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Machine Speech Chain
Andros Tjandra , Sakriani Sakti , Member, IEEE, and Satoshi Nakamura , Fellow, IEEE

Abstract—Despite the close relationship between speech per-
ception and production, research in automatic speech recognition
(ASR) and text-to-speech synthesis (TTS) has progressed more
or less independently without exerting much mutual influence. In
human communication, on the other hand, a closed-loop speech
chain mechanism with auditory feedback from the speaker’s mouth
to her ear is crucial. In this paper, we take a step further and develop
a closed-loop machine speech chain model based on deep learning.
The sequence-to-sequence model in closed-loop architecture allows
us to train our model on the concatenation of both labeled and
unlabeled data. While ASR transcribes the unlabeled speech fea-
tures, TTS attempts to reconstruct the original speech waveform
based on the text from ASR. In the opposite direction, ASR also
attempts to reconstruct the original text transcription given the
synthesized speech. To the best of our knowledge, this is the first
deep learning framework that integrates human speech perception
and production behaviors. Our experimental results show that the
proposed approach significantly improved performance over that
from separate systems that were only trained with labeled data.

Index Terms—Speech chain, ASR, TTS, deep learning.

I. INTRODUCTION

S PEECH chain, a concept introduced by Denes et al. [1],
describes the basic mechanism involved in speech commu-

nication when a spoken message travels from the speaker‘s mind
to the listener’s mind (Fig. 1). It consists of a speech production
mechanism in which the speaker produces words and generates
speech sound waves, transmits the speech waveform through
a medium (i.e., air), and creates a speech perception process
in a listener’s auditory system to perceive what was said. Over
the past few decades, researchers have struggled to understand
the principles underlying natural speech communication. Many
attempts have also been made to replicate human speech percep-
tion and production with machines to support natural modality
in human-machine interactions.

To date, the development of advanced spoken language tech-
nologies based on automatic speech recognition (ASR) and text-
to-speech (TTS) has enabled machines to process and respond
to basic human speech. Various ASR approaches have relied on
acoustic-phonetics knowledge [2] in earlier works to template-
based schemes with dynamic time warping (DTW) [3], [4]
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Fig. 1. Speech chain [1] and related spoken language technologies.

and data-driven approaches with rigorous statistical modeling
of a hidden Markov model-Gaussian mixture model (HMM-
GMM) [5], [6]. In a similar direction, TTS technology has
gradually shifted from the foundation of a rule-based system
using waveform coding and an analysis-synthesis method [7]–
[9] to waveform unit concatenation [10], [11] and a more flexible
approach using the statistical modeling of a hidden semi-Markov
model-GMM (HSMM-GMM) [12], [13]. Recently, after the
resurgence of deep learning, interest has also surfaced in the
possibility of utilizing a neural approach for ASR and TTS
systems. Many state-of-the-art performances in ASR [14]–[16]
and TTS [17]–[19] tasks have been successfully constructed
based on neural network frameworks.

However, despite the close relationship between speech per-
ception and production, ASR and TTS research has progressed
more or less independently without exerting much influence
on each other. In human communication, on the other hand, a
closed-loop speech chain mechanism has a critical auditory feed-
back mechanism from the speaker’s mouth to her ear (Fig. 1).
In other words, the hearing process is critical, not only for the
listener, but also for the speaker. By simultaneously listening
and speaking, the speaker can monitor her volume, articulation,
and the general comprehensibility of her speech. Processing the
information further, the speaker’s brain can plan what she will
say next. Children who lose their hearing often have difficulty
producing clear speech due to their inability to monitor their
own speech [20].

Unfortunately, investigating the inherent links between these
two processes is very challenging. Difficulties arise because
methodologies and analyses are necessarily quite different when
they are extracting the underlying messages from speech wave-
forms, as in speech perception, or generating an optimum dy-
namic speaking style from the intended message, as in speech

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1246-5908
https://orcid.org/0000-0001-5509-8963
https://orcid.org/0000-0001-6956-3803
mailto:andros.tjandra.ai6@is.naist.jp
mailto:ssakti@is.naist.jp
mailto:s-nakamura@is.naist.jp


TJANDRA et al.: MACHINE SPEECH CHAIN 977

Fig. 2. (a) Overview of machine speech chain architecture. Examples of unrolled process: (b) from ASR to TTS and (c) from TTS to ASR.

production. Until recently, it was impossible in a joint approach
to reunite the problems shared by both modes. However, due
to deep learning’s representational power, many complicated
hand-engineered models have been simplified by letting deep
neural nets (DNNs) learn their way from input to output spaces.
With this newly emerging approach to sequence-to-sequence
mapping tasks, a model with a common architecture can directly
learn the mapping between variable-length representations of
different modalities: text-to-text sequences [21], [22], speech-
to-text sequences [23], [24], text-to-speech sequences [25], and
image-to-text sequences [26], etc.

Therefore, in this paper, we take a step further and develop
a closed-loop speech chain model based on deep learning and
construct a sequence-to-sequence model for both ASR and TTS
tasks, as well as a loop connection between these two processes.
The sequence-to-sequence model in closed-loop architecture
allows us to train our model on the concatenation of both
labeled and unlabeled data. While ASR transcribes the unlabeled
speech features, TTS attempts to reconstruct the original speech
waveform based on text from ASR. In the opposite direction,
ASR also reconstructs the original text transcription given the
synthesized speech. To the best of our knowledge, this is the first
deep learning model that integrates human speech perception
and production behaviors.

Our contributions in this paper include:
1) Basic machine speech chain that integrates ASR and TTS

and performs on single-speaker task.
2) Multi-speaker speech chain with a speaker-embedding

network for handling speech with different voice char-
acteristics.

3) Machine speech chain with a straight-through estimator
to allow end-to-end feedback loss through discrete units
or subwords.

II. RELATED WORKS

Approaches that utilize learning from source-to-target and
vice-versa, as well as feedback links, remain scant. He et al. [27]

quite recently published a work that addressed a mechanism
called dual learning in neural machine translation. Their system
has a dual task: source-to-target language translation (primal)
versus target-to-source language translation (dual). The primal
and dual tasks form a closed loop and generate informative
feedback signals to train the translation models, even without the
involvement of a human labeler. This approach was originally
proposed to tackle training data bottleneck problems. With a
dual-learning mechanism, the system can leverage monolingual
data (in both the source and target languages) more effectively.
First, they construct one model to translate from the source to
the target language and another to translate from the target to
the source language. After both the first and second models have
been trained with a small parallel corpus, they start to teach each
other using monolingual data and generate useful feedback with
language model likelihood and reconstruction error to further
improve the performance.

Another similar work in neural machine translation was intro-
duced by Cheng et al. [28], [29]. This approach also exploited
monolingual corpora to improve neural machine translation.
Their system utilizes a semi-supervised approach for training
neural machine translation (NMT) models on the concatena-
tion of labeled (parallel corpora) and unlabeled (monolingual
corpora) data. The central idea is to reconstruct monolingual
corpora using an autoencoder in which the source-to-target and
target-to-source translation models serve as the encoder and
decoder, respectively.

In this manuscript, we addressed similar problems in spoken
language processing tasks. This paper presents a novel mech-
anism that integrates human speech perception and production
behaviors. With a concept that resembles dual learning in NMT,
we utilize the primal model (ASR) that transcribes the text given
the speech versus the dual model (TTS) that synthesizes the
speech given the text. However, the main difference between
NMT is that the domain between the source and the target
here are different (speech versus text). While ASR transcribes
the unlabeled speech features, TTS attempts to reconstruct the
original speech waveform based on the text from ASR. In the
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opposite direction, ASR also attempts to reconstruct the original
text transcription given the synthesized speech. Nevertheless,
our experimental results show that the proposed approach also
identified a successful learning strategy and significantly im-
proved performance over that of separate systems that were only
trained with labeled data.

After our preliminary work, several works have discussed
our methods and built on top of them. Karita et al. [30]
form a text and speech autoencoder and train unpaired data
with reconstruction loss. Ren et al., [31] replaced the LSTM-
based encoder-decoder with Transformer modules for both ASR
and TTS and achieved good performance with small paired
speech-text in single speaker dataset. Rosenberg et al. [32]
explored the effect of data augmentation by using TTS on the
larger experiment. Kurata et al. [33] improved ASR perfor-
mance by adding feature reconstruction loss during training.
Ueno et al. [34] use synthetic speeches from multi-speaker TTS
to improve their Acoustic2Word speech recognition system.
Baskar et al. [35] proposed an alternative to backpropagate
through discrete variables by using a policy-gradient method,
compared to our proposal using a straight-through estimator.
Hori et al. [36] replaced TTS with text-to-encoder (TTE) to
avoid the need for modeling the speaking style during the
reconstruction.

III. BASIC MACHINE SPEECH CHAIN

A. Overview

We start by explaining an overall basic machine speech chain
mechanism. For a better understanding, we illustrated the speech
chain loop in Fig. 2(a). Speech chain consists of a sequence-
to-sequence ASR, a sequence-to-sequence TTS, and a loop
connection from ASR to TTS and from TTS to ASR. The key
idea is to jointly train both the ASR and TTS models. As men-
tioned above, the sequence-to-sequence model in closed-loop
architecture allows us to train our model on the concatenation
of both the labeled (paired) and unlabeled (unpaired) data.

To further clarify the learning process during supervised and
unsupervised training, we unrolled the architecture as follows:

1) Paired speech-text training for ASR and TTS: Given the
labeled data (speech-text paired data), both models can
be trained independently by minimizing the loss between
their predicted target sequence and the ground truth se-
quence via teacher forcing.

2) Unpaired speech data only (ASR → TTS): Given the
unlabeled speech features, ASR transcribes the unlabeled
input speech, while TTS reconstructs the original speech
waveform based on the output text from ASR. Fig. 2(b)
illustrates the mechanism. We may also treat it as an
autoencoder model, where the speech-to-text ASR serves
as an encoder and the text-to-speech TTS as a decoder.

3) Unpaired text data only (TTS → ASR): Given only the
text input, TTS generates speech waveform, while ASR
also reconstructs the original text transcription given the
synthesized speech. Fig. 2(c) illustrates the mechanism.
Here, we may also treat it as another autoencoder model,
where the text-to-speech TTS serves as an encoder and the
speech-to-text ASR as a decoder.

Algorithm 1: Speech Chain Algorithm.

1: Input: Paired speech and text dataset DP , text-only
dataset YU , speech-only dataset XU , supervised loss
coefficient α, unsupervised loss coefficient β

2: repeat
3: A. Supervised training with speech-text data pairs
4: Sample paired speech and text

(xP ,yP ) = ([xP
1 , .., x

P
SP

], [yP1 , .., y
P
TP

])

5: from DP with speech length SP and text length TP .
Generate a text probability vector by ASR using
teacher forcing:

6: pyt
= P (yt|yP<t,x

P ; θASR), ∀t ∈ [1..TP ] Generate
best predicted speech by TTS using teacher forcing:

7: x̂P
s = argmaxz P (z|xP

<s,y
P ; θTTS);∀s ∈ [1..SP ]

8: Calculate the loss for ASR and TTS � Eq. (13)
& (14)

�PASR = LASR(y
P ,py; θASR) (1)

�PTTS = LTTS(x
P , x̂P ; θTTS) (2)

9: B. Unsupervised training with unpaired speech
and text

10: # Unpaired text data (TTS→ ASR):
11: Sample text yU = [yU1 , .., y

U
TU

] from YU

12: Generate speech by TTS: x̂U ∼ PTTS(·|yU ; θTTS)
Generate text probability vector by ASR from TTS’s
predicted speech using teacher forcing:

13: pyt
= P (yt|yU

<t, x̂
U ; θASR); ∀t ∈ [1..TU ]

Calculate the loss between original text yU and
reconstruction probability vector py

�UASR = LASR(y
U ,py; θASR) (3)

14: # Unpaired speech data (ASR→ TTS):
15: Sample speech xU = [xU

1 , .., x
U
SU

] from XU

16: Generate text by ASR: ŷU ∼ PASR(·|xU ; θASR)
17: Generate speech by TTS from ASR’s predicted text

using teacher forcing:
18: x̂U

s = argmaxz PTTS(z|xU
<s, ŷ

U ; θTTS); ∀s ∈
[1..S] Calculate the loss between original speech xU

and generated speech x̂U

�UTTS = LTTS(x
U , x̂U ; θTTS) (4)

19: # Loss combination:
20: Combine all weighted loss into a single loss variable

�ALL = α ∗ (�PTTS + �PASR) + β ∗ (�UTTS + �UASR)
(5)

21: Calculate TTS and ASR parameters gradient with
the derivative of �ALL w.r.t θASR, θTTS

GASR = ∇θASR
� (6)

GTTS = ∇θTTS
� (7)

22: Update TTS and ASR parameters with gradient
descent optimization (SGD, Adam, etc.)

θASR ← Optim(θASR, GASR) (8)

θTTS ← Optim(θTTS , GTTS) (9)

23: until convergence of parameter θTTS , θASR
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Fig. 3. Sequence-to-sequence ASR architecture: the encoder consists of a
fully connected layer + stack bidirectional LSTM and the decoder consists of a
unidirectional LSTM with attention mechanism.

With such autoencoder models, ASR and TTS can teach each
other by adding a reconstruction term of the observed unlabeled
data to the training objective. Details of the algorithm can be
found in Algorithm 1.

B. Sequence-to-Sequence Model for ASR

A sequence-to-sequence model is a neural network that
directly models conditional probability P (y|x), where x =
[x1, . . ., xS ] is the sequence of the (framed) speech features
with lengthS andy = [y1, . . ., yT ] is the sequence of labels with
lengthT . Fig. 3 shows the overall structure of the attention-based
encoder-decoder model that consists of encoder, decoder, and
attention modules.

The encoder task processes input sequence x, projects
it through several layers (e.g., long short-term memory
(LSTM) [37]/gated recurrent unit (GRU) [38], convolution,
fully connected), and outputs representative information he =
[he

1, . . ., h
e
S ] for the decoder. The attention module is an exten-

sion scheme that helps the decoder find relevant information on
the encoder side based on the current decoder hidden states [21],
[24]. Attention modules produce context information ct at time
t based on the encoder hidden states hs

e and decoder hidden
states hd

t :

ct =

S∑

s=1

at(s) ∗ he
s (10)

at(s) = Align(he
s, h

d
t )

=
exp(Score(he

s, h
d
t ))∑S

s=1 exp(Score(he
s, h

d
t ))

. (11)

There are several variations for score functions [39]:

Score(he
s, h

d
t ) =

⎧
⎪⎨

⎪⎩

〈he
s, h

d
t 〉, dot product

heᵀ
s Wsh

d
t , bilinear

V ᵀ
s tanh(Ws[h

e
s, h

d
t ]), MLP

(12)

where Score : (RM ×RN )→ R, M is the number of hidden
units for the last layer of encoder and N is the number of
hidden units for the decoder. Finally, the decoder is an au-
toregressive model that predicts target sequence probability
pyt

= P (yt|ct, hd
t ,y<t; θASR) = P (yt|x,y<t; θASR) at time t

based on previous output y<t, current context information ct,
and hidden statehd

t . The loss function for ASR can be formulated
as:

�ASR = LASR(y,py) = − 1

T

T∑

t=1

C∑

c=1

1(yt = c) ∗ log pyt
[c],

(13)
where C is the number of output classes. Input x for speech
recognition tasks is a sequence of feature vectors like the log
Mel-scale spectrogram. Therefore, x ∈ RS×D, where D is the
number of feature dimensions and S is the total frame length for
an utterance. Outputy, which is a speech transcription sequence,
can be either a phoneme or grapheme (character) sequence.

C. Sequence-to-Sequence Model for TTS

Parametric speech synthesis resembles a sequence-to-
sequence task where we generate speech given a sentence.
Using a sequence-to-sequence model, we model the conditional
probability between P (x|y), where y = [y1, . . ., yT ] is the se-
quence of characters with length T and x = [x1, . . ., xS ] is the
sequence of (framed) speech features with length S. From the
sequence-to-sequence ASR model perspective, we now have an
inverse model for reconstructing the original speech given the
text.

In this work, our core architecture is based on Tacotron [25]
with several structural modifications. Fig. 4 illustrates our mod-
ified Tacotron. On the encoder side, we project our input char-
acters with an embedding layer. The character vectors are fed
into several fully connected layers followed by a non-linear
activation function. We pass the result into the CBHG block
(1-D Convolution Bank + Highway + bidirectional GRU) with
eight filter banks (filter size ranging from 1 to 8). The CBHG
output is expected to produce representative information he =
[he

1, . . ., h
e
T ] for the decoder.

Our modified decoder has one input layer and three output
layers (instead of two as in the original Tacotron). The first
output layer generates a sequence of log Mel-scale spectrogram
frames xM = [xM

1 , . . ., xM
S ]. At the s-th step, the input layer

is fed by a previous step-log Mel-scale spectrogram xM
s−1, and

then several fully connected layers and a non-linear activation
function are processed. Next, we use a stacked LSTM with a
multilayer perceptron (MLP) attention with alignment and con-
text history [40] to extract the expected context cs information
based on the current decoder input and encoder states he. We
project the context with a fully connected layer to predict the
Mel-scale spectrogram.
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Fig. 4. Sequence-to-sequence TTS (Tacotron) architecture with frame ending
binary prediction. (FC = Fully Connected, CBHG = Convolution Bank +
Highway + bi-GRU)

The second output layer reconstructs log-magnitude spectro-
gram xR = [xR

1 , . . ., x
R
S ] given the first layer generated output

xM . After we get complete the sequences of the log Mel-scale
spectrogram, we feed them into a CBHG block followed by a
fully connected layer to predict the log magnitude spectrogram.

The third output layer generates binary prediction bs ∈ [0, 1]
(1 if the s-th frame is the end of speech, otherwise 0) based
on the current log-Mel spectrogram generated by the first output
layer and expected context cs from the decoder with the attention
layer. We add the binary prediction layer because the output from
the first and second decoder layers is a real value vector, and we
cannot use an end-of-sentence (eos) token to determine when to
stop the generation process. Based on our initial experiment, we
found that our modification helped Tacotron determine the end
of speech more robustly than forcing the decoder to generate
frames with a 0 value at the end of the speech. We also enable
our model to learn from multiple speakers by concatenating the
projected speaker embedding into the input before the LSTM
layer, first output regression layer, and second output regression
layer.

For training the TTS model, we used the following loss
function:

�TTS = LTTS(x, x̂) =
1

S

S∑

s=1

‖xM
s − x̂M

s ‖22 + ‖xR
s − x̂R

s ‖22

− (bs log(b̂s) + (1− bs) log(1− b̂s)), (14)

Fig. 5. Illustration for training data split between three different scenarios.

Fig. 6. Side-by-side CER (%) comparison between baseline, speech chain and
upperbound with different percentage of paired speech-text data.

where x̂ = (x̂M , x̂R, b̂) are the predicted Mel-scale spectro-
gram, the magnitude spectrogram, and the end-of-frame proba-
bility, and x = (xM,xR, b) is the ground truth. In the decoding
process, we use the Griffin-Lim [41] algorithm to iteratively es-
timate the phase spectrogram and reconstruct the signal with the
inverse short-time Fourier transform (STFT) from the predicted
magnitude and phase spectrogram.

D. Experiment on Single-Speaker Task

To verify our proposed method, we experimented on a corpus
with a single speaker because, until recently, most TTS systems
by deep learning are trained on a single speaker dataset.

We utilized a natural speech single-speaker dataset named
LJSpeech [42] that contains about 13,100 utterances. Because
there is no official dev and test split from this dataset, we shuffled
it and randomly took 94% (total 12,314 utts) for training, 3%
(total 393 utts) for dev, and 3% (total 393 utts) for the test set.
Later, we split the train-set again to smaller ratio to compare the
result between the paired only and paired + unpaired data. In
Fig. 5, we illustrate how we split the training data for supervised
(baseline) with small ratio of paired data, supervised (upper-
bound) with full paired data and semi-supervised with paired,
unpaired text and unpaired speech. For the unpaired speech and
text, there are 70% remaining unused data. To get the unpaired
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text, we take it by randomly sample 35% (without replacement)
from the unused data. For the unpaired speech, we take it from
the remaining 35% data. Therefore, there is no overlap between
unpaired speech and unpaired text dataset.

1) Feature Extraction: For the speech features, we extracted
two different sets of features: Mel spectrogram and magnitude
spectrogram. Both the Mel spectrogram and magnitude spectro-
gram are extracted based on STFT with the librosa package [43].
All speech waveforms were sampled at 16 kHz. Given the
raw speech waveform, we applied pre-emphasis (coefficient
0.97) and extracted the spectrogram with STFT (50-ms frame
length, 12.5-ms frame shift, 2048-points FFT). After getting
the spectrogram, we applied absolute and log operations to
extract the log magnitude spectrogram features. To generate the
Mel spectrogram features, we extracted the 80-dims Mel-scale
coefficients from the magnitude spectrogram followed by log
operation. Our final set is comprised of an 80-dimension log-Mel
spectrogram and 1025-dimension log magnitude spectrogram.
The log magnitude spectrogram features are used by TTS and the
log-Mel spectrogram features are used by both TTS and ASR.

For the text, we converted all of the sentences into lowercase
and replaced some punctuation marks (for example, ” into ’). In
the end, we have 26 letters (a-z), six punctuation marks (,:’?.-),
and three special tags (<s>, </s>, <spc>) to denote the start,
end of sentence, and spaces between words.

2) Model Details: Our ASR model is an encoder-decoder
with an attention mechanism. On the encoder side, we used
a log-Mel spectrogram as the input features (in unsupervised
process, the log-Mel spectrogram was generated by TTS), which
are projected by a fully connected layer and a LeakyReLU
(l = 1e− 2) [44] activation function, and processed by three
stacked bidirectional LSTM (BiLSTM) layers with 256 hidden
units for each direction (512 hidden units). We applied sequence
subsampling [24], [45] to reduce the memory usage and compu-
tation time on the each LSTM layer and reduced the length of the
speech features eight times shorter. On the decoder side, the input
character is projected with a 128-dims embedding layer and fed
into a one-layer LSTM with 512 hidden units. We calculated the
attention matrix with an MLP scorer (Eq. 12) followed by a fully
connected layer and a softmax function. In the decoding phase,
the transcription was generated by beam-search decoding (size
=5), and we normalized the log-likelihood score by dividing
it by its own length to prevent the decoder from favoring the
shorter transcriptions. We did not use any language model or
lexicon dictionary in this work.

Our TTS model hyperparameters are generally the same as
the original Tacotron, except that we used LeakyReLU instead
of ReLU for most of the parts. On the encoder side, the CBHG
used K = 8 different filter banks instead of 16 to reduce our
GPU memory consumption. On the decoder side, we used a
two-stacked LSTM instead of a GRU with 256 hidden units.
Our TTS predicted four consecutive frames in one time-step to
reduce the number of time-steps in the decoding process.

Both the ASR and TTS models are implemented with the
PyTorch library.1

1[Online]. Available: PyTorch https://github.com/pytorch/pytorch

TABLE I
ASR EXPERIMENT RESULT FOR LJSPEECH SINGLE-SPEAKER

NATURAL SPEECH DATASET

TABLE II
TTS EXPERIMENT RESULT FOR LJSPEECH SINGLE-SPEAKER

NATURAL SPEECH DATASET

3) Experiment Results: For the ASR, we compare the char-
acter error rate (CER) between different scenarios in Table I.
For the TTS experiment, we did both objective and subjec-
tive evaluations. In the objective evaluation, we compare the
L2-norm squared between the predicted and ground truth log
Mel-spectrogram in Table II. We experimented with a different
ratio between the paired and unpaired data from the LJSpeech
dataset. In the subjective evaluation, based on the quality of
the synthesized speech using mean opinion score (MOS) test
based on five-point scale (5: very good - 1: very poor). We
compare three systems: 1) baseline with paired speech-text 30%,
2) speech chain with paired speech-text 30%, unpaired text 35%
and unpaired speech 35 (no overlap)% and 3) upperbound paired
speech-text 100%. To generate the samples, we randomly picked
20 utterances from the test set. In total, we have 27 subjects and
each subject evaluates 60 utterances. We report the subjective
evaluation result in Fig. 7.

The results show that after the ASR and TTS models
are trained with a small paired dataset, they start to teach
each other using unpaired data and generate useful feedback.
Here, we improved both the ASR and TTS performance
significantly compared to only using a portion of the paired
dataset. We provided some samples from the single speaker

https://github.com/pytorch/pytorch
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Fig. 7. MOS with 95% confidence interval between baseline, speech chain
and upperbound scenario.

speech chain TTS experiments on https://speech-chain-
single-spk-demo.netlify.com/https://speech-chain-single-spk-
demo.netlify.com/.

E. Discussion

In this section, we presented a basic speech chain mechanism
and demonstrated the ability to train both ASR and TTS modules
with paired and unpaired speech and a text dataset. However,
there is a limitation in the unpaired training:

1) For training unpaired text, given an unpaired text, we can
only generate speech with a specific speaking style. The
speaking style is limited based on the speaker set that we
used in the supervised TTS training.

2) In the unpaired speech training, the ASR transcribes a
sentence. However, our TTS can only reconstruct the
speech if the speaker identity from the unpaired speech
is provided and the speaker embedding for that person has
been seen during the supervised training.

IV. MACHINE SPEECH CHAIN FRAMEWORK WITH

SPEAKER ADAPTATION

A. Overview

Fig. 8 illustrates the updated speech chain mechanism. Similar
to the earlier version, it consists of a sequence-to-sequence
ASR [24], [46], a sequence-to-sequence TTS [25], and a loop
connection from ASR to TTS and from TTS to ASR. The key
idea is to jointly train the ASR and TTS models. The differ-
ence is that, in this version, we integrate a speaker recognition
(SPKEMB) model inside the loop illustrated in Fig. 8(a). As
mentioned above, we can train our model on the concatenation of
both labeled (paired) and unlabeled (unpaired) data. We describe
the learning process below.

1) Paired speech-text dataset (see Fig. 8(a)): Given the
speech utterances x and the corresponding text transcrip-
tiony from datasetDP , both the ASR and TTS models can
be trained independently. Here, we can train ASR by cal-
culating the ASR loss �PASR directly with teacher forcing.
For TTS training, we generate a speaker-embedding vector
z = SPKEMB(x), integrate z information with TTS, and
calculate the TTS loss �PTTS via teacher forcing.

2) Unpaired speech data only (see Fig. 8(b)): Given only the
speech utterances x from unpaired datasetDU , ASR gen-
erates the text transcription ŷ (with greedy or beam-search
decoding) and SPKEMB provides a speaker-embedding
vector z = SPKEMB(x). Given the generated text and
the original speaker vector z, TTS then reconstructs the
speech waveform x̂ = TTS(ŷ, z) via teacher forcing. We
then calculate the loss �UTTS between x and x̂.

3) Unpaired text data only (see Fig. 8(c)): Given only the
text transcription y from unpaired datasetDU , we need to
sample speech from the available dataset x̃ ∼ (DP ∪ DU )
and generate a random speaker vector z̃ = SPKEMB(x̃)
from SPKEMB. Then, TTS generates the speech utter-
ance x̂ with greedy decoding. Given the generated speech
x̂, ASR reconstructs the text ŷ = ASR(x̂) via teacher
forcing. We then calculate the loss �UASR between y
and ŷ.

We combine all losses together and update both the ASR and
TTS model:

� = α ∗ (�PASR + �PTTS) + β ∗ (�UASR + �UTTS) (15)

θASR ← Optim(θASR,∇θASR
�) (16)

θTTS ← Optim(θTTS ,∇θTTS
�), (17)

where α, β are hyperparameters to scale the loss between
the supervised (paired) and unsupervised (unpaired) loss, and
∇θASR

�, ∇θTTS
� are the gradient of combined loss � w.r.t. ASR

θASR and TTS parameters θTTS .
Fig. 8 illustrates the updated speech chain mechanism. Similar

to the earlier version, it consists of a sequence-to-sequence
ASR [24], [46], a sequence-to-sequence TTS [25], and a loop
connection from ASR to TTS and from TTS to ASR. The key
idea is to jointly train the ASR and TTS models. The differ-
ence is that, in this version, we integrate a speaker embedding
(SPKEMB) model inside the loop illustrated in Fig. 8(a). As
mentioned above, we can train our model on the concatenation of
both labeled (paired) and unlabeled (unpaired) data. We describe
the learning process below.

1) Paired speech-text dataset (see Fig. 8(a)): Given the
speech utterances x and the corresponding text transcrip-
tiony from datasetDP , both the ASR and TTS models can
be trained independently. Here, we can train ASR by cal-
culating the ASR loss �PASR directly with teacher forcing.
For TTS training, we generate a speaker-embedding vector
z = SPKEMB(x), integrate z information with TTS, and
calculate the TTS loss �PTTS via teacher forcing.

2) Unpaired speech data only (see Fig. 8(b)): Given only the
speech utterances x from unpaired datasetDU , ASR gen-
erates the text transcription ŷ (with greedy or beam-search
decoding) and SPKEMB provides a speaker-embedding
vector z = SPKEMB(x). Given the generated text and
the original speaker vector z, TTS then reconstructs the
speech waveform x̂ = TTS(ŷ, z) via teacher forcing. We
then calculate the loss �UTTS between x and x̂.

3) Unpaired text data only (see Fig. 8(c)): Given only the
text transcription y from unpaired datasetDU , we need to
sample speech from the available dataset x̃ ∼ (DP ∪ DU )
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Fig. 8. (a) Overview of proposed machine speech chain architecture with speaker recognition; (b) Unrolled process with only speech utterances and no text
transcription (speech→ [ASR,SPKEMB]→ [text + speaker vector]→TTS→ speech); (c) Unrolled process with only text, but no corresponding speech utterance
([text + speaker vector by sampling SPKEMB]→ TTS→ speech→ ASR→ text). Note: grayed box is the original speech chain mechanism.

and generate a random speaker vector z̃ = SPKEMB(x̃)
from SPKEMB. Then, TTS generates the speech utter-
ance x̂ with greedy decoding. Given the generated speech
x̂, ASR reconstructs the text ŷ = ASR(x̂) via teacher
forcing. We then calculate the loss �UASR between y
and ŷ.

We combine all losses together and update both the ASR and
TTS model:

� = α ∗ (�PASR + �PTTS) + β ∗ (�UASR + �UTTS) (18)

θASR ← Optim(θASR,∇θASR
�) (19)

θTTS ← Optim(θTTS ,∇θTTS
�), (20)

where α, β are hyperparameters to scale the loss between
the supervised (paired) and unsupervised (unpaired) loss, and
∇θASR

�, ∇θTTS
� are the gradient of combined loss � w.r.t. ASR

θASR and TTS parameters θTTS .

B. Speaker Recognition and Embedding

Speaker recognition is a task to determine the identity of the
speaker based on a spoken utterances. Another related tasks to
speaker recognition is speaker identification, where the speaker
identification model needs to predict if a pair of speech are
come from same identity or not. By generating a embedding that
correspond to the speaker identity, it can be used to predict both
tasks. There are several traditional methods for speaker recog-
nition such as i-vectors [47] and PLDA-based approach [48].
Since the deep learning approach become more popular, several
deep learning architectures (DeepSpeaker [49], [50]) have been
proposed to directly learn speaker representation from speech
features. In Fig. 9 we illustrate DeepSpeaker architecture in more
details.

To generate a speaker representation for speaker recognition
task, we assume our input is a speech featurex ∈ RS×din . Then,
we construct a deep neural network by stacking convolution,
recurrent, pooling, etc and generate a fixed size vector z ∈ Rdz .
On the top of dz , we attach a linear projection and softmax
activation function to calculate the probability along all possible
N speakers.

z = SPKEMB(x) (21)

Fig. 9. Deep learning based speaker embedding (DeepSpeaker) architecture.

py = Softmax(zWz) (22)

To optimize the speaker representation model, there are sev-
eral loss functions such as negative log-likehood:

�NLL = −
N∑

n=1

1(y = n) ∗ log py[n], (23)

or distance-based such as triplet loss [51], [52]:

�TRI =
∑

a,p,n
ya=yp =yn

max(‖za − zp‖22 + ‖za − zn‖22, 0) (24)

where a, p, n are the anchor, positive and negative example and
za, zp, zn are their embedding respectively. In the training stage,
those losses could be combined together and improved the final
model performance [49].

C. Sequence-to-Sequence TTS With One-Shot
Speaker Adaptation

A parametric TTS can be formulated as a sequence-to-
sequence model where the source sequence is a text utterance
y = [y1, .., yT ]with length T and the target sequence is a speech
feature x = [x1, .., xS ] with length S. Our model objective is to
maximize P (x|y; θTTS) w.r.t. TTS parameter θTTS . We build
our model upon the basic structure of the “Tacotron” TTS [25]
and “Deep Speaker” models (Section IV-B).
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Fig. 10. Proposed model: sequence-to-sequence TTS (Tacotron) + speaker
information via neural speaker embedding (Deep Speaker).

The original Tacotron is a single-speaker TTS system based on
a sequence-to-sequence model. Given a text utterance, Tacotron
produces the Mel spectrogram and linear spectrogram followed
by the Griffin-Lim algorithm to recover the phase and recon-
struct the speech signal. However, the original model is not
designed to incorporate speaker identity or to generate speech
from different speakers.

On the other hand, Deep Speaker is a deep neural speaker-
embedding system (here denoted as “SPKEMB”). Given a se-
quence of speech features x = [x1, .., xS ], Deep Speaker gen-
erates an L2-normalized continuous vector embedding z. If
x1 and x2 are spoken by the same speaker, the trained Deep
Speaker model will produce the vector z1 = SPKEMB(x1) and
the vector z2 = SPKEMB(x2), which are close to each other.
Otherwise, the generated embeddings z1 and z2 will be far from
each other. By combining Tacotron with Deep Speaker, we can
do “one-shot” speaker adaptation by conditioning the Tacotron
with the generated fixed-size continuous vector z from Deep
Speaker with a single speech utterance from any speaker.

Here, we adopt both systems by modifying the original
Tacotron TTS model to integrate the Deep Speaker model.
Fig. 10 illustrates our proposed model. From the encoder mod-
ule side, the architecture and building blocks are same as the
description from Section III-C.

On the decoder side, we have an autoregressive decoder. To
produce different speech based on the original speaker target,
we generate speaker-embedding vector z = SPKEMB(xM ).
This speaker embedding z is generated using only one utterance
of the target speaker; thus it is called “one-shot” speaker adap-
tation. After that, we integrate speaker vector z with a linear
projection and sum it with the last output from the FC layer.
Then, we apply two LSTM layers to generate current decoder

statehd
s . To retrieve the relevant information between the current

decoder state and the entire encoder state, we calculate the at-
tention probability as(t) = Align(he

t , h
d
s);∀t ∈ [1..T ] and the

expected context vector cs =
∑T

1 as(t) ∗ he
t . Then, we con-

catenate the decoder state hd
s , context vector cs, and projected

speaker-embedding z together into a vector, followed by two
fully connected layers to produce the current time-step Mel
spectrogram output xM

s .
In the training stage, we optimized our proposed model by

minimizing the following loss function:

�TTS = LTTS(x, x̂, z, ẑ)

=

(
S∑

s=1

γ1
(‖xM

s − x̂M
s ‖22 + ‖xR

s − x̂R
s ‖22

)

− γ2

(
bs log(b̂s) + (1− bs) log(1− b̂s)

))

+ γ3

(
1− <ẑ, z>

‖ẑ‖2 ‖z‖2

)
, (25)

where γ1, γ2, γ3 are our sub-loss hyperparameters, and
xM ,xR, b, z are the ground-truth Mel spectrogram, linear spec-
trogram, and end-of-speech label and speaker-embedding vector
from the real speech data, respectively. x̂M , x̂R, b̂ represent
the predicted Mel spectrogram, linear spectrogram, and end-
of-speech label, respectively, and speaker-embedding vector
ẑ = SPKEMB(x̂M ) is the predicted speaker vector from the
Tacotron output. Here, �TTS consists of three different loss
formulations: Eq. (25) line 1 applies L2-norm squared error be-
tween the ground truth and predicted speech as a regression task,
Eq. (25) line 2 applies binary cross entropy for end-of-speech
prediction as a classification task, and Eq. (25) line 3 applies
cosine distance between the ground-truth speaker-embedding
z and predicted speaker-embedding ẑ, which is the common
metric for measuring the similarity between two vectors; fur-
thermore, by minimizing this loss, we also minimize the global
loss of speaker style [53], [54].

D. Experiment on Multi-Speaker Task

1) Corpus Dataset: In this study, we ran our experiment on
the Wall Street Journal (WSJ) CSR Corpus [55]. The complete
data are contained in an SI284 (SI84+SI200) dataset. We fol-
lowed the standard Kaldi [56] s5 recipe to split the training set,
development set, and test set. To reformulate the speech chain
as a semi-supervised learning method, we prepared SI84 and
SI200 as paired and unpaired training sets, respectively. SI84
consists of 7138 utterances (about 16 hours of speech) spoken
by 83 speakers, and SI200 consists of 30,180 utterances (about
66 hours) spoken by 200 speakers (without any overlap with
speakers of SI84). We use “dev93” to denote the development
and “eval92” for the test set.

2) Feature and Text Representation on WSJ Dataset: For
the feature extraction, we use the same configuration as
Section III-D1 The text utterances were tokenized as charac-
ters and mapped into a 33-character set: 26 alphabetic letters
(a-z), 3 punctuation marks (’.-), and 4 special tags 〈noise〉,
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TABLE III
CHARACTER ERROR RATE (CER (%)) COMPARISON BETWEEN RESULTS OF

SUPERVISED LEARNING AND THOSE OF A SEMI-SUPERVISED LEARNING

METHOD, EVALUATED ON TEST_EVAL92 SET (WITHOUT ANY LEXICON &
LANGUAGE MODEL ON THE DECODING STEP)

〈spc〉, 〈s〉, and 〈/s〉 as noise, space, start-of-sequence, and
end-of-sequence tokens, respectively. Both the ASR input and
TTS output shared the same text representation.

3) Model Details: For the ASR and TTS encoder-decoder,
we use a same setting as Section III-D2. We set the sub-loss
hyperparameter in Eq. 25 with γ1 = 1, γ2 = 1, γ3 = 0.25.

For the speaker recognition model, we used the Deep Speaker
model and followed the original hyperparameters in the previous
paper. However, our Deep Speaker is only trained on the WSJ
SI84 set with 83 unique speakers. Thus, the model is expected
to generalize effectively across all remaining unseen speakers
to assist the TTS and speech chain training. We used Adam
optimization with a learning rate of 5e− 4 for the ASR and
TTS models and 1e− 3 for the Deep Speaker model. All of our
models in this paper are implemented with PyTorch [57].

4) Experiment Results: Table III shows the ASR results from
multiple scenarios evaluated on eval92. In the first block, we
trained our baseline model by using paired samples from the
SI84 set only, and we achieved 17.35% CER. In the second
block, we trained our model with paired data of the full WSJ
SI284 data, and we achieved 7.12% CER as our upperbound
performance. In the last block, we trained our model with a
semi-supervised learning approach using SI84 as paired data
and SI200 as unpaired data. For comparison with other models
trained with semi-supervised learning, we carried out label-
propagation [60]. Label propagation is a simple way to do semi-
supervised learning. First, we train initial model with paired
speech-text DP . The pre-trained model is used to generate the
hypothesis from the unpaired speech XU . Later, we add the
unpaired speech and their correspondent hypothesis into training
set and treat them as a paired dataset. Our result showed that
by using label-propagation with beam-size = 5, we successfully
reduced the CER to 14.58%. Nevertheless, our proposed speech-
chain model could achieve a significant improvement over all
baselines (paired only and label-propagation) with 9.89% CER,
close to the upperbound results.

For the TTS experiment, we did both objective and subjective
evaluations. In the objective evaluation, we calculated the
difference with L2-norm squared between ground truth and

TABLE IV
L2-NORM SQUARED ON LOG-MEL SPECTROGRAM TO COMPARE THE

SUPERVISED LEARNING AND THOSE OF A SEMI-SUPERVISED LEARNING

METHOD, EVALUATED ON TEST_EVAL92 SET. NOTE: WE DID NOT INCLUDE

STANDARD TACOTRON (WITHOUT SPKEMB) INTO THE TABLE SINCE IT

CANNOT OUTPUT VARIOUS TARGET SPEAKERS

TABLE V
ASR EXPERIMENT RESULT ON WSJ DATASET TEST_EVAL92

Fig. 11. MOS with 95% confidence interval between baseline, speech chain
and upperbound scenario.

the predicted log-Mel spectrogram and presented the result on
Table IV. We observed similar trends with the ASR results,
where the semi-supervised training with speech chain method
improved significantly over the baseline and close to the
upperbound result. In the subjective evaluation, based on
the quality of the synthesized speech using mean opinion
score (MOS) test based on five-point scale (5: very good - 1:
very poor). To generate the samples, we randomly picked 20
utterances from the test set. In total, we have 26 subjects and
each subject evaluates 60 utterances. We report the subjective
evaluation result in Fig. 11. We provided some samples from
multi-speaker speech chain TTS experiments on https://speech-
chain-multi-spk-demo.netlify.com/https://speech-chain-multi-
spk-demo.netlify.com/.
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E. Discussion

In this section, we introduced an improved speech chain
mechanism by integrating a speaker recognition model inside
the loop. By using the new system, we eliminated the downside
from our basic speech chain, where we are unable to incor-
porate the data from unseen speakers. We also extended the
capability of TTS to generate speech from an unseen speaker by
implementing one-shot speaker adaptation. Thus, the TTS can
generate speech with a similar voice characteristic only with
a single utterance example. Inside the speech chain loop, the
ASR also gets new data from the combination between a text
sentence and an arbitrary voice characteristic. Our results show
that after we deployed the speech-chain loop, the ASR system
achieved significant improvement compared to the baseline
(supervised training only) and other semi-supervised technique
(label propagation). Like the trends in ASR, the TTS system
also showed improvement compared to the baseline (supervised
training only).

V. END-TO-END FEEDBACK LOSS ON SPEECH CHAIN

A. Overview

In the speech chain mechanism, given speech features x =
[x1, .., xS ] (e.g., Mel spectrogram) and text y = [y1, .., yT ],
we fed the speech to the ASR module and the ASR decoder
generated continuous vector hd

t step by step. To calculate prob-
ability vector py = [py1

, .., pyT
], we applied the softmax func-

tion pyt
= softmax(hd

t ) to decoder output hd
t . For each class

probability mass in pyt
, pyt

[c] was defined as:

pyt
[c] =

exp(hd
t [c]/τ)∑C

i=1 exp(h
d
t [i]/τ)

, ∀c ∈ [1..C]. (26)

Here, C is the total number of classes, hd
t ∈ RC are the logits

produced by the last decoder layer, and τ is the temperature
parameters. Setting temperature τ using a larger value (τ > 1)
produces a smoother probability mass over classes [61].

For the generation process, we generally have two different
methods:

1) Conditional generation given ground truth (teacher forc-
ing):
If we have paired speech and text (x,y), we can generate
pyt

from autoregressive ASR decoderDecASR(yt−1,he),
conditioned to ground-truth text yt−1 in the current time-
step and encoded speech feature he = EncASR(x). At
the end, the length of probability vector py is fixed to T
time-steps.

2) Conditional generation given previous step model
prediction:
Another generation process to decode ASR transcrip-
tion uses its own prediction to generate probability vec-
tor pyt

. There are many different generation methods,
such as greedy decoding (1-best beam-search) (ỹt =
argmaxc pyt

[c]), beam-search, or stochastic sampling
(ỹt ∼ Cat(pyt

)).
After the generation process, we obtained probability vector

py and applied discretization from continuous probability vector
pyt

to ỹt either by taking the class with the highest probability

Fig. 12. Straight-through estimator on argmax function. Given input x
and model parameters θ, we calculate categorical probability mass P (x; θ)
and apply discrete operation argmax. In the backward pass, the gradient from
stochastic node y to P (x; θ), ∂y/∂P (x; θ) ≈ 1 is approximated by identity.

or sampling from a categorical random variable. After getting
a single class to represent the probability vector, we encoded it
into vector [0,0 ,..,1,..,0] with one-hot encoding representation
and gave it to the TTS as the encoder input. The TTS recon-
structs Mel spectrogram x̂ with the teacher-forcing approach.
The reconstruction loss is calculated by:

�recTTS = Lrec
TTS(x, x̂) =

1

S

S∑

s=1

‖xM
s − x̂M

s ‖22, (27)

where x̂M
s is the predicted (or reconstructed) Mel spectrogram

and xM
s is the ground-truth spectrogram at s-th time-step.

We directly calculated the gradient from the reconstruc-
tion loss w.r.t. the TTS parameters (∂�recTTS/ ∂θTTS) because
all the operations inside the TTS module are continuous and
differentiable. However, we could not calculate the gradi-
ent from the reconstruction loss w.r.t. the ASR parameters
(∂�recTTS/∂θASR) because we have a discretization operation
from pyt

→ onehot(ỹt). Therefore, we applied a straight-
through estimator to enable the loss from �recTTS to pass through
discrete variable ỹt.

B. End-to-End Feedback Loss

1) Straight-Through Argmax: The straight-through estima-
tor [62], [63] is a method for estimating or propagating gradients
through stochastic discrete variables. Its main idea is to back-
propagate through discrete operations (e.g., argmaxc pyt

[c] or
sampling ỹt ∼ Cat(pyt

)) like an identity function. We describe
the forward process and the gradient calculation with a straight-
through estimator in Fig. 12.

In the implementation, we created a function with different
forward and backward operations. For the argmax one-hot
encoding function, we formulated the forward operation:

z̃t = argmax
c

pyt
[c] (28)

ỹt = onehot(z̃t). (29)

Here, we describe ỹt as a one-hot encoding vector with the
same length as the pyt

vector. When the loss is calculated and
the gradients are backpropagated from loss �recTTS , we formulate
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the backward operation:

∂ỹt
∂pyt

≈ 1. (30)

Therefore, when we backpropagate the loss from Eq. (27)
with the straight-through estimator approach, we calculate the
TTS reconstruction loss gradient w.r.t. θASR:

∂�recTTS

∂θASR
=

T∑

t=1

∂�recTTS

∂ỹt
· ∂ỹt
∂pyt

· ∂pyt

∂θASR
(31)

≈
T∑

t=1

∂�recTTS

∂ỹt
· 1 · ∂pyt

∂θASR
. (32)

2) Straight-Through Gumbel-Softmax: Besides taking
argmax class from probability vector pyt

, we also generated
a one-hot encoding by sampling with the Gumbel-Softmax
distribution [64], [65]. Gumbel-Softmax is a continuous
distribution that approximates categorical samples and the
gradients can be calculated with a reparameterization trick.
For Gumbel-Softmax, we replaced the softmax formula for
calculating pyt

(Eq. (26)):

pyt
[c] =

exp((hd
t [c] + gc)/τ)∑C

i=1 exp((h
d
t [i] + gi)/τ)

, ∀c ∈ [1..C], (33)

where g1, .., gC are i.i.d. samples drawn from Gumbel (0, 1) and
τ is the temperature. We sample gc by drawing samples from
the uniform distribution:

uc ∼ Uniform(0, 1) (34)

gc = − log(− log(uc)), ∀c ∈ [1..C]. (35)

To generate a one-hot encoding, we define our forward
operation:

z̃t = argmax
c

pyt
[c] (36)

ỹt = onehot(z̃t). (37)

At the backpropagation time, we use the same straight-
through estimator (Eq. (30)) to allow the gradients to flow
through the discrete operation.

3) Combined Loss for ASR: Our final loss function for ASR
is a combination from negative likelihood (Eq. (13)) and TTS
reconstruction loss (Eq. (27)) by sum operation:

�FASR = �ASR + �recTTS . (38)

To summarize our explanation in this section, we provide
an illustration in Fig. 13 that explains how sub-losses �ASR

and �recTTS are backpropagated to the rest of the ASR and TTS
modules.

C. Experiment on Multi-Speaker Task in Supervised Settings

1) Dataset: We evaluated the performance of our proposed
method on the WSJ dataset [55]. Our settings for the training, de-
velopment, and test sets are the same as the Kaldi s5 recipe [56].
We trained our model with WSJ-SI284 data. Our validation set
was dev_93 and our test set was eval_92. For the feature
extraction and text tokenization, we use the same setting as
Section IV-D2.

Fig. 13. Given speech feature x, ASR generates a sequence of probability
py = [py1 , py2 , . . ., pyT ]. If we have a ground-truth transcription, we can
calculate LASR (Eq. (13)). The TTS module generates speech features and we
calculate reconstruction loss LrecTTS (Eq. (27)). After that, the gradients based
on LASR are propagated through the ASR module, and the gradients based on
LrecTTS are propagated through the TTS and ASR modules by a straight-through
estimator.

2) Model Details: For the ASR model, we used a standard
sequence-to-sequence model with an attention module (Sec-
tion III-B). We use the same encoder setting as Section III-D2.
On the decoder sides, we projected one-hot encoding from
the previous character into a 256-dims continuous vector with
an embedding matrix, followed by one unidirectional LSTM
with 512 hidden units. For the attention module, we used the
content-based attention + multiscale alignment (denoted as “Att
MLP-MA”) [40] with a 1-history size. In the evaluation stage,
the transcription was generated by beam-search decoding (size
=5), and we normalized the log-likelihood score by dividing it
by its own length to prevent the decoder from favoring shorter
transcriptions. We did not use any language model or lexicon
dictionary in this work. In the training stage, we tried ST-argmax
(Section V-B1) and ST-Gumbel softmax (Section V-B2). We also
tried both teacher forcing and greedy decoding to generate ASR
probability vectorspy in the training stage. For each scenario, we
treated temperature τ = [0.25, 0.5, 1, 2] as our hyperparameter
and searched for the best temperature based on the CER on the
development set.

For the TTS model, we used the modified Tacotron which
is explained in Section III-C and we use same settings as
Section III-D2.

3) Experiment Results: For our baseline, we trained an
encoder-decoder with MLP + multiscale alignment with a 1-
history size [40]. We also added several published results to our
baseline. All of the baseline models were trained by minimizing
negative log-likelihood �ASR (Eq. (13)).

All the models in the proposed section were trained with
a combination from two losses, �ASR + �recTTS , and the ASR
parameters were updated based on the gradient from the sum
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of the two losses. We have four different scenarios, most of
which provide significant improvement compared to the baseline
model that is only trained on LASR loss. With teacher forcing
and sampling from Gumbel-softmax, we obtained 11% relative
improvement compared to our best baseline Att MLP-MA.

VI. CONCLUSION

This paper demonstrated a novel machine speech chain mech-
anism based on deep learning. The sequence-to-sequence model
in closed-loop architecture allows us to train our model on the
concatenation of both labeled and unlabeled data. We explored
applications of the model in various tasks, including single
speaker synthetic speech and multi-speaker natural speech.
Our experimental results in both cases show that the proposed
approach enabled ASR and TTS to improve performance by
teaching each other using only unpaired data. We also introduced
an extension to allow backpropagation through discrete output
from the ASR module with a straight-through estimator. In the
future, it is necessary to further validate the effectiveness of our
approach on various languages and conditions (i.e., spontaneous,
noisy, and emotion).

REFERENCES

[1] P. Denes and E. Pinson, The Speech Chain, (Anchor books.Series) New
York, USA: Worth Publishers, 1993. [Online]. Available: https://books.
google.co.jp/books?id=ZMTm3nlDfroC

[2] K. H. Davis, R. Biddulph, and S. Balashek, “Automatic recognition of
spoken digits,” Acoust. Soc. America, vol. 24, pp. 627–642, 1952.

[3] T. K. Vintsyuk, “Speech discrimination by dynamic programming,” Kiber-
netika, vol. 4, pp. 81–88, 1968.

[4] H. Sakoe and S. Chiba, “Dynamic programming algorithm quantization for
spoken word recognition,” IEEE Trans. Acoust., Speech Signal Process.,
vol. ASSP-26, no. 1, pp. 43–49, Feb. 1978.

[5] F. Jelinek, “Continuous speech recognition by statistical methods,” IEEE
Proc., vol. 64, pp. 532–536, Apr. 1976.

[6] J. G. Wilpon, L. R. Rabiner, C. H. Lee, and E. R. Goldman, “Automatic
recognition of keywords in unconstrained speech using hidden Markov
models,” IEEE Trans. Acoust., Speech Signal Process., vol. 38, no. 11,
pp. 1870–1878, Nov. 1990.

[7] J. N. Holmes, I. G. Mattingly, and J. N. Shearme, “Speech synthesis by
rule,” Lang. Speech, vol. 7, no. 3, pp. 127–143, 1964.

[8] J. P. Olive, “Rule synthesis of speech from dyadic units,” in Proc. Int. Conf.
Acoust., Speech Signal Process., 1977, pp. 568–570.

[9] Y. Sagisaka, “Speech synthesis by rule using an optimal selection of
non-uniform synthesis units,” in Proc. Int. Conf. Acoust., Speech Signal
Process., 1988, pp. 679–682.

[10] Y. Sagisaka, N. Kaiki, N. Iwahashi, and K. Mimura, “Atr υ-talk speech,”
in Proc. 4th Int. Conf. Spoken Lang. Process., 1992, pp. 483–486.

[11] A. Hunt and A. Black, “Unit selection in a concatenative speech synthesis
system using a large speech database,” in Proc. Int. Conf. Acoust., Speech
Signal Process., 1996, pp. 373–376.

[12] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura,
“Simultaneous modeling of spectrum, pitch and duration in HMM-based
speech synthesis,” in Proc. Eurospeech, 1999, pp. 2347–2350.

[13] K. Tokuda, T. Kobayashi, and S. Imai, “Speech parameter generation from
HMM using dynamic features,” in Proc. Int. Conf. Acoust., Speech Signal
Process., 1995, pp. 660–663.

[14] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proc. IEEE Acoust., Speech Signal Process.
Int. Conf., 2013, pp. 6645–6649.

[15] D. Palaz, M. M. Doss, and R. Collobert, “Convolutional neural networks-
based continuous speech recognition using raw speech signal,” in Proc.
IEEE Acoust., Speech Signal Process. Int. Conf., 2015, pp. 4295–4299.

[16] T. N. Sainath, R. J. Weiss, A. W. Senior, K. W. Wilson, and O. Vinyals,
“Learning the speech front-end with raw waveform cldnns,” Interspeech,
pp. 1–5, 2015.

[17] H. Zen, A. Senior, and M. Schuster, “Statistical parametric speech synthe-
sis using deep neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2013, pp. 7962–7966.

[18] A. Oord et al., “Wavenet: A generative model for raw audio,” 2016,
arXiv:1609.03499.

[19] S. O. Arik et al., “Deep voice: Real-time neural text-to-speech,” in Proc.
34th Int. Conf. Mach. Learn., vol. 70, 2017, pp. 195–204.

[20] N. R. Council, Hearing Loss: Determining Eligibility for So-
cial Security Benefits, R. A. Dobie and S. V. Hemel, Eds.
Washington, DC USA: The National Academies Press, 2004.
[Online]. Available: https://www.nap.edu/catalog/11099/hearing-loss-
determining-eligibility-for-social-security-benefits

[21] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. 3rd Int. Conf. Learn. Rep-
resentations, San Diego, CA, USA, May 7–9, 2015. [Online]. Available:
https://dblp.org/rec/journals/corr/BahdanauCB14.bib

[22] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence-to-Sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[23] J. Chorowski, D. Bahdanau, K. Cho, and Y. Bengio, “End-to-end con-
tinuous speech recognition using attention-based recurrent NN: First re-
sults,” in Proc. Neural Inf. Process. Syst. 2014 Workshop Deep Learn.,
Dec. 2014.

[24] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell:
A neural network for large vocabulary conversational speech recogni-
tion,” in Proc. IEEE Acoust., Speech Signal Process. Int. Conf., 2016,
pp. 4960–4964.

[25] Y. Wang et al., “Tacotron: Towards End-to-End Speech Synthesis,” in Proc.
Interspeech, 2017, pp. 4006–4010.

[26] K. Xu et al., “Show, attend and tell: Neural image caption generation with
visual attention,” in Proc. 32nd Int. Conf. Mach. Learn., Lille, France, Jul.
2015, pp. 2048–2057.

[27] D. He et al., “Dual learning for machine translation,” in Proc. Adv. Neural
Inf. Process. Syst., 2016, pp. 820–828.

[28] Y. Cheng et al., “Semi-supervised learning for neural machine translation,”
in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics Long Papers, vol.
1. Berlin, Germany: Assoc. Comput. Linguistics, Aug. 2016, pp. 1965–
1974. [Online]. Available: https://www.aclweb.org/anthology/P16-1185

[29] R. Sennrich, B. Haddow, and A. Birch, “Improving neural machine trans-
lation models with monolingual data,” in Proc. 54th Annu. Meeting Assoc.
Comput. Linguistics (Vol. 1: Long Papers), 2016, vol. 1, pp. 86–96.

[30] S. Karita, S. Watanabe, T. Iwata, A. Ogawa, and M. Delcroix, “Semi-
supervised end-to-end speech recognition,” in Proc. Interspeech, 2018,
pp. 2–6.

[31] Y. Ren, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Almost un-
supervised text to speech and automatic speech recognition,” in Proc.
36th Int. Conf. Mach. Learn., vol. 97. Kamalika Chaudhuri and Ruslan
Salakhutdinov, Eds., Long Beach, California, USA: PMLR, Jun. 9–15,
2019, pp. 5410–5419. [Online]. Available: http://proceedings.mlr.press/
v97/ren19a/ren19a.pdf

[32] A. Rosenberg et al., “Speech recognition with augmented synthesized
speech,” IEEE Autom. Speech Recognit. Understanding Workshop, SG,
Singapore, pp. 996–1002, Dec. 2019.

[33] G. Kurata and K. Audhkhasi, “Multi-task ctc training with auxiliary feature
reconstruction for end-to-end speech recognition,” in Proc. Interspeech,
2019, pp. 1636–1640.

[34] S. Ueno, M. Mimura, S. Sakai, and T. Kawahara, “Multi-speaker sequence-
to-sequence speech synthesis for data augmentation in acoustic-to-word
speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2019, pp. 6161–6165.

[35] M. K. Baskar, S. Watanabe, R. Astudillo, T. Hori, L. Burget, and
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