuous dynamics, and the slow simulation of muscle dynamics. Therefore,271

we organized the Learn to Move competition series to crowd-source machine learning expertise in272

developing control models of human locomotion. The mission of the competition series is to bridge273

neuroscience, biomechanics, robotics, and machine learning to model human motor control.274

The Learn to Move competition series has been held annually since 2017. It has been one of the275

official competitions at the NeurIPS conference, a major event at the intersection of machine learning276

and computational neuroscience. The first competition was NIPS 2017: Learning to Run [33, 124],277

and the task was to develop a controller for a given 2D human musculoskeletal model to run as fast278

as possible while avoiding obstacles. In the second competition, NeurIPS 2018: AI for Prosthetics279

Challenge [125], we provided a 3D human musculoskeletal model, where one leg was amputated and280

replaced with a passive ankle-foot prosthesis. The task was to develop a walking controller that281

could follow velocity commands, the magnitude and direction of which varied moderately. These two282

competitions together attracted about 1000 teams, primarily from the machine learning community,283

and established successful RL techniques which will be discussed in the sssec:solutions section. We284

designed the 2019 competition to build on knowledge gained from past competitions. For example, the285

challenge in 2018 demonstrated the difficulty of moving from 2D to 3D. Thus, to focus on controlling286

maneuvering in 3D, we designed the target velocity to be more challenging, while we removed the added287

challenge of simulating movement with a prosthesis. We also refined the reward function to encourage288

more natural human behaviors.289

NeurIPS 2019: Learn to Move - Walk Around290

Overview291

NeurIPS 2019: Learn to Move - Walk Around was held online from June 6 to November 29 in292

2019. The task was to develop a locomotion controller, which was scored based on its ability to293

meet target velocity vectors when applied in the provided OpenSim-RL simulation environment. The294

environment repository was shared on Github [126], the submission and grading were managed using295
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the AIcrowd platform [127], and the project homepage provided documentation on the environment296

and the competition [128]. Participants were free to develop any type of controller that worked in the297

environment. We encouraged approaches other than brute force deep RL by providing human gait298

data sets of walking and running [129, 130, 131] and a 2D walking controller adapted from a reflex-299

based control model [6] that could be used for imitation learning or in developing a hierarchical control300

structure. There were two rounds. The top 50 teams in Round 1 were qualified to proceed to Round301

2 and to participate in a paper submission track. RL experts were invited to review the papers based302

on the novelty of the approaches, and we selected the best and finalist papers based on the reviews.303

The prizes included GPUs (NVIDIA), a motion capture suit (Xsens), travel grants, and an invitation304

to submit a paper to the Journal of NeuroEngineering and Rehabilitation and the NeurIPS 2019 Deep305

RL Workshop.306

HAB

HAD

HFL
GLU

HAM

RF

VAS

BFSH

GAS
SOL TA

action
muscle excitations

...

reward

observation
target

velocity map

minimize
muscle effort

body state

match target
velocity

environment

Controller
(agent/policy)
developed by
participnats

cb

a

Figure 8: OpenSim-RL environment for the NeurIPS 2019: Learn to Move – Walk Around competition.
a. A neuromechanical simulation environment is designed for a typical RL framework (Fig. 5). The environment took an
action as input, simulated a musculoskeletal model for one time-step, and provided the resulting reward and observation.
The action was excitation signals for the 22 muscles. The reward was designed so that solutions following target velocities
with minimum muscle effort would achieve high total rewards. The observation consisted of a target velocity map and
information on the body state. b. The environment included a musculoskeletal model that represents the human
body. Each leg consisted of four rotational joints and 11 muscles. (HAB: hip abductor; HAD: hip adductor; HFL:
hip flexor; GLU: glutei, hip extensor; HAM: hamstring, biarticular hip extensor and knee flexor; RF: rectus femoris,
biarticular hip flexor and knee extensor; VAS: vastii, knee extensor; BFSH: short head of biceps femoris, knee flexor;
GAS: gastrocnemius, biarticular knee flexor and ankle extensor; SOL: soleus, ankle extensor; TA: tibialis anterior, ankle
flexor) c. The simulation environment provided a real-time visualization of the simulation to users. The global map of
target velocities is shown at the top-left. The bottom-left shows its local map, which is part of the input to the controller.
The right visualizes the motion of the musculoskeletal model.
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In total, 323 teams participated in the competition and submitted 1448 solutions. In Round 2, the307

top three teams succeeded in completing the task and received high scores (mean total rewards larger308

than 1300 out of 1500). Five papers were submitted, and we selected the best paper [132] along with309

two more finalist papers [133, 134]. The three finalist papers came from the top three teams, where310

the best paper was from the top team.311

Simulation environment312

The OpenSim-RL environment included a physics simulation of a 3D human musculoskeletal model,313

target velocity commands, a reward system, and a visualization of the simulation (Fig. 8). The 3D314

musculoskeletal model had seven segments connected with eight rotational joints and actuated by 22315

muscles. Each foot segment had three contact spheres that dynamically interacted with the ground.316

A user-developed policy could observe 97-dimensional body sensory data and 242-dimensional target317

velocity map and produced a 22-dimensional action containing the muscle excitation signals. The re-318

ward was designed to give high total rewards for solutions that followed target velocities with minimum319

muscle effort. The details of the reward were set to result in human-like walking based on previous320

neuromechanical simulation studies [6, 26]. The mean total reward of five trials with different target321

velocities was used for ranking. The full description of the simulation environment is provided on our322

project homepage [135].323

Top solutions and results324

Various RL techniques have been effectively used since the first competition [124, 125], including325

frame skipping, discretization of the action space, and reward shaping. These are practical techniques326

that constrain the problem in certain ways to encourage an agent to search successful regions faster in327

the initial stages of training. Frame skipping repeats a selected action for a given number of frames328

instead of operating the controller every frame [133]. This technique reduces the sampling rate and thus329

computations while maintaining a meaningful representation of observations and control. Discretization330

of the muscle excitations constrains the action space and thus the search space, which can lead to331

much faster training. In the extreme case, binary discretization (i.e., muscles were either off or fully332

activated) was used by some teams in an early stage of training. Reward shaping modifies the reward333

function provided by the environment to encourage an agent to explore certain regions of the solution334

space. For example, a term added to the reward function that penalizes crossover steps encouraged335

controllers to produce more natural steps [133, 134]. Once agents found solutions that seem to achieve336

intended behaviors with these techniques, they typically were further tuned with the original problem337

formulation.338

A common trend across the finalists in 2019 was the use of off-policy methods. The first place339

entry by Zhou et al. [132] used DDPG [107], the second place entry by Kolesnikov and Hrinchuk [133]340

used TD3 [108], and the third place entry by Akimov [134] used SAC [109]. Since off-policy algorithms341

use data collected with previous policies for training, they can be substantially more sample efficient342

than their on-policy counterparts and could help to compensate for the computationally expensive343

simulation. Off-policy algorithms are also more amenable to distributed training, since data-collection344

and model updates can be performed asynchronously. Kolesnikov and Hrinchuk [133] leveraged this345

property of off-policy methods to implement a population-based distributed training framework, which346

used an ensemble of agents whose experiences were collected into a shared replay buffer that stored347

previously collected (observation, action, reward, next observation) pairs. Each agent was configured348

with different hyperparameter settings and was trained using the data collected from all agents. This,349

in turn, improved the diversity of the data that was used to train each policy and also improved the350

exploration of different strategies for solving a particular task.351

Curriculum learning [136] was also used by the top teams. Curriculum learning is a training method352

where a human developer designs a curriculum that consists of a series of simpler tasks that eventually353

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246801doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246801
http://creativecommons.org/licenses/by-nc-nd/4.0/


lead to the original task that is challenging to train from scratch. Akimov [134] first trained a policy354

to walk and then to follow target velocities. Similarly, Zhou et al. [132] trained a policy for normal355

speed walking by first training it to run at high speed, then to run at slower speeds, and eventually356

to walk at normal speed. They found that the policy trained through this process resulted in more357

natural gaits than policies that were directly trained to walk at normal speeds. This is probably because358

there is a limited set of very high-speed gaits that are close to human sprinting, and starting from this359

human-like sprinting gait could have guided the solution to a more natural walking gait out of a large360

variety of slow gaits, some of which are unnatural and ineffective local minima. Then they obtained361

their final solution policy by training this basic walking policy to follow target velocities and to move362

with minimum muscle effort.363

The winning team, Zhou et al., proposed risk averse value expansion (RAVE), a hybrid approach364

of model-based and model-free RL [132]. Their method fits an ensemble of dynamics models (i.e.365

models of the environment) to data collected from the agent’s interaction with the environment, and366

then uses the learned models to generate imaginary trajectories for training a Q-function. This model-367

based approach can substantially improve sample efficiency by synthetically generating a large volume368

of data but can also be susceptible to bias from the learned models, which can negatively impact369

performance. To mitigate potential issues due to model bias, RAVE uses an ensemble of dynamics370

models to estimate the confidence bound of the predicted values and then trains a policy using DDPG371

to maximize the confidence lower bound. Their method achieved impressive results on the competition372

tasks and also demonstrated competitive performance on standard OpenAI Gym benchmarks [122]373

compared to state-of-the-art algorithms [132].374

Implications for human locomotion control375

The top solution [132] shows that it is possible to produce many locomotion behaviors with the given376

3D human musculoskeletal model, despite its simplifications. The musculoskeletal model simplifies the377

human body by, for example, representing the upper body and the pelvis as a single segment. Moreover,378

the whole body does not have any degree of freedom for internal yaw motion (Fig. 8-a). Such a model379

was selected for the competition as it can produce many locomotion behaviors including walking,380

running, stair and slope climbing, and moderate turning as shown in a previous study [6]. On the381

other hand, the missing details of the musculoskeletal model could have been crucial for generating382

other behaviors like sharp turning motions and gait initiation. However, the top solution was able to383

initiate walking from standing, quickly turn towards a target (e.g., turn 180◦ in one step; Fig. 9), walk384

to the target at commanded speeds, and stop and stand at the target. To our knowledge, it is the first385

demonstration of rapid turning motions with a musculoskeletal model with no internal yaw degree of386

freedom. The solution used a strategy that is close to a step-turn rather than a spin-turn, and it will be387

interesting to further investigate how the simulated motion compares with human turning [137, 138].388

The top solutions had some limitations in producing human-like motions. In the top solution [132],389

the human model first turned to face the target then walked forward towards the target with a relatively390

natural gait. However, the gait was not as close to human walking as motions produced by previous391

neuromechanical models and trajectory optimization [6, 44]. This is not surprising as the controllers for392

the competition needed to cover a broad range of motions, and thus were more difficult to fully optimize393

Figure 9: Rapid turning motion. The top solution can make the musculoskeletal model with no internal yaw degree
of freedom to turn 180◦ in a single step. Snapshots were taking every 0.4 s.
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for specific motions. The second and third solutions [133, 134] were further from human motions as394

they gradually moved towards a target often using side steps. As policy gradient methods use gradient395

descent, they often get stuck at local optima resulting in suboptimal motions [120] even though natural396

gaits are more efficient and agile. Although the top solution overcame some of these suboptimal gaits397

through curriculum learning, better controllers could be trained by utilizing imitation learning for a398

set of optimal motions [10, 11, 12] or by leveraging control models that produce natural gaits [18, 6].399

Different walking gaits, some of which are possibly suboptimal, are also observed in toddlers during400

the few months of extensive walking experience [139, 140], and interpreting this process with an RL401

framework will be instructive to understanding human motor learning.402

Future directions403

Various deep reinforcement learning approaches, such as imitation learning and hierarchical learn-404

ing, approaches could be used to produce more complex motions and their coordination. The top405

solutions in the competitions were able to control standing, walking and running behaviors, which is406

impressive but only covers a small portion of human motion. Parkour athletes, for example, can plan407

and execute jumping, vaulting, climbing, rolling, and many other acrobatic motions to move in complex408

environments, which would be very difficult to perform with brute force RL methods. Imitation learn-409

ing [10, 117, 11] could be used to train multiple networks to master a set of acrobatic skills (Fig. 7).410

These networks of motion primitives can then be part of a hierarchical controller [141, 142, 143], where411

a higher layer controller coordinates the motion skills. More control layers that analyze dynamic scenes412

and plan longer-term motion sequences [144, 145] can be added if a complex strategy is required for the413

task. We will promote research in developing all these aspects of control by designing a contest that414

requires complex motions and long-term motion planning. The task can be something like the World415

Chase Tag competition, where two athletes take turns to tag the opponent, using athletic movements,416

in an arena filled with obstacles [146]. To this end, we plan to develop a simulation environment417

with a faster physics engine that can handle multi-body contacts between human models and obstacles418

[3, 4, 5], provide a human musculoskeletal model with an articulated upper body [88, 11], and design419

a visuomotor control interface [147].420

As discussed in the ssec:plausibility section, the physiologically plausible control models are currently421

limited to representing the lower layer control and omit many aspects of the motor learning process422

and the higher layer control. Motor learning paradigms have been proposed to explain the transient423

behaviors observed while acquiring new motor skills or adapting to environment changes [148, 149].424

Integrating these paradigms into locomotion control models will substantially expand the realm of425

human motions that neuromechanical simulations can represent. Gait adaptation reported during426

walking on a split-belt treadmill [94, 95] are a benchmark for evaluating motor learning simulations,427

and simulations that correctly predict the training process of walking with exoskeletons [96, 97] could428

change the way we develop assistive devices. Deep RL methods may be able to train control models that429

perform the functions of both higher layer and lower layer controls. However, integrating physiologically430

plausible control models with deep RL methods can have both predictive and computational advantages.431

As there are CPG- and reflex-based lower layer control models proposed to represent some of the432

physiological control constraints [67, 6], combining these lower-layer control models with a high-layer433

controller developed with deep RL may have some utility in producing motions closer to humans in434

novel scenarios. Moreover, it may be easier to train this higher-layer deep neural network than one435

without such structured lower-layer control as the solution space could be constrained to reasonable436

movements. Similarly, the action space can be reduced by having a muscle synergy layer between the437

deep neural network and muscle excitations. In future competitions, we plan to implement and share438

more physiologically plausible control models in OpenSim-RL and organize a separate paper submission439

track to acknowledge approaches that encode physiological features.440

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246801doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246801
http://creativecommons.org/licenses/by-nc-nd/4.0/


The importance of physiological plausibility of predictive simulations is not limited to control mod-441

els and simulation results but also applies to the musculoskeletal simulation environment. For instance,442

there are a variety of muscle models [20, 150, 151] that represent biological muscles at different levels443

of detail and focus on different properties, and investigating the effect of these models in whole-body444

motion will be instructive. Body motion can be affected by other physical and physiological details as445

well, such as the number of muscles and body segments used to represent the musculoskeletal system446

[11], soft tissue [152] and its interaction with assistive devices [153], muscle fatigue [154], and muscu-447

loskeletal properties that vary across individuals [155] and health conditions [156, 157]. Modeling these448

details requires sufficient domain knowledge in each field. In the long term, we aim to modularize our449

simulation framework so that it will be easier for researchers to focus on their expertise, for example in450

implementing and testing different muscle models, while using other modules (e.g., control, training,451

and environment modules) in our framework. We could collect various control models and RL algo-452

rithms through the Learn to Move competition and share them as part of the modular framework that453

will make motion simulations easier for non-RL experts.454

Conclusion455

In this article, we reviewed neuromechanical simulations and deep reinforcement learning with a456

focus on human locomotion. Neuromechanical simulations provide a means to evaluate control models,457

and deep RL is a promising tool to develop control models for complex movements. We hope to see458

more interdisciplinary studies and collaboration that uses advanced machine learning techniques to459

develop and evaluate physiologically plausible control models. Such studies could significantly advance460

our ability to model control and predict human behaviors. We plan to continue to develop and dis-461

seminate the Learn to Move competition and its accompanying simulation platform to facilitate these462

advancements toward predictive neuromechanical simulations for rehabilitation treatment and assistive463

devices.464
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[84] M. Da Silva, Y. Abe, J. Popović, Simulation of human motion data using short-horizon model-692

predictive control, in: Computer Graphics Forum, volume 27, Wiley Online Library, pp. 371–380.693

[85] Y. Lee, S. Kim, J. Lee, Data-driven biped control, in: ACM SIGGRAPH 2010 papers, 2010, pp.694

1–8.695

[86] S. Hong, D. Han, K. Cho, J. S. Shin, J. Noh, Physics-based full-body soccer motion control for696

dribbling and shooting, ACM Transactions on Graphics (TOG) 38 (2019) 1–12.697

[87] J. M. Wang, S. R. Hamner, S. L. Delp, V. Koltun, Optimizing locomotion controllers using698

biologically-based actuators and objectives, ACM Transactions on Graphics (TOG) 31 (2012)699

1–11.700

[88] T. Geijtenbeek, M. Van De Panne, A. F. Van Der Stappen, Flexible muscle-based locomotion701

for bipedal creatures, ACM Transactions on Graphics (TOG) 32 (2013) 1–11.702

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246801doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246801
http://creativecommons.org/licenses/by-nc-nd/4.0/


[89] Y. Lee, M. S. Park, T. Kwon, J. Lee, Locomotion control for many-muscle humanoids, ACM703

Transactions on Graphics (TOG) 33 (2014) 1–11.704

[90] D. A. McCrea, I. A. Rybak, Organization of mammalian locomotor rhythm and pattern genera-705

tion, Brain research reviews 57 (2008) 134–146.706

[91] H. Schroll, F. H. Hamker, Computational models of basal-ganglia pathway functions: focus on707

functional neuroanatomy, Frontiers in systems neuroscience 7 (2013) 122.708

[92] A. D. Kuo, Stabilization of lateral motion in passive dynamic walking, The International journal709

of robotics research 18 (1999) 917–930.710

[93] G. Obinata, K. Hase, A. Nakayama, Controller design of musculoskeletal model for simulating711

bipedal walking, in: Annual Conference of the International FES Society, volume 2, p. 1.712

[94] J. T. Choi, A. J. Bastian, Adaptation reveals independent control networks for human walking,713

Nature neuroscience 10 (2007) 1055–1062.714

[95] G. Torres-Oviedo, A. J. Bastian, Natural error patterns enable transfer of motor learning to novel715

contexts, Journal of neurophysiology 107 (2012) 346–356.716

[96] I. Cajigas, A. Koenig, G. Severini, M. Smith, P. Bonato, Robot-induced perturbations of human717

walking reveal a selective generation of motor adaptation, Sci Robot 2 (2017) 1–10.718

[97] J. Zhang, P. Fiers, K. A. Witte, R. W. Jackson, K. L. Poggensee, C. G. Atkeson, S. H. Collins,719

Human-in-the-loop optimization of exoskeleton assistance during walking, Science 356 (2017)720

1280–1284.721

[98] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT press, 2018.722

[99] S. Levine, Reinforcement learning and control as probabilistic inference: Tutorial and review,723

arXiv preprint arXiv:1805.00909 (2018).724

[100] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-725

miller, A. K. Fidjeland, G. Ostrovski, et al., Human-level control through deep reinforcement726

learning, Nature 518 (2015) 529–533.727

[101] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,728

I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of go with deep neural729

networks and tree search, nature 529 (2016) 484.730

[102] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,731

M. Lai, A. Bolton, et al., Mastering the game of go without human knowledge, Nature 550 (2017)732

354–359.733

[103] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, Policy gradient methods for rein-734

forcement learning with function approximation, in: Advances in neural information processing735

systems, pp. 1057–1063.736

[104] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region policy optimization, in:737

International conference on machine learning, pp. 1889–1897.738

[105] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization739

algorithms, arXiv preprint arXiv:1707.06347 (2017).740

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246801doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246801
http://creativecommons.org/licenses/by-nc-nd/4.0/


[106] S. Kakade, J. Langford, Approximately optimal approximate reinforcement learning, in: ICML,741

volume 2, pp. 267–274.742

[107] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra,743

Continuous control with deep reinforcement learning, arXiv preprint arXiv:1509.02971 (2015).744

[108] S. Fujimoto, H. Van Hoof, D. Meger, Addressing function approximation error in actor-critic745

methods, arXiv preprint arXiv:1802.09477 (2018).746

[109] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: Off-policy maximum entropy deep747

reinforcement learning with a stochastic actor, arXiv preprint arXiv:1801.01290 (2018).748

[110] Openai spinning up documentation, https://spinningup.openai.com/en/latest/749

spinningup/rl_intro2.html#id20, ???? Accessed: 2020-04-29.750

[111] M. P. Deisenroth, G. Neumann, J. Peters, et al., A survey on policy search for robotics, Foun-751

dations and Trends R© in Robotics 2 (2013) 1–142.752

[112] N. Hansen, The cma evolution strategy: a comparing review, in: Towards a new evolutionary753

computation, Springer, 2006, pp. 75–102.754

[113] J. M. Wang, D. J. Fleet, A. Hertzmann, Optimizing walking controllers for uncertain inputs and755

environments, ACM Transactions on Graphics (TOG) 29 (2010) 1–8.756

[114] X. B. Peng, G. Berseth, M. Van de Panne, Terrain-adaptive locomotion skills using deep rein-757

forcement learning, ACM Transactions on Graphics (TOG) 35 (2016) 1–12.758

[115] W. Yu, G. Turk, C. K. Liu, Learning symmetric and low-energy locomotion, ACM Transactions759

on Graphics (TOG) 37 (2018) 1–12.760

[116] J. Won, J. Park, J. Lee, Aerobatics control of flying creatures via self-regulated learning, ACM761

Transactions on Graphics (TOG) 37 (2018) 1–10.762

[117] L. Liu, J. Hodgins, Learning basketball dribbling skills using trajectory optimization and deep763

reinforcement learning, ACM Transactions on Graphics (TOG) 37 (2018) 1–14.764

[118] A. Clegg, W. Yu, J. Tan, C. K. Liu, G. Turk, Learning to dress: Synthesizing human dressing765

motion via deep reinforcement learning, ACM Transactions on Graphics (TOG) 37 (2018) 1–10.766

[119] X. B. Peng, G. Berseth, K. Yin, M. Van De Panne, Deeploco: Dynamic locomotion skills using767

hierarchical deep reinforcement learning, ACM Transactions on Graphics (TOG) 36 (2017) 1–13.768

[120] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, S. Es-769

lami, M. Riedmiller, Silver, David, Emergence of locomotion behaviours in rich environments,770

arXiv preprint arXiv:1707.02286 (2017).771

[121] X. B. Peng, M. van de Panne, Learning locomotion skills using deeprl: Does the choice of action772

space matter?, in: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer773

Animation, pp. 1–13.774

[122] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba, Openai775

gym, arXiv preprint arXiv:1606.01540 (2016).776

[123] Openai spinning up, https://anaconda.org/kidzik/opensim, ???? Accessed: 2020-04-29.777

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246801doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246801
http://creativecommons.org/licenses/by-nc-nd/4.0/
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