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Partially automated whole-genome sequencing reanalysis
of previously undiagnosed pediatric patients can efficiently
yield new diagnoses
Kiely N. James 1✉, Michelle M. Clark1, Brandon Camp1, Cyrielle Kint2, Peter Schols2, Sergey Batalov 1, Benjamin Briggs1,
Narayanan Veeraraghavan1, Shimul Chowdhury1 and Stephen F. Kingsmore1

To investigate the diagnostic and clinical utility of a partially automated reanalysis pipeline, forty-eight cases of seriously ill children
with suspected genetic disease who did not receive a diagnosis upon initial manual analysis of whole-genome sequencing (WGS)
were reanalyzed at least 1 year later. Clinical natural language processing (CNLP) of medical records provided automated, updated
patient phenotypes, and an automated analysis system delivered limited lists of possible diagnostic variants for each case. CNLP
identified a median of 79 new clinical features per patient at least 1 year later. Compared to a standard manual reanalysis pipeline,
the partially automated pipeline reduced the number of variants to be analyzed by 90% (range: 74%-96%). In 2 cases, diagnoses
were made upon reinterpretation, representing an incremental diagnostic yield of 4.2% (2/48, 95% CI: 0.5–14.3%). Four additional
cases were flagged with a possible diagnosis to be considered during subsequent reanalysis. Separately, copy number analysis led
to diagnoses in two cases. Ongoing discovery of new disease genes and refined variant classification necessitate periodic reanalysis
of negative WGS cases. The clinical features of patients sequenced as infants evolve rapidly with age. Partially automated reanalysis,
including automated re-phenotyping through CNLP, has the potential to identify molecular diagnoses with reduced expert labor
intensity.

npj Genomic Medicine            (2020) 5:33 ; https://doi.org/10.1038/s41525-020-00140-1

INTRODUCTION
For patients with suspected genetic disorders that remain
undiagnosed after genomic sequencing, diagnostic yield is
improved by periodic reanalysis1–7. While guidelines for reanalysis
of whole-genome sequencing (WGS) or whole-exome sequencing
(WES) data for undiagnosed patients do not yet exist, a recent
position statement by the American Society of Human Genetics
underlined the ethical obligation that clinical diagnostic labora-
tories and research groups have to support periodic WGS/WES
data reanalysis8. Upon reanalysis, new diagnoses are made due to
ongoing advances that include the discovery of new disease
genes, accumulation of classified variants in publications and
public databases, improvements in bioinformatics analyses, and
phenotypic evolution in children in whom the full manifestations
of disease were not apparent at initial analysis1,5–7,9. Current
Procedural Terminology codes and Medicare fee payments have
been established for the reanalysis of both WES (81417) and WGS
(81427) for unexplained constitutional or heritable disorders or
syndromes. The reanalysis pipelines described to date include
manual phenotyping and extensive variant assessment, both of
which are costly in terms of expert time. Automating or de-skilling
portions of expert reanalysis can ease this burden, but the
diagnostic yield and estimates on the savings of limited genomic
analyst and laboratory director resources of such an approach
have not yet been demonstrated. Here we present one solution to
the challenge of ongoing WGS reanalysis. This pipeline integrates
phenotyping from electronic health records (EHRs) by clinical
natural language processing (CNLP) and a phenotypically driven
analysis pipeline devised to alleviate the burden of next-
generation sequencing (NGS) interpretation during reanalysis.

RESULTS
Clinical characteristics of the reanalysis cohort
The first 48 inpatient children with suspected genetic disorders
who received negative WGS reports after manual analysis
between July 2016 and April 2017 were selected for partially
automated reanalysis, using the original VCF files generated for
analysis. The average patient age at enrollment was 4.8 months
(range 3 days to 18 years or 0.1 to 238 months; Table 1) and the
average time between enrollment and reanalysis was 19 months
(range: 16–23 months). There was an equal sex distribution (Table
1). 50% of patients were of Hispanic/Latino descent and 29% were
Caucasian, with the remainder of patients identifying as Asian/
Pacific Islander, African or African-American, and Other/unknown
(Table 1). The high percentage of Hispanic/Latino patients is
consistent with the population characteristics of San Diego
County. Disease phenotypes were highly diverse. The most
common primary presentations at admission were neurological
(27%), multiple congenital anomalies (25%), hepatic (13%), and
hematological (10%) (Table 1).

Reanalysis pipeline and resulting diagnoses
The reanalysis pipeline incorporated automated re-phenotyping
of patients at the time of reanalysis by CliX ENRICH and automated
prioritization of a shortlist of variants by Moon based on imputed
pathogenicity of all variants and rank ordering of genetic diseases
associated with those variants based on similarity to the patient’s
phenotype10 (Fig. 1, Supplementary Table 1). A major goal of
automated shortlist generation within this reanalysis pipeline was
to provide an easily interpretable dataset, reducing the need for
expert time to be spent on reanalysis. The reanalysis variant
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shortlist contained a median of 11 variants (range: 5–29 variants),
whereas this laboratory’s manual analysis/reanalysis pipeline
contained a median of 121 variants (range: 91–168 variants) to
review (Fig. 1). This represents a reduction of 90% of variants per
case (range: 74–96%).
To assess whether the goal of providing an easily interpretable

dataset was attained, all 48 shortlists were separately evaluated by
an experienced analyst who produced a “truth set” and a novice
analyst. The experienced analyst identified six potential new
diagnoses (either one heterozygous variant or two variants in the
compound heterozygous state), including two diagnoses that
were reportable under Rady Children’s Institute for Genomic
Medicine research protocols, and four possible diagnoses that
were not reportable. The latter did not meet reporting require-
ments due to classification as variant(s) of uncertain significance
(VUS) and, in some cases, an uncertain gene–disease relationship
or unclear phenotypic matching with the patient (Table 2).
Considering these six diagnoses as a truth set, the novice analyst

identified 5 out of 6 diagnoses including both definite diagnoses
(sensitivity= 0.83; the potential diagnosis in case 6046 was
missed). Across the entire cohort, the novice analyst attained a
specificity of 0.76, with 10 false positive diagnoses.
The two reportable diagnoses, cases 6009 and 6033, were

returned to referring physicians, resulting in changes in their
patients’ medical care, while the four possible diagnoses were
queued for further periodic reanalysis (Fig. 1, Table 2). Patient
6009 carried a de novo stop-gain variant in insulin-like growth
factor 2 (somatomedin A), IGF2 c.267C>A, p.Cys89*, which was
phased by Sanger sequencing to the paternal allele using a nearby
informative single-nucleotide polymorphism (SNP; rs3213225).
Since IGF2 is an imprinted gene that is expressed exclusively
from the paternal allele, phasing was crucial for reporting a
diagnosis of Silver–Russell syndrome (OMIM #180860). This variant
was not identified during initial analysis due to a manual error in
patient data handling. This diagnosis was expected to change the
patient’s clinical care, indicating targeted monitoring for hypogly-
cemia, premature adrenarche and maxillofacial abnormalities, and
potentially treating with growth hormone (Table 2).
Patient 6033 carried two variants in trans in Excision Repair

Cross-Complementing Group 6 (ERCC6). They were a missense
variant, c.1583G>A, p.Gly528Glu and an intronic variant, c.−15
+3G>T, both of which were classified as VUSs at initial analysis
and thus not reportable under the institutional review board (IRB)
protocol for this study. During the period between analysis and
reanalysis, ERCC6 c.1583G>A was reported in a patient with
Cockayne syndrome, type B (OMIM #135540), changing its
classification to Likely Pathogenic11. In parallel, research functional
testing of unscheduled DNA synthesis from proband fibroblasts
confirmed an impairment of ERCC6. This functional data changed
the variant classifications to Pathogenic (c.1583G>A) and Likely
Pathogenic (c.−15+3G>T), rendering them reportable under our
IRB protocol. This diagnosis was also expected to inform clinical
care, indicating avoidance of metronizadole, monitoring of renal
and hepatic function and blood pressure, screening for cataracts
and strabismus, increased sun protection, and potentially treating
with baclofen or carbidopa/levodopa (Table 2).
Another benefit of periodic reanalysis of negative cases is the

incorporation of improvements in bioinformatics analyses. Copy
number variants (CNVs) were not evaluated at the time of original
analysis or at initial reanalysis. In a separate effort, we evaluated
CNVs in these 48 cases and found two potential diagnoses: an
inherited intragenic KAT6B deletion in case 6033, classified as
Likely Pathogenic and thought to co-contribute to the patient’s

Table 1. Demographic and clinical characteristics of the reanalysis
cohort.

Age at enrollment Median: 5 months; range 0.1–238 months

<1 month 10 (21%)

<6 months 27 (56%)

Age at reanalysisa Median: 24 months; range 0.1–255 months

<6 month 4 (8%)

<24 months 23 (49%)

Sex Female 23 (48%)

Male 25 (52%)

Race and ethnicity Hispanic/Latino 24 (50%)

Caucasian 14 (29%)

Asian/Pacific Islander 3 (6%)

African/African American 2 (4%)

Other/unknown 5 (10%)

Primary system involved Neurological 13 (27%)

Multiple congenital anomalies 12 (25%)

Hepatic 6 (13%)

Hematological 5 (10%)

Musculoskeletal 3 (6%)

Pulmonary 3 (6%)

Cardiac 2 (4%)

Endocrine/biochemical 2 (4%)

Gastrointestinal 2 (4%)

aOr at the age of exitus.

ManualPar�ally Automated

Analyst reviews variant shortlist 
(mean = 11 variants)

HPO terms selected by 
analyst a�er manual 

review of current EHR

Analyst performs mul�ple filtering protocols to 
review variants based on previous literature reports, 
several inheritance models, predicted variant effect, 

and presence in a phenotype-specific gene list 
(mean = 121 variants)

HPO terms extracted from 
current EHR (CliX ENRICH)

VCF file VCF file

No diagnosis made

Queue for 
periodic reanalysis 

Diagnosis made

Medical care guided 
by gene�c diagnosis

Diagnosis made

Medical care guided 
by gene�c diagnosis

No diagnosis made

Closed as nega�ve 
due to prohibi�ve 

�me cost of 
reanalysis

Fig. 1 Comparison of partially automated and manual reanalysis pipelines. The partially automated reanalysis pipeline incorporates
automated phenotype extraction from the EHR and variant shortlist generation.
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phenotype (see Table 2), and a de novo 3.5 MB deletion at
12q21.33-q22 in case 6034, classified as Likely Pathogenic.

CNLP-based phenotyping and downstream variant prioritization
Although CNLP-based phenotyping was not used during the initial
analysis, we wished to understand whether this method captures
the evolution of patient phenotypes. Therefore, we extracted
Human Phenotype Ontology (HPO) terms from patient EHRs
delimited by the date of enrollment and compared these with
terms extracted at the time of reanalysis. The median number of
HPO terms generated by automated phenotyping was 160 at
enrollment (range: 28–501) and 267 at reanalysis (range: 39–679),
representing a median increase of 79 terms, or 55% (p < 0.0001,
Wilcoxon paired signed-rank test; Fig. 2a, Supplementary Table 2).
HPO terms comprise 28 broad subcategories, most of which
correspond to distinct body organ systems. The average number
of subcategories represented by HPO terms increased by 2.35
from enrollment to reanalysis (p < 0.0001, Wilcoxon paired signed-
rank test; Fig. 2b, Supplementary Table 3). Furthermore, the mean
information content of the extracted HPO terms (defined as
inverse of the logarithm of the probability of a term’s presence in
all OMIM disease descriptions) also increased between enrollment
and reanalysis (p < 0.0001, Wilcoxon paired signed-rank test; Fig.
2c). These results show that patient phenotypes tend to broaden
and deepen through time and that CNLP can effectively capture
this evolution.
To compare the variant shortlists generated by Moon auto-

mated analysis at these two time points, each patient’s VCF was
analyzed twice using the same version of Moon (v. 3.0.3) but with
either the enrollment or reanalysis HPO lists. The size and content
of the variant shortlists output by Moon correlated with the size
and content of the input HPO term lists. The median shortlist size
increased from 7 variants at enrollment (range: 2–20) to 8 variants
at reanalysis (range: 2–23), representing a median increase of 4.2%
(p < 0.0001; Wilcoxon paired signed-rank test). The variant shortlist
size correlated positively with the input HPO list size at both
enrollment and reanalysis (Fig. 3a, b; r= 0.40, p= 0.005 at
enrollment; r= 0.41, p= 0.0032 at reanalysis). Furthermore, the
proportional increase in input HPO term list size at reanalysis
correlated positively with both the absolute change in resultant
variant shortlist size (r= 0.48, p= 0.0005; Fig. 3c) and with variant
“turnover” (i.e., the percentage of new variants present on the
reanalysis shortlist relative to the size of the initial shortlist (r=
0.57, p < 0.0001, Fig. 3d). The initial enrollment and reanalysis
variant shortlists overlapped at least partially in all but one case
(6005), with a median “turnover” of 25% (Fig. 4).
For the two cases with new diagnoses upon reanalysis, we

examined how the patients’ phenotypic evolution was captured in
the EHR-extracted HPO terms and subsequent ranking of the
diagnostic variant within the shortlist, when run with the same
version of Moon (v. 3.0.3). For case 6009, the number of HPO terms
generated using automated phenotyping increased from 250 to
514 between enrollment and reanalysis. During variant shortlist
generation, each variant was ranked in part based on overlap
between the associated gene–disease model and the input HPO
terms for that case. For case 6009, the causal IGF2 variant was
ranked #2 at initial enrollment and #3 at reanalysis. Of the input
HPO terms, 17/250 (6.8%) at enrollment and 30/514 (5.8%) at
reanalysis contributed to ranking of the IGF2 variant (Supplemen-
tary Table 4). For case 6033, the causal ERCC6 variants were ranked
#1 and #2 at both time points. The number of HPO terms
increased from 460 to 679 between enrollment and reanalysis,
with 54/460 (11.7%) at enrollment and 74/679 (10.9%) at
reanalysis contributing to the ranking of the ERCC6 variants
(Supplementary Table 5). For both cases, a small number of
phenotypic features characteristic of the diagnosed disorder were
present only in the reanalysis HPO term list: for example,Ta
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developmental delay and short stature in case 6009; and
hepatomegaly, splenomegaly, and carious teeth in case 6033.
Nevertheless, the ranking of the diagnostic variants did not
change substantially for either case.

DISCUSSION
We present here a partially automated WGS reanalysis pipeline
that relies on CNLP of patient EHRs to automate phenotyping and
downstream generation of a variant shortlist that has been
previously shown to achieve high sensitivity when compared with
fully manual curation by experienced analysts10. Variant shortlists
contained a median of 11 variants, representing a reduction from
median of 122 under a manual reanalysis protocol, and offering a

solution to mitigate the burden of expert time typically required
for reanalysis of NGS data.
Four of the six potential diagnoses identified on reanalysis were

not returned to patients on clinical reports, largely due to the
corresponding variants’ classification as VUSs. The IRB protocol
under which participants were consented for this study allowed
only for the reporting of variants classified as Likely Pathogenic or
Pathogenic. Future developments, such as reports of these
variants in patients with similar phenotypes or functional studies
demonstrating their pathogenicity (or lack of pathogenicity) have
the potential to alter their classification.
The pipeline presented here differs from those used in other

NGS cohort reanalysis studies primarily in its greater incorporation
of automation. In contrast to the standard practice of manual
assessment and encoding of phenotyping data, it relies on

Fig. 2 Characterization of HPO term lists automatically extracted from patient EHRs. a The number of HPO terms extracted at enrollment
and reanalysis, with each case represented by two linked points. b The number of HPO subcategories (out of 28 total) represented by terms
extracted at enrollment and reanalysis. c The average information content (IC) of HPO terms extracted at enrollment and reanalysis differed
significantly (Wilcoxon paired signed-rank test; p < 0.0001). Each case is represented by one point. The two cases for which diagnoses were
reported following reanalysis are represented by a red square (case 6009) and a red triangle (case 6033).
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automated phenotyping from the EHR1–6,12. Second, while all
analysis and reanalysis pipelines rely on automated variant
annotation and filtering on variables such as sequence quality
and population allele frequencies, this pipeline generates a
stringently filtered variant list also accounting for the phenotypic
terms input for the patient. This shortlist represents a dramatic
reduction in the total number of variants to be considered by the
analyst, allowing manual interpretation to proceed more quickly,
or to be undertaken by individuals lacking the advanced training
needed to correctly filter and evaluate hundreds or thousands of
variants1.
Using the partially automated reanalysis pipeline described

here, we report a yield of 4.2% (2/48, 95% confidence interval (CI):
0.5–14.3%), which is comparable to but slightly lower than other
reported NGS reanalysis yields1–6,12. This study differs from
previously reported reanalysis efforts in several ways that may
contribute to the slightly lower yield that we report. First, the
analysis was predominantly performed on newborns and infants.
The 48 negative cases eligible for reanalysis had a median age of
4.8 months at enrollment and 25 months at reanalysis. Other
reanalysis cohorts have median ages ranging from 4 to 6.7 years at
enrollment1–3,5,6,12–14. Many genetic syndromes are not easily
recognizable at early ages, potentially complicating diagnosis
even at the reanalysis time point used in this study. Second, our
inclusion criteria were intentionally broad, requiring not that
patients have a suspected genetic disorder but rather that their
phenotypic features be potentially attributable to a genetic
disorder. In addition, no major technical changes that are typically
included in the reanalysis literature (such as sequencing improve-
ments or bioinformatics pipeline upgrades) were included in this
study. Use of the original VCF file generated at the time of analysis,
for reanalysis, represents a potential source of data processing
savings that may be attractive to clinical laboratories wishing to
implement iterative reanalysis.
Although new gene–disease discovery is a major factor driving

diagnosis upon reanalysis, all six diagnoses (reported and
possible) in this reanalysis cohort were variants found in genes
known to be involved in human disease at the time of initial

analysis1. In the intervening time between analysis and reanalysis,
these diagnoses became more compelling due to several factors,
including variant publication or classification in ClinVar in
connection with disease, or functional testing of patient cells that
provided orthogonal support to a diagnosis (6033). In case 6009,
the diagnosis was initially missed due to a manual error in data
labeling, which was discovered only upon reanalysis. Thus, in
addition to the benefit of greater efficiency, a partially automated
reanalysis pipeline such as the one described here can serve a
quality control function, flagging errors made in patient data
processing during analysis.
The number of HPO terms extracted from patient EHRs via

automated phenotyping increased from a median of 160 to 267
terms between enrollment and reanalysis, and this increase
correlated with the “turnover” in the variants included on the
variant shortlist. While both diagnostic variants reported from this
reanalysis cohort were highly ranked in the shortlist using HPO
terms from the time of enrollment as well as reanalysis, future
cases are likely to benefit from the sensitivity of the shortlist
algorithm to new phenotypic input.
As genomic data and knowledge of genetic disorders continue

to accumulate rapidly, reanalysis of initially negative cases will
likely become a standard practice for many clinical laboratories.
Although many clinical laboratories provide some mechanism for
NGS reanalysis, either by provider request or through an internal
procedure, these efforts are limited by the strain on staffing
resources posed by reanalysis. Partial automation may ease this
burden, allowing more regular reanalysis. Outside of the scope of
this publication, but of importance in the realm of NGS reanalysis,
are the questions of how to initially prepare patients or research
subjects for the possibility of a reanalysis result delivery years after
initial testing and how to responsibly deliver NGS reanalysis
results15. Ideally, reanalysis should be repeated periodically for all
cases that remain negative and should incorporate new clinical
information for the patient16. The four cases with possible (but not
reportable) diagnoses presented here illustrate the uncertainty
that can remain in clinical NGS cases for which a negative report
has been issued and the benefit of performing iterative reanalysis.
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Fig. 3 Characteristics of HPO term lists extracted from patient EHRs are correlated with characteristics of resultant variant shortlists. Each
case is represented by one point. a The number HPO terms extracted at enrollment is positively correlated with the number of Moon variants
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Future studies may examine the utility of such iterative analysis
using this automated pipeline.

METHODS
Study design
Retrospective comparison of the diagnostic utility of reanalysis of WGS by
manual and partially automated methods was approved by the IRB at the
University of California, San Diego (UCSD; Project #160468). Inpatients at
RCHSD without etiologic diagnoses, in whom a genetic disorder was
possible, were nominated for diagnostic, rapid WGS by diverse clinicians
from 26 July 2016 to 3 April 2017. Informed consent was obtained from at
least one parent or guardian of each patient included in the study. Of the
82 children who received rapid WGS during this period, 48 who received
WGS that was not diagnostic at initial manual analysis and for whom at
least 1 year had elapsed since initial analysis were studied herein. The
clinical characteristics of 26 of the 48 children have been previously
reported (Supplementary Table 2)17,18.

WGS and manual analysis/reanalysis
WGS was performed on DNA extracted from the blood samples of study
participants as previously described17,18. Briefly, DNA was sequenced with
Illumina (San Diego, CA) HiSeq 2500 or 4000 instruments with paired 101-
nt reads. Alignment and nucleotide variant calling was performed using

the DRAGEN hardware and software platform (version 2.1.5)10. Yield
ranged from 115.8 to 239.8 Gb, resulting in 4,765,952 to 5,654,509 variant
calls per individual and an average of 45.3× coverage. Analysis considered
single-nucleotide variants (SNVs) and small insertions and deletions only.
VCF files from DRAGEN were annotated and analyzed in Opal Clinical

versions 4.20–4.28 (Fabric Genomics, Oakland, CA) according to standard
guidelines19,20. Manual variant analysis relied on a number of tools and
resources, including variant ranking tools Phevor and VAAST, population
frequency databases such as ExAC and gnomAD, in silico damage
prediction scores (including SIFT, MutationTaster, and Polyphen), the
Human Gene Mutation Database, ClinVar, literature searches, and manual
inspection of reads using the Integrative Genomics Viewer. Manual
reanalysis variant counts were generated using the same tools and
resources, following the current variant filtering protocols used by Rady
Children’s Institute for Clinical Genomics for manual analysis/reanalysis.
Tool version details are as follows: VAAST: 1.1; dbSNP: 147–149; Genome
Reference Consortium Human Genome Build v37; ExAC: 0.3; SIFT,
MutationTaster, PolyPhen: dbNSFP v.2.9; HGMD: 2017.1–20.17.2; ClinVar:
May 26, 2016-March 27, 2017 weekly releases; IGV: 2.3.76–2.3.86.
Phenotypic features were manually extracted from EHRs by analysts, and
interpretation was performed on trios in 28 families, duos in 11 families,
and the proband only in 7 families. CNV calls, which were analyzed
separately from analysis and reanalysis, were generated after realignment
and variant calling with DRAGEN 3.4.5, using an automated pipeline that
integrates the tools Manta and CNVnator as previously described21,22.

Partially automated reanalysis
HPO terms were re-extracted from patient records at the time of reanalysis,
using CLiX ENRICH (Clinithink, Alpharetta, GA) as previously described10.
Briefly, unstructured clinical records were transformed into JSON format,
encoded as SNOMED CT expressions by CLiX ENRICH, and transformed to
an HPO list using a CLiX query map. Study participant VCF files, together
with HPO term lists from CLiX ENRICH, were uploaded to Moon (Diploid,
Leuven, Belgium) (Version details: ClinVar: 2018-04-29; dbNSFP: 3.5; dbSNP:
150; dbscSNV: 1.1; Apollo: 2018-05-03; Ensembl: 37; gnomAD: 2.0.1; HPO:
2017-10-05; Moon: 2.0.3) for automated, phenotype-driven variant analysis,
as previously described10. For comparisons of Moon variant shortlists with
HPO terms drawn from EHRs at enrollment or reanalysis, a newer version of
Moon (Version details: ClinVar: 2019-03-11; dbNSFP: 3.5; dbSNP: 150;
dbscSNV: 1.1; Apollo: 2019-03-18; Ensembl: 37; gnomAD: 2.0.1; HPO: 2019-
02-12; KB: 2019-04-03; DGV: 2016-03-01; dbVar: 2018-06-24; Mitomap:
2019-01-14; Mitimpact: 2.9.1; Mastermind: 2018-11-26; Moon: 3.0.3)
was used.

CNV analysis
Copy number analysis was performed as previously described23. Briefly, the
read pair-based tool, Manta, was used to detect smaller CNVs while the
coverage-based caller, CNVnator, was used to detect larger CNVs. Calls
were filtered for events overlapping known disease genes and filtered by
an internal allele frequency of <2%.

Statistical analysis
Nonparametric Spearman correlations, Wilcoxon signed-rank tests, and
corresponding two-tailed p values were calculated using Prism (version
6.0h, GraphPad, La Jolla, CA). The 95% CI for the proportion of new
diagnoses made upon reanalysis was calculated using the binomial exact
(Clopper–Pearson) method. The information content of each HPO term
was calculated as previously described10.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The variant list data that were used in reanalysis are available as Supplementary
Information. The sequencing data that the variant lists are drawn from are available
from the corresponding author upon reasonable request and completion of a data
use agreement, subject to the limitations of the informed consent documents for
each subject.

Fig. 4 Overlapping variant shortlists at enrollment and reanalysis.
Cases are ordered chronologically by date at enrollment. Black:
variants on initial enrollment shortlist only; medium gray: variants
on enrollment and reanalysis shortlists; light gray: variants on
reanalysis shortlist only. The percentage next to each case’s bar
reflects the number of new variants on the reanalysis shortlist,
relative to the size of the initial enrollment shortlist (median= 25%).
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