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Abstract 

Epithelia are dynamic tissues that self-remodel during their development. At morphogenesis, the 

tissue-scale organization of epithelia is obtained through a sum of individual contributions of the cells 

constituting the tissue. Therefore, understanding any morphogenetic event first requires a thorough 

segmentation of its constituent cells. This task, however, usually implies extensive manual correction, 

even with semi-automated tools. Here we present EPySeg, an open source, coding-free software that 

uses deep learning to segment epithelial tissues automatically and very efficiently. EPySeg, which comes 

with a straightforward graphical user interface, can be used as a python package on a local computer, or 

on the cloud via Google Colab for users not equipped with deep-learning compatible hardware. By 

alleviating human input in image segmentation, EPySeg accelerates and improves the characterization of 

epithelial tissues for all developmental biologists. 

 

Introduction 

Epithelia are dynamic tissues undergoing dramatic shape changes throughout their 

development. A prerequisite for understanding these morphogenetic events is the thorough 

segmentation of cells constituting the tissue. To this aim, numerous semi-automated methods have been 

developed 
1-4

 but they require time-consuming manual correction to achieve optimal segmentation.  

Over the past few years, deep learning and more particularly convolutional neural networks 

(CNNs) revamped the computer vision field, including image segmentation by alleviating the need for 

user correction of the segmentation. The advent of simple programming frameworks, such as Keras and 

TensorFlow 
5,6

, made deep learning accessible to most developers but still excludes people lacking coding 

skills, preventing deep learning from being broadly adopted by the scientific community. Few attempts 

to bring convolutional neural networks to well-known image processing frameworks such as ImageJ or 

FIJI exist 
7-11

, but they require an up-to-date and adequately configured computer. More importantly, 

most often those powerful yet very poorly generalizable CNNs need to be trained de novo on user data 

to work efficiently. Unfortunately, such training cannot be done directly in FIJI/ImageJ and requires, 

again, coding. So far, little effort has been made to facilitate CNN training and use by regular users 
12

. 

To address all these limitations, we present EPySeg, a coding-free solution to segment raw 

images of epithelial tissues very efficiently, using a set of pre-trained generalist neural networks. Also, 

EPySeg comes with a complete and straightforward graphical user interface (GUI), allowing for users 

curious about deep learning as well as more advanced ones to build and train custom networks to 
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achieve any desired segmentation paradigm. EPySeg is available at https://github.com/baigouy/EPySeg 

and a minimal version can also be used on Google Colab (https://github.com/baigouy/notebooks) for 

users equipped with low-end graphic cards.  

 

Results 

In this study, we set to develop a software that uses deep learning to automate the time-

consuming segmentation of 2D epithelial tissue images. We selected Linknet architectures because they 

are known to perform well at image segmentation tasks 
13

 (see also material and methods).  Our 

networks were trained on large amounts (i.e. big data) of high-quality human segmented images. 

Practically, the network aims at reproducing such high-quality segmentation by minimizing a loss 

function. To do so, the network must learn characteristic features from the user-provided input, and use 

this knowledge to output a valid segmentation (Fig. 1). The segmented epithelia used to train our 

networks were generated with the watershed algorithm 
14

 and manually edited to remove segmentation 

artefacts (see material and methods). Since human input is limited solely to editing, segmentation 

variability is low and should improve network training when compared to purely handmade 

segmentation. Also, in order to allow the networks to segment virtually any 2D epithelium, we trained 

them on images of highly divergent epithelia acquired using several microscopy set-ups (see material 

and methods).  

EPySeg efficiently segments 2D epithelial cells from different tissues imaged with different optics 

(Fig. 2 and table 1). On average, it outperforms existing tools such as Cellpose 
15

 on most epithelia in two 

ways:, its approximation of the cell outline is more precise than that of Cellpose, and it also loses fewer 

cells (Fig. 2). We note, however, that unlike Cellpose, EPySeg is not able to segment cells in culture 

(Table 1) since it was not trained to accomplish such task. 

Finally, to make our epithelial segmentation tool easily accessible to a broad audience, we 

created a graphical user interface (GUI) and a documentation for it 

(https://github.com/baigouy/EPySeg). This interface allows for building, training and running 

convolutional neural networks. It is built in a way that non-experts can rely on the default settings to get 

a decently trained network and gain knowledge about deep learning, while the advanced users can 

visually fine-tune parameters to get optimal results. Also, since the majority of scientific computers are 

not deep learning-ready, making it difficult to train convolutional neural networks, we provide a minimal 

user interface to run EPySeg on Google Colab, along with online guidelines, to allow for everyone to use 

it (https://github.com/baigouy/notebooks). 

 

Material and methods/supplement 

 

Recommended equipment 

Convolutional neural networks were trained on a 64 GB RAM Dell precision 7820 equipped with 

a Nvidia GeForce® RTX 2070 graphic card with 8 GB RAM. Most training lasted less than 12 hours. We 
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flawlessly trained and ran our pre-trained networks on Google Colab, hereby providing a good 

alternative for users with deep learning-incompatible systems. 

 

Data 

Convolutional neural networks were trained on several Drosophila epithelia stained with E-

cadherin-GFP that diverged largely from one another. At embryonic stage E-cad staining appeared 

dotted 
16-18

 and the boundary to cytoplasm signal ratio was low. During pupal wing development staining 

appeared continuous and presented a higher boundary to cytoplasm ratio except for stretched cells. 

Finally, our third training set contained images of the fly abdomen including giant, polyploid, larval cells 

larval and tiny histoblast nest cells 
19

, in order to have a network that segments cells without size bias. 

Input images were max or stack focuser projections 
20

 of confocal stacks of epithelial tissues. Segmented 

cell outlines serving as ground truth for training the network, were generated using the watershed 

algorithm of Tissue Analyzer 
1,14

. Two of the datasets were acquired on regular Leica or Zeiss confocal 

microscopes (Leica SP5 and LSM 510), while the third training set was acquired on a spinning disc 

(Roper) to further increase the variability between images. Importantly, we paid a lot of attention to the 

quality of the segmentation masks fed to the convolutional neural network and cropped out regions 

where segmentation quality was poor as well as regions that were not segmented (e.g. cells adjacent to 

the tissue of interest) in order not to perturb the learning process. 

 

Data augmentation 

Given the relatively small size of our training set for deep learning (images /cells) and to prevent 

the neural network from overfitting, we used data augmentation. Practically, we randomly applied the 

same deformation (rotation, translation, shear, magnification, flip, …) to the input and output images. 

Our data augmentation algorithm currently supports 2D and 3D images (only 2D images were used in 

this study). 

 

Convolutional neural network building and training 

Convolutional neural networks rely on the TensorFlow and Keras tools and were generated using 

the segmentation_models library from (https://github.com/qubvel/segmentation_models). Typically, 

we used Linknet 
13

 architectures and varied the encoder layers. We found the vgg16 and seresnext101 

encoders 
21,22

, both known to perform well at classification tasks, very efficiently segment epithelia. 

Networks were trained for 100 to 300 epochs on the complete train set at every epoch. Depending on 

their memory requirements, networks were trained with a batch size varying between 2 and 64 images 

and with a tile size ranging from 64 to 256 pixels in width and height. We chose the intersection over 

union (IoU) also called the Jaccard index for the loss function as it is particularly well suited to evaluate 

differences between binary images.  

 

Segmentation quantifications 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2020. ; https://doi.org/10.1101/2020.06.30.179507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.179507
http://creativecommons.org/licenses/by-nc-nd/4.0/


 As a measure for the overlap between neural network-generated cell outlines and user-provided 

ones, we computed the IoU score. The IoU measures ranges between 0 and 1, with 1 being identical 

images and 0 being images having nothing in common. Of note, a value of 0.5 for the IoU score is 

generally considered as being a good match between two binary images. Importantly, a poor match 

between cell outlines is not necessarily an indicator of poor image segmentation, indeed, one can 

imagine a case where the central part of the cell is always properly detected while the edges are ill-

defined. To get an estimate of the quality of the segmentation and to evaluate over- and under-

segmentation in an image, we designed a second metric. We define this so-called ‘segmentation quality’ 

measure, as the count of properly segmented cells minus the number of over- and under-segmented 

cells, and divide the result by the total number of cells in the human-corrected image. We define 

properly segmented cells as cells having an IoU score superior to 0.7 when comparing the cytoplasm 

generated by the neural network to the user one. The segmentation quality measure has a maximum 

value of 1, which is reached when all cells are properly segmented without over- or under-segmentation. 

This measure can become close to 0 or even negative, this indicates that lots of cells have not been 

properly identified and that tremendous human editing is required. For optimal comparison to Cellpose, 

we let the Cellpose software compute the optimal cell size before segmenting the tissues. 

 

Software 

The software was entirely coded in Python 3. The graphical user interface was made with PyQT5 

(Riverbank®). The source code of our tool along with install instructions can be found at the following 

link (https://github.com/baigouy/EPySeg). 
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Figure 1: Deep learning segmentation pipeline 

 

A) Unseen images of epithelia are provided to a trained neural network that returns a segmentation

prediction. B) Convolutional neural networks can be built from scratch then trained (optional). Training

requires original images and their expected segmentation to be fed to the network. Note that both

predictions and training can be done on the local computer using the EPySeg GUI or the cloud using

Google colab. 

 

Figure 2: EPySeg vs. Cellpose segmentation of an unseen epithelium image 

A) Segmentation of the image of the fly ocelli, an unseen epithelium, by EPySeg (green) and cellpose

(purple) overlaid over the original input image. The inset shows a magnified view corresponding to the

ROI shown in A; note that cellpose cell outlines lie at a distance from the real cell boundaries

Comparison of B) Epyseg and C) Cellpose over (blue) and under segmentation (green) to the ground truth

segmentation (see also table 1 for additional quantifications of unseen samples). Correct segmentation is

shown in white. 
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