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ABSTRACT Protection of data-in-use, contrary to the protection of data-at-rest or data-in-transit, remains
a challenge. Cryptography advances such as Fully Homomorphic Encryption (FHE) provide theoretical,
albeit impractical, solutions to functionally-complete computation over encrypted operands, necessary for
general-purpose computation. In this work, we propose a practical data-in-use protection mechanism that,
contrary to application-specific homomorphic encryption approaches, focuses on arbitrary computation
native to established programming languages, such as C++. Therefore, our work provides a more efficient
alternative to FHE schemes that can be used for general-purpose computation. Specifically, we use Binary
Decision Diagrams (BDD) to transform high-level programming operations to their equivalents working
on protected data. To automate this, we develop a framework that allows automatic conversion of program
expressions over encrypted operands into efficient circuits that are reduced using BDDs and can simulate
corresponding composed operations. Our experimental results show that our methodology is orders of
magnitude faster than state-of-the-art FHE schemes and enables execution of real C++ applications with
practical overheads. Our framework is complemented with security analysis proving resistance to different
attack methods.

INDEX TERMS Data security, privacy, data privacy, security.

I. INTRODUCTION
As modern computational devices become more ubiquitous
hosting an enormous amount of sensitive data of millions
of users, there is no shortage of concerns about the data
protection guarantees offered by these platforms. At the same
time, the proliferation of advanced threats to cloud computing
[1], reports on state surveillance and mass data collection [2],
as well as the disclosure of processor vulnerabilities that can
leak information from billions of devices [3], [4], justify the
lack of trust on behalf of the end-users.

Contrary to data in transit and data at rest, which could be
protected using encryption algorithms like AES, processing
sensitive information (i.e., data in use) remains a single point
of failure for modern computing platforms, as contemporary
processors operate exclusively on plaintexts. In order to com-
pute on sensitive data, current architectures need to decrypt,
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operate on the data, and then re-encrypt. Even solutions
like Intel SGX or AMD Secure Memory Encryption, which
encrypt data residing in the main memory, need to decrypt
operands before they enter the processor pipeline. As a result,
known/unknown software/hardware vulnerabilities can be
exploited to leak sensitive data.

Our thesis is that sensitive data should never appear in the
clear anywhere in a computational device, and should remain
protected during processing by the CPU. Thus, in case of
an application vulnerabilities (e.g., Heartbleed [5]), operating
system vulnerabilities (e.g., Windows zero-days [6]), or hard-
ware vulnerabilities (e.g., Spectre [3],Meltdown [4]), the data
leaked would remain protected.
Related Work: Data-in-use protection can be approached

either using hardware-enforced isolation (e.g., Intel SGX)
or cryptography (e.g., Homomorphic Encryption). For the
former, the variety of data leakage attacks reported in the
literature (SGXpectre [7], Foreshadow [8]) serve as a painful
reminder that as long as data appears in the clear in the
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CPU pipeline, it can be extracted. Therefore, our focus
is to inherit the properties offered by homomorphic cryp-
tographic schemes, such as manipulation of data without
decryption, but with practical overheads suitable for every-
day general-purpose computation. Other cryptography mech-
anisms, such as Multi-Party Computation and Functional
Encryption, are not applicable for general-purpose compu-
tation,1 as they are used in scenarios with multiple parties
computing a function or they impose constraints on what can
be computed.

As mentioned earlier, computing on encrypted data is
possible by a special type of encryption, dubbed homo-
morphic encryption, which allows manipulation of values
directly in encrypted form. Different attempts to implement
secure homomorphic computation resulted in an abundance
of mathematical models [9]. Based on their computational
capability, thesemodels can be split into three distinct classes,
as outlined in the next paragraphs.

Partially Homomorphic Encryption schemes, such as
Paillier [10], RSA [11], or ElGamal [12] allow a single
type of homomorphic operation, which can be performed
indefinitely. For example, Paillier enables the addition of
plaintexts by modular multiplication of the ciphertexts,
and RSA enables plaintext multiplication, correspondingly.
While these schemes allow very interesting applications, such
as e-voting [13], their single operation support renders them
unsuitable for general-purpose computation.

Somewhat Homomorphic Encryption [14], [15], on the
other hand, expands the set to two available operations
(e.g., addition and multiplication over bits), which allows the
evaluation of encrypted combinational circuits and enables
more possible applications. On the downside, these schemes
support the execution of certain operations for a limited num-
ber of times only, before the accumulated noise corrupts the
ciphertexts. As a consequence, they can implement programs
with known input size and the ability of preliminary global
static execution analysis, but cannot be used for arbitrary,
indefinite computation on unknown size of encrypted inputs.
Indeed, general-purpose computation requires that a program
is able to calculate µ-recursive functions, or equivalently to
emulate a Turing machine. Likewise, it requires that a pro-
gram, as a normal computer process, can run indefinitely until
some external event; for example, in an interactive program,
the program operator enters new inputs or makes the decision
to halt the execution based on the output produced so far.

The invention of the first fully homomorphic encryption
(FHE) scheme in 2009 has enabled unconstrained computa-
tion on encrypted values [16], which is precisely our goal.
Many schemes of improved performance have been proposed
since [17]–[19], with the BGV [20] and GSW [19] schemes
being two of the most impactful proposals for evaluating
arbitrary functions. While employing FHE can solve the
data-in-use problem, its practicality remains a huge chal-
lenge for general-purpose computation. Programming with

1Apart from some special cases, e.g. Private Information Retrieval.

FHE requires, to some extent, understanding of theory and
application of homomorphic encryption. Moreover, cipher-
texts can be in the order of megabytes [21], which can
make very simple algorithm take hours to execute in fully
homomorphic domain [22].

Binary Decision Diagrams is a mathematical structure
commonly used for analysis and processing of digital circuits.
They also have been used in secure computation in the past:
For example, in multi-party computation as a replacement
for explicit gate computation [23], and in countermeasures
against side-channel attacks [24] for hiding capacitance and
delays in computation.We use thismathematical construction
for an entirely different purpose: As a form of canonical
representation of combinational circuits.
Our Approach:Motivated by the impractical overheads of

applying FHE to general-purpose computation, in this work
we propose a new methodology for practical general-purpose
data-in-use protection based on reduced ordered Binary Deci-
sion Diagrams (called BDDs in this paper for simplicity).

Similar to FHE, however, our methodology transforms
a plaintext into an encrypted counterpart (ciphertext) using
a probabilistic encryption function. Our proposed approach
starts at the bit level, implementing logic gates (such as NOT,
AND, etc.) that operate on encrypted Boolean arguments
and output encrypted Boolean values instead of plaintext
bits. We call such gates homomorphic gates (HG), which
can be used to implement high-level programming opera-
tors as circuits; these special operators are then used within
standard C++ programs to manipulate encrypted integers.
Specifically, our methodology introduces a new C++ type
for integers that are encrypted using a probabilistic cipher.
During compilation of a C++ program, our framework trans-
lates each HG to a Boolean circuit, which corresponds to
a logic gate in the circuit implementing each programming
operator for encrypted integers. Our framework protects com-
putation on encrypted data using the BDD representation of
each HG circuit [25]; after translation, the code implementing
this BDD representation is included in the final executable
of the C++ program. Using our developed framework,
end-users can incorporate our methodology to high-level
C++ programs, by replacing the type of integer variables
whose values should be protected.

The security of BDD processing-based protection relies on
the property of the canonical representation of a circuit [26],
and the hardness of reverse engineering a BDD-processed
circuit. As a motivating example, let Ch be a circuit that
implements the modular multiplication operation (which is
the homomorphic operation of the Paillier scheme [10]), and
Cs be a circuit that simulates the same function explicitly:
Specifically, Cs decrypts its two input ciphertexts using a
private key, performs modular addition on the plaintexts, and
re-encrypts the plaintext result using a public key and the
product of the random nonces of the inputs ciphertexts. In this
case, since Cs implements the same function as Paillier’s
homomorphic operation, the BDD-processed circuit corre-
sponding to Ch is the same as the one corresponding to Cs.
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Thus, breaking the security of the BDD-processed Cs implies
breaking the security of the Paillier cryptosystem, which,
however, is considered secure.

Conceptually, our methodology works as FHE on the bit
level, which is necessary for general-purpose computation.
Different homomorphic encryption schemes rely on different
hardness assumptions: For example, the Paillier cryptosystem
is based on the decisional composite residuosity assumption.
Popular FHE schemes base their security in the Learning
With Errors (LWE) mathematical problem which is conjec-
tured to be hard. The security of our encryption methodology,
on the other hand, is based on the innumerability of Boolean
circuits with a large number of inputs/outputs, similar to logic
encryption [27] and IC camouflaging [28] security guaran-
tees. The difficulty of reverse engineering BDD-processed
Boolean circuits can also be considered a Boolean Satisfi-
ability problem (SAT), for which no general/efficient algo-
rithm is known. Thus, we use SAT attacks to assess security.
As illustrated in our experiments, the complexity of breaking
the security of our proposed scheme is exponential to the bit
size of the random nonce added to ciphertexts.
Our Contribution: In this work, we develop the

methodology, the framework, and the corresponding
full-support software stack to enable a programmer/user to
create a C++ program that computes on encrypted data
without decryption. The user can control the balance between
security and performance of the program by adjusting the
security parameter λ, for which we give recommendations
and estimates. Specifically:

1) We propose a novel methodology for processing private
data based on BDD-processed circuits. We also define
a novel algorithm for the design of probabilistic
encryption and decryption modules.

2) We develop Circle, a tool that automates the devel-
opment of HG Boolean circuits utilizing a BDD engine.
The tool translates circuits into C/C++ functions, and
optionally to Verilog modules for FPGA acceleration.
Also our framework automatically generates C++
classes for private integers.

3) We perform performance evaluation as well as security
analysis using different types of attacks, and demon-
strate the strength of our data protection mechanism.
Our results show thousands of times improvement
in the performance compared to the best equivalent
FHE scheme (TFHE [29]): Faster computational speed
(×103 − 104) and smaller memory sizes for encrypted
bits (×2000).2

Our software is written in standard C++ and tested on Linux
and Windows and is open-sourced.

II. PRELIMINARIES
BDD: In this work, we use reduced ordered Binary Decision
Diagrams (or simply BDD), which is a special case of gen-
eral binary decision diagrams. These diagrams are specific

2The numbers are given for security parameter λ = 80.

data structures representing Boolean functions in the form
of a graph. Any Boolean function f can be represented
by Shannon expansion over its argument xm, with other
arguments x1, x2,. . . , xn as:

f (x1, .., xm, . . . , xn)

= xmf (x1, .., 1, .., xn)+ x̄mf (x1, . . . , 0, . . . , xn)

where the ‘bar’ symbol is negation, the ‘plus’ symbol
is OR, and ‘multiplication’ is AND. Such an expansion
applied to all the function arguments increases the number
of terms exponentially. Binary decision diagrams alleviate
such growth by finding and merging common parts of func-
tions f (x1, . . . , 1, . . . , xn) and f (x1, . . . , 0, . . . xn). In BDD,
a function is represented as a sequence of layers of nodes.
Each layer corresponds to a function argument (variable) and
each node is connected to subsequent layer nodes by exactly
two connectors: One corresponding to variable equal to 1, and
the other corresponding to 0. The final terminal nodes of the
structure specify the final result: either 1 or 0. BDD has the
property of representing the function in a unique (canonical)
way for the predefined order of its variables, if all redundant
substructures can be removed, which has been shown in [26].
Homomorphic Gate: Formally, we define a homomorphic

gate (HG) over ciphertexts cx and cy as follows: Let f (mx ,my)
denote a two-argument Boolean function on plaintexts mx
and my, Ek (m, r) denotes a probabilistic encryption function
generated by a random sequence k (key) that maps a plaintext
m to a set of ciphertexts c depending on a probabilistic param-
eter r , and Dk (c) denote a deterministic decryption function
corresponding to Ek that maps ciphertext c to the correspond-
ing plaintext m. Then, HG is defined by the homomorphism
of surjective Dk :

Dk
(
HG(cx , cy)

)
= f

(
Dk (cx),Dk (cy)

)
which can be converted into the explicit composition over
ciphertexts:

HG(cx , cy) = Ek
(
f
(
Dk (cx),Dk (cy)

)
,H(cx , cy)

)
(1)

where H is a digest (hash) function generating randomness r
from the input ciphertexts. The definition of Eq. 1 is shown
as a diagram in Fig. 1(a).
One important concern with the definition of an HG as

in Eq. 1 is preventing misuse of Dk to decrypt arbitrary
values. This threat can be mitigated by blending the sequence
of decryption, plaintext operation, and result re-encryption
operations. In this case, the security of the construction
relies on the difficulty of recovering the decryption func-
tion. As illustrated in the construction of Fig. 1, Dk and Ek
can be implemented as distinct sub-circuits that enclose the
sub-circuit implementing the operation f . As discussed in
Section V-D, processing a Boolean function using BDDs
enables the construction of protected Boolean circuits, where
functions Dk , f and Ek are fused together, concealing their
distinct sub-circuits.
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FIGURE 1. (a) Boolean circuit implementing a HG over ciphertext values,
by decrypting the inputs (D), applying an operation f on the plaintext
values and re-encrypting the result (E). A randomness extraction
module H (digest function) enables probabilistic re-encryption. (b) A
sketch of the same circuit processed by BDD. Both circuits are
functionally equivalent.

It can be argued that BDD processing locates particular
types of symmetries in the circuit and collapses the logic
by removing those symmetries. For example, given two
functions F and F−1, a sequence of F ◦ F−1 (as well as
F−1 ◦F) implemented as a circuit of two sequential modules
and processed by a BDD engine would always collapse into
an identity function (zero gate circuit) regardless of BDD
implementation or BDD variable ordering.
Terminology: To avoid confusion between different ter-

minologies, we call HG a logic gate working on ciphertexts
regardless of whether it has been processed by BDD or not
(Fig. 1). BDD-processed gates such as NAND and NOT
are called hNand and hNot accordingly. Fig. 1 shows two
HGs: one, not BDD-processed (left) and the other, which is
BDD-processed (right). If the operation f is NAND, then the
HG on the right would be hNand.
Abstraction Layers: Normally, programming operations

are expressed in one or more assembly instructions that
are computed by the processor. In our framework, however,
we generate our own circuits with a Verilog compiler to
facilitate standard programming operations. For example,
the multiplication C++ operator (i.e., *) is generated as a
circuit by a Verilog compiler using the Verilog expression *.
These circuits are translated into C/C++ functions and use
our HGs instead of ordinary logic gates. HGs are also C/C++
functions which are generated by our software according to
the encryption scheme that we define in Section IV.

Table 1 lists these four layers explicitly. Layer 1 is the
user code and does not reveal any encryption concepts.
It solely represents the computational logic of the program.
In other words, if protected variables are declared with the
corresponding plain integral types, then the program remains
valid without any dependencies introduced by the encryption
scheme. Layer 2 is the implementation of the operators and
is provided by the framework. Its code is written once and
can be reused for any homomorphic encryptions. Layer 3 are

basic functions of computation, such as addition, division,
comparison, and others. These functions are pre-generated
by a circuit design compiler from the basic Verilog expres-
sions. The functions are expressed in terms of logic gates
to be used in integrated circuit. Instead, we supply software
implementations of these logic gates at Level 4. These are
HGs generated by Circle, which have to be initiated by the
user since they bind to the secret functions D and E of the
encryption instantiation generated.

III. USAGE SCENARIO
A. USER’S PERSPECTIVE
We assume that the user writes a computer program and
passes it through our framework. The user specifies the secu-
rity parameter for the encryption in the configuration file
of the software framework. It should be noted that, when
comparing to other encryptions such asAES, the performance
of the program is much more sensitive to this security param-
eter. Therefore, the programmer can select the optimal value
according to his/her security requirements. The exact secure
values of the parameter are discussed in the security analysis
section.

Our framework generates BDD-processed HGs (such as
hNand) in the form of C++ functions which are auto-
matically embedded in the compiled binary. At the same
time, it generates a decryption function corresponding to the
encryption of the HG. This decryption function represents
the private key and is required to decrypt the output of the
program. In this scenario,

1) the user (programmer) generates the protected version
of the program along with the decryption key;

2) gives the program, either as source code3 or binary,
to run at an untrusted party;

3) obtains the output result from the program; and finally
4) decrypts the result using the decryption function.

It should be emphasized that only the user can decrypt any
output. This differs from applications that require multiple
parties to be able to compute different functions on the
encrypted data, where Functional Encryption schemes [30]
can be used. Our framework can be naturally applied to any
private outsourcing scenario (i.e., using the cloud for faster
processing or permanent data storage), and our goal is to sup-
port any arbitrary algorithm on any amount of data without
having to re-encrypt the data to support new algorithms.

From the user (programmer) perspective the program has
the same functional structure in both encrypted and unen-
crypted forms. Since the protected data is never decrypted
during program execution, a natural restriction arises from
the requirement that the program execution cannot depend on
protected data. The control flow and memory access are gov-
erned only by program data which is not protected. This prop-
erty is called data-oblivious computation and recent work has

3In that case, source code must be pre-processed so user-defined protected
constants will be replaced with encrypted ones.
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TABLE 1. Abstraction layers of computation.

Listing 1. Data-oblivious Fibonacci program.

Listing 2. An outline example of circle.h.

highlighted that data-oblivious programs are naturally more
resilient to side-channel attacks [31].
A Usage Example: The computational abstraction levels

of our methodology can easily be seen from a real program
example. In Listing 1, we present a standard C++ program
that computes Fibonacci numbers in the encrypted domain.
This program can compile using any standard C++ compiler.
The user provides an encrypted index input and the algo-
rithm iterates up to amaximum index (in our casemax_iter
is 30). Listing 2 outlines the elements of the header generated
by our framework.

The Fibonacci algorithm is written in a data-oblivious way
so that an encrypted variable result is updated based on an
‘‘encrypted’’ multiplexer formula that adds the correct output
or zeros (line 14). The C++ source uses our developed pri-
vate integer types that implement all programming operators.
Specifically this program uses only ++, +=, ==, *, and <<.
The program uses special annotation for private constants
(e.g., 7_E), which are encrypted automatically before com-
pilation to avoid having plaintext constants stored within the
binary.

B. THREAT MODEL
In this work, we assume an honest-but-curious host of
the user’s program and data. The host will execute the
program without the intent of corrupting the output but
may peek into the data to extract information. Moreover,
the hardware and software of the host may have known

or unknown vulnerabilities. Therefore, even if the cloud
provider does not intentionally try to leak data, data can leak
by adversaries using these vulnerabilities (e.g., Heartbleed
[5], Meltdown [4], Spectre [3]). We assume that the host
computer can have multiple tenants, and the host can keep
the program and the data indefinitely.

Once the user program and data are outsourced and reside
on the host, security relies on the difficulty of deciphering
the decryption function out of the functionality of elements
of the program. Since the protected data is never decrypted,
the only point of possible attack is the function processing the
protected data, which are the functions evaluating HGs. We
assume the adversary is able to locate/extract these functions,
and evaluate them with any arguments. Moreover, we assume
the adversary is able to guess the values of ciphertexts con-
stants inside the program (e.g., encrypted 0 or encrypted
1). This attack model will be used in any discussion on
security in the following sections.

IV. CIRCUITS FOR PROBABILISTIC
ENCRYPTION & DECRYPTION
A. BALANCED CIRCUITS
As discussed in Section II, in order to build a HG, we need a
pair of functions (sub-circuits) for decryption (D) and encryp-
tion (E). Processing common ciphers through BDD engines
can be challenging, due to their complexity. To overcome this
limitation, we focus on BDD-friendly solutions.

Let c be an encrypted value (ciphertext) and m be the cor-
responding decrypted value (plaintext). A decryption circuit
D represents the function D(c) = m; the value c is the input
to D and its bitsize |c| equals to the number of input wires in
D. Likewise, the value m is the output of D and its bitsize |m|
equals the number of output wires in D.

A necessary condition to provide resilience to common
threats such as chosen-plaintext attacks (CPA) [32] requires
the usage of probabilistic ciphers, where each plaintext is
randomly mapped to one of many equivalent ciphertexts.
Hence, we require |c| > |m|, and |c| − |m| represents the
number of randomness bits added while encrypting m into c.
Naturally, 2|c| is the cardinality of all possible inputs and
2|m| is the cardinality of all possible outputs. If D has the
same input range |c| for each output m, then there are exactly
2|c|−|m| different ciphertexts mapped to each plaintext output.
Let us call a circuit balanced if every output value m has
exactly 2|c|−|m| different inputs mapping to it; otherwise,
it is unbalanced.4 A special case circuit with |c| = |m|

4Here, we use the terminology first introduced in [33] and publicized in
subsequent works by others (e.g., [34]).
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corresponds to a bijective function, also called a one-to-one
circuit. We also highlight a distinction between input values
and circuit inputs: an input value is a collection of bits, while
a circuit input is a collection of input wires. In our case, if the
decryption circuit has |c| input wires then there are 2|c| input
values.

We can assume that both D and E are constructed as
one-to-one circuits; using only a subset of the outputs of D
(i.e., m) does not break the aforementioned balancing prop-
erty due to the following proposition: Any subset of outputs
of a balanced circuit is balanced. This can be confirmed by
the following argument: If the number of output wires is |m|
and we select a subset |s|, then each s belongs to a subset
of 2|m|−|s| values of m, since |m| − |s| is the number of bits
excluded from s; hence, the number of inputs corresponding
to s is 2|c|−|m|2|m|−|s| = 2|c|−|s|.

Following the proposition, it is possible to complement the
balanced subset to build a bijective circuit; it is, however,
impossible to complement the unbalanced subset to build
a bijective circuit. Therefore, any balanced circuit can be
considered as a subset of a one-to-one circuit. Since every
one-to-one circuit has an inverse circuit (i.e., a circuit of the
inverse function), for any balanced circuit with |c| inputs
and |m| outputs there exist circuits with |m| + (|c| − |m|)
inputs and |c| outputs. These circuits are the inverses of the
original balanced circuit, given that |m| inputs correspond to
|m| outputs of the original circuit and the remaining |c| − |m|
inputs are additional arbitrary inputs. If the original balanced
circuit is our decryption module D, then the inverted circuit
is the encryption module E; in the latter case, the |c| − |m|
inputs correspond to the probabilistic part of encryption and
their functions are complementary: m = D(E(m, r)) where r
is an arbitrary value of |c| − |m| inputs of E.

B. REVERSIBLE OPERATIONS
Let us define a linear operation L as

y = Lx ≡ Ax ⊕ b (2)

where x, y, and b are Boolean vectors of size |c|, A is a
Boolean square matrix, ⊕ is the XOR operation and the
matrix operation is defined as (Ax)i =

⊕|c|
j=1 Aijxj. While

matrix elements Aij are multiplied with the elements of the
vector xj, there are no AND gates necessary to implement a
corresponding circuit since the values of A are constant and
they only select a subset of the vector elements in x. It can be
proven that if a one-to-one circuit is built with XOR and NOT
gates, then its function is L. Such circuits can efficiently be
constructed in complementary pairs: L and L−1.

A non-linear transformation F , which retains the balanced
property of the circuit, can be selected similarly to an unbal-
anced Feistel cipher with a random round function as follows:
y = x ⊕ f (x) and yi = xi ⊕ fi({xj 6=i}), where xi and yi are the
input and output i-th bits, fi({xj 6=i}) is an arbitrary function
that operates on any subset of x’s bits excluding i-th, and
f ≡ {0, 0, . . . , fi, . . . , 0, 0}. Such functions are involution,
i.e., (F ◦ F)x = x.

Having both transformations L and F , it is possible
to construct D and E pairs of balanced circuits. In this
case, we can employ our novel algorithm for construct-
ing decryption and encryption modules (as elaborated in
Section IV-C), which is applicable to any balanced circuit that
can be represented as a sequence of linear L and non-linear
transformations F . Note that non-balanced functions can be
used as ingredients to F , since fi is an arbitrary function.
Both operations L and F complement each other in such
a way that: L operates on a vector in parallel, but remains
factorizable (as it involves only XOR and NOT gates); F ,
on the other hand, works only in sequential manner (one
bit at a time), but employs non-reversible logic operations
(e.g., AND). While L can be considered as a special case of
F (since a sequence of F using XORs and Boolean units can
express any L), generating L directly using matrices is much
simpler and ensures appropriate diffusion properties.

C. ALGORITHM FOR CONSTRUCTING D AND E
The L operation that describes one-to-one circuits has a well
defined inverse operation L−1, which implies that the decryp-
tion and encryption modules can be expressed as sequence of
forward and backward transformations:

D = BN ◦ BN−1 . . .B2 ◦ B1,

E = B−11 ◦ B
−1
2 . . .B−1N−1 ◦ B

−1
N (3)

where B is defined as either a linear or non-linear operator:
B = {L or F}. The form of Eq. 3 ensures that D and E
operations are inverse of each other: D◦E = E◦D = 1; it also
suggests a straightforward general algorithm for generating D
and E modules.
D and E Generation: First, a B operation is randomly

selected (either L orF). For L, we generate a randommatrixA
and a random vector b, along with the inverse matrix A−1 and
vector A−1b. For F , we select a non-balanced scalar function
f of n < |c| − 1 arguments, and then randomly select a
subset of n indices for the input to function f , as well as one
index excluded from the subset to be the output of f . Once
the function (L or F) is determined, it is named B1 and its
inverse B−11 . The same process is repeated N times defining
a sequence of operations as in Eq. 3.

There exists a simple and efficient method for constructing
the random matrices A and A−1 at the same time, following
the steps of the Gauss-Jordan matrix elimination method.
Starting with the unit matrix of size n, we sequentially select
the top first and second rows and randomly apply A2j =
A1j ⊕ A2j, followed by the first and third (A3j = A1j ⊕ A3j),
repeating until the first and n-th. Then the process contin-
ues with the second and third, until second and n-th. The
iterations continue until the last selection of the n − 1-th
and n-th; at that point, we follow the same steps in reverse
order (from the bottom up). This process has finite steps
(the complexity is O(n2)) and will always generate A with
saturated randomness. If the exact same sequence is repeated
in the reverse order with the same random application Aij =
Akj ⊕ Aij, the generated matrix would be A−1.

23852 VOLUME 8, 2020



O. Mazonka et al.: Practical Data-in-Use Protection Using BDDs

A Trivial Numerical Example: As a simple example
demonstrating how D and E are constructed in practice, let
us limit the size of the ciphertext to 3, and select the FLF
formula. Let us choose as non-linear operation f a logical
function NAND denoted as NAND(x, y) =!(xy), working on
random indices of the vector. For the first F in the formula,
we generate 3 random5 indices: (1, 0, 2). These indices spec-
ify the operation x1 := x1⊕!(x0x2). Next, for the function L,
matrix A and vector b are randomly generated:

A =

1 1 0
1 0 0
1 1 1

 b =

1
0
1


Their inverse L−1 is obtained as described above:

A−1 =

0 1 0
1 1 0
1 0 1

 A−1b =

0
1
0


Finally, the second F is generated as: (2, 1, 0), which is the
operation x2 := x2⊕!(x1x0).
Next, following the forward and backward formulas, our

tool Circle generates the following circuits:

D =


b := x1⊕!(x0x2)
d := x0 ⊕ b
e := x0 ⊕ b⊕ x2
y0 :=!d
y1 := x0
y2 :=!e⊕!(y1y0)

 E =


c := x2⊕!(x1x0)
d := x0 ⊕ x1
g := x0 ⊕ c
y0 := x1
y2 := g
y1 :=!d⊕!(y0y2)


where variables x are inputs and y are outputs, and the remain-
ing names are internal wires of the circuits. The transfor-
mation from Fs and L into the final D and E may not be
obvious due to a slight optimization done by Circle, but
it can be easily verified in this simple example. The first F
clearly appears in the first line of D, and the second F in the
first line of E.

V. SECURITY CONSIDERATIONS FOR
HOMOMORPHIC CIRCUITS
A. INTRODUCTION
As mentioned in Section I, the security of our methodology
is based on the innumerability of Boolean circuits with suf-
ficiently large number of inputs and outputs, similar to logic
encryption [27] and IC camouflaging [28] security guaran-
tees. The best known algorithm for solving such problems
is the use of SAT solvers. Therefore, the security of our
encryption is estimated directly by the performance of the
best known algorithms breaking the encryption, presented in
Section VIII.

In this section, we explore some theoretical aspects of
security of our method and implications of selecting arbitrary
attributes for the encryption.

B. PRIVATE AND EVALUATION KEYS
In our methodology, unlike white-box cryptography [35],
there is no obfuscation procedure to hide the encryption keys:

5All generations are done by our Circle tool. Different seeds would
produce different results.

The algorithm proposed in Section IV-C generates two com-
plementary operations based on a random sequence, which
are consequently embedded inside the HG. In a sense, the pri-
vate key is the module D, while E along with digest module H
remain protected encryption elements. Breaking the encryp-
tion implies recovering module D or its functional equivalent.
Since D and E are operators that uniquely define encryption
(key), any set of HGs based on the same D and E would share
the same encryption. And the opposite is true: different pairs
of D and E could be used in the same computation process,
but would not be compatible. BDD-processed HGs, necessary
executing the protected program, constitute the evaluation
key, i.e., they are parts that are supplied with the program in
order to evaluate functions on the protected values.

C. PRAGMATICS OF SECURITY
Having encryptions and decryption modules E and D, an HG
can be constructed according to Eq. 1 with the help of some
digest function H. A universal gate NAND (equally NOR)
ultimately is enough for any computation. Its BDD-processed
homomorphic construction (hNand) can be used inside the
circuits for standard operations, e.g., arithmetic multiplica-
tion can be performed using hNand. Therefore, each bit is
first encrypted with E, the encrypted bits (ciphertext) are
arranged into arrays representing integers of the protected
type, and the arithmetic is executed on encrypted bits with
hNand as if they are ordinary bits processed by NAND gates.

In our work, we assume that the user prepares the protected
executable which is released to an adversary. The program
may have encrypted constants inside, but is also able to
dynamically encrypt data on the fly. Without revealing the
protected operation E, an encryption can be constructed out
of hNand, for example an encryption of unit 1̃ as:

1̃ = E′(1, x) = hNand(x,hNand(x, x)) (4)

and 0̃ = hNand(1̃, 1̃) as its inverse. Here, E′ is not related
to encryption function E; E′ takes λ bits as a random input x,
contrary to E taking λ−1.With a function implementing Eq. 4
the program can input both plaintext as well as ciphertext,
and operate on ciphertext. Yet, the output from the program
has to pass through the D module for decryption. Once the
program is compiled, its execution can be outsourced to an
untrusted party. The compiled executable contains a function
evaluating hNand. Since the adversary may be able to build
an efficient encrypter out of hNand the encryption has to be
strong against CPA.Note that the adversary is not able to learn
anything more about the encryption from the built encrypter
than to learn from hNand.

D. HOMOMORPHIC SECURITY
1) ENCRYPTION PRIMITIVES
Section IV describes the method for generating encryption
and decryption modules. We construct an HG hNand by
selecting the following ingredients:

1) the encryption formula;
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2) ciphertext size, λ;
3) digest function H; and
4) random sequence and its seed, R.

The encryption formula defines the complexity of the encryp-
tion, namely the length of the sequence of L and F operations
and their type, as described in Eqs. 3. In our setup by default
we use formula FLF which means that D and E modules
have two non-linear and one linear operations as described
in Section IV. Basically if the formula is complex enough,
i.e., given the pairs of input and output bits no probabilistic
correlation can be found, then the black-box access to mod-
ules E or D would not help to recover function D. Although
black box access leaks some information about function D,
with sufficiently big λ it does not leak enough to recover the
function. We have empirically tested the diffusion property
of the generated encryption to make sure that the there is
no statistical bias in ciphertext bits. In our implementation,
the randommatrix A (for L) is filled with 50 percent probabil-
ities of zeros and ones, which ensures that the probability of
dependency of one arbitrary input bit and one arbitrary output
bit is exactly 1/2.

The ciphertext size λ is the security parameter controlling
the strength of the encryption with respect to brute-force
attacks. Digest function H generates the random part r for
re-encryption of the result of HG. This function is required
to mix bits without statistical bias. We choose to generate
H (by Circle) in the same random way as D and E, with
the difference that it is generated for size 2λ (i.e., for the
size of two ciphertexts) and only the first λ − 1 (size of the
random noise) outputs are used for r . The random sequence
R, which should be seeded by a passphrase only known to the
user, is used for generating specific instances of D, E, and H
functions and their modules.

We define the encryption scheme as the following set of
encryption primitives:

• Private: D, E, H, R;
• Public: λ, hNand.

As defined before, hNand is BDD-processed HG NAND,
constructed according to Eq. 1. Element D must be protected
as its function decrypts any ciphertext. Element E has to be
protected because it gives the adversary access to r, c pairs
which, as shown in Section VIII-C, gives advantage in SAT
attack. Element H has to be protected because of malleability
attacks explored in Section V-E. Finally, R must be protected
since the adversary given the same algorithms implemented
in software can reproduce exactly the same generation of D.

2) SECURITY OF BDD-PROCESSED CIRCUITS
For each Boolean function there is only one canonical repre-
sentation as a reduced ordered Binary Decision Diagram [26].
A direct consequence of this result is that if two Boolean
circuits have the same truth table (i.e., they implement the
same function), their BDD representations are identical and
independent of the sub-circuits and sub-modules within each

FIGURE 2. Schematic demonstration of BDD-processing of the Paillier
modular multiplication operation (left) and its functional decomposed
equivalent (right). When processed through BDD, both converge to the
same circuit (center).

of the given circuits; in effect, there exists a unique circuit
that corresponds to the BDD representation of that function.
Proposition: If black-box access to E is CPA secure and if

there exists at least one secure homomorphic logic operation
(e.g., NAND) with respect to E, then a BDD-processed HG
constructed by Eq. 1 for the same operation (e.g., hNand) is
also secure.
Corollary: If a BDD-processed HG constructed by Eq. 1

is not secure given that E is CPA secure, then the construc-
tion of corresponding secure homomorphic logic operation is
theoretically impossible.

Proof: First, let us note that with a universal gate
(or a universal set of gates) such as NAND, it is possible to
generate predefined encrypted values. For example, the con-
struction of Eq. 4 is always encryption of 1 for any value of x.
This means that the adversary is always able to construct a
function E ′ and use CPA on E ′. If hNand is secure, then E ′

can be analyzed by the adversary only as a black box. This
means that we have to require black-box security for E . Next,
let S be a secure HG and B(HG) be a BDD-processed HG.
The adversary can process S by BDD obtaining a new B(S).
Since the functions of any HG representation are equivalent
and since the BDD representation for the same order of BDD
variables is canonical, then B(HG) and B(S) have exactly the
same form. Thus, if S is secure, then so is B(S), and therefore
B(HG) is also secure. �
The proposition above supports the argument that the

BDD-processed HG construction by Eq. 1 is secure with
appropriate selection of E, D, H, and λ. The user is free to
generate functions D and E as complex as possible. With
sufficiently big λ the encryption is CPA secure. On the other
hand, questioning the security of the BDD-processed HG
is same as stating that no equivalent secure homomorphic
operation is possible. The above proposition and its proof
gives a better intuition on the security requirements: D and
E have to be complex enough for bit statistical distribution
(e.g., bit-flipping attack) and λ has to be big enough for resis-
tance to brute-force attacks. Thus, canonical representation of
the circuits using BDD processing is secure given these two
requirements. Assuming CPA security of E and existence of
secure homomorphic operation circuit, the above proposition
proves the security of our method.

3) EXAMPLE OF PAILLIER SCHEME
To clarify the idea of canonical transformation, such as
BDD-processing, we explicitly demonstrate it on the Paillier
homomorphic scheme (Fig. 2). This scheme supports homo-
morphic addition operations and is proven to be secure. If we
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construct a circuit of the same operation using Eq. 1 and
process it by a BDD engine, then, according to the above
proposition, the BDD-processed circuit is also secure; i.e., the
adversary is not able to get any advantage in breaking the
cryptosystem when given a BDD-processed construction of
Eq. 1. If this is not correct, then BDD-processing of the orig-
inal secure operation would break the cryptosystem, which is
impossible by definition.

Similar convergence occurs in arithmetic as shown in the
following derivation. Let N be the Paillier encryption modu-
lus. Selecting the generator as 1+ N we get:

c = E(m, r) = rN (1+ Nm)

D(c) = (cα − 1)/N = m

where r is the random part of encryption, α = φφ−1N , φ
is Euler’s function and φ−1N is its inverse in N . Here (and
below) we imply the arithmetic modulo N 2, and the plain-
text is always modulo N . We define the digest function as
multiplication of the random parts of the encryption:

H (c1, c2) = r1r2 = c1c
−α
1 c2c

−α
2

Indices 1 and 2 are used for two operands. A construction
analogous to Eq. 1 with addition operation on plaintexts
reads:

E(D(c1)+ D(c2),H (c1, c2))

= E((cα1 + c
α
2 − 2)/N , c1c

−α
1 c2c

−α
2 )

= c1c2c
−α
1 c−α2 (cα1 + c

α
2 − 1) = c1c2

because (cα1 + cα2 − 1) = cα1 c
α
2 . This result shows how a

construction of decryption, addition, and re-encryption trans-
forms into a function which effectively hides the decryption.

E. SELECTION OF DIGEST FUNCTION
hNand is constructed using an independent digest function
generated by Circle as a random operation L (as described
in Section IV) on 2λ input, which is the full array of input
bits to hNand. This selection is not arbitrary, as other naive
choices may lead to breaking the scheme.

Since function D is an inverse to E, hNand can potentially
use recovered random bits, blend them and use the result for
re-encryption. Namely, D(c1) = (m1, r1), D(c2) = (m2, r2),
and cout = E(NAND(m1,m2),H(r1, r2)). If function H is
known to the adversary, then the adversary can construct
specific combinations of input ciphertexts so that H(r1, r2) is
known. The simplest casewould beH(r1, r2) = r1⊕r2, where
⊕ is a vectored XOR. Then the attacker submits the unknown
ciphertext c as hNand(c, c) = E(m, 0). The result obviously
falls into 2 possible values, effectively breaking the encryp-
tion scheme. Even permutations of r1 and r2 before XOR can
not be considered secure because the order of permutations
grows at best as the Landau permutation function, leaving
countable numbers of possible values. Taking a subset of bits
from r1 and r2, as an alternative solution, would introduce a
statistical bias for the distribution of encrypted values. In this

situation, the adversary’s strategy is to reduce the entropy in
the ciphertext.

Having a truly random function H of the same strength as
Dwould not give an adversary any benefit. However, D (or E)
is not a good solution since it has λ inputs, but H has 2λ− 2
inputs. If it is used twice with subsequent blending, then the
same attack strategy as above can be used. To avoid this, H has
to be generated for all its inputs. And since H digests bits with
the same complexity as D, there is no point to use r1 and r2,
while c1 and c2 can be used instead.
Another security concern is the usage of the same H in

different HGs. In our current setup only hNand is used
for calculations. There is no real obstacle to use several
BDD-processed HGs. However, if the same randomness is
used for re-encryption of different logical operations, then
the adversary can build an efficient decryption function. For
example, if hAnd and hXor implement AND and XOR with
the same digest function, then for an arbitrary ciphertext c:
ca = hAnd(c, c) and cx = hXor(c, c); hence, ca = cx when
D(c) = 0.
Section VIII explores the security of the proposed scheme

experimentally.

VI. PROTECTING HIGH-LEVEL PROGRAMS
The ultimate goal of this research direction is to provide
to a non-crypto-savvy programmer the toolchain to develop
any application computing on encrypted data. To this end,
we have developed a comprehensive framework that can be
used with C++ source files. A detailed description of the
framework is outside of the scope of this research paper.
Instead, we provide a short summary of the toolchain and the
steps required to compile a C++ program that can compute
on encrypted values. During development, the programmer
needs to perform the following steps:

1) Identify variables in the program to be protected, their
types, and their bit sizes; and convert, if necessary,
the execution flow into data oblivious code. The latter
can potentially be a tedious process. While some appli-
cations and algorithms are naturally data-oblivious
(e.g., AES, database queries, etc.), others will need con-
siderable effort to be converted assuming worst-case
execution scenarios.

2) Define the ciphertext size of the private types.
As shown in the experimental results, the ciphertext
size has a direct impact on program performance, and
the programmer should adjust it to their threat model.

Listing 1 presented a ready-to-compile program with our
framework. The header circle.h is included, so the
secure types become available, and int variables have been
replaced by SecureInt. The range of secure types and
the security parameter have been explicitly defined in the
configuration file, not shown here.

As illustrated in Fig. 3, software modules (a) automate the
identification and conversion of program constants to their
private counterparts, (b) generate the SecureInt class, and
(c) output its definition into a header file to be included
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FIGURE 3. Automatic generation of C++ classes. The build tool generates
secure type data classes (.h) and their operator implementations (.cpp),
which are linked into the executable.

by the user program. The definitions of the class operators
are written in the implementation file that is linked together
with the user program into the final executable. In more
detail, when the user compiles, our framework performs the
following steps:

1) Generates decryption (D) and encryption (E) modules
using the algorithm from Section IV-C.

2) Converts these modules into C/C++ functions.
3) Generates an HG for each supported operation and con-

verts it into a C/C++ function.
4) Builds C++ classes for private data types.
5) Builds overloaded operators for the target program

using the functions generated in step 3.
6) Converts constants and program input data to cipher-

texts using the encryption function generated in step 2.

At the end of the process, the user receives a
ready-to-execute binary, which can be executed on a
non-trusted computational device. Once executed, the pro-
gram outputs an encrypted result. The user can obtain the
result and decrypt it using the D function generated in step 2.

A key component of our framework is Circle that
automates the tasks associated with Boolean circuits
(steps 1, 2, and 3). Circle (a) reads input files describing
a logic circuit in the textual form of Boolean expressions,
(b) performs a set of operations on the input circuit, and
(c) outputs a processed circuit. One of these operations is the
invocation of a BDD engine. In our framework, we employ
a third-party BDD engine provided by the CUDD library
[36]. In addition, Circle implements our algorithm for
constructing balanced decryption and encryption circuits
(Section IV-C), it supports conversions between truth tables
and circuits, allows comparing two circuits, and can invert a
circuit to its functional reverse.

VII. EXPERIMENTAL EVALUATION
A. SETUP
Our methodology can be applied to any universal set of
operations. From the point of view of the construction
and performance evaluation simplicity, we select only one
Boolean logic operation NAND as the universal set. We con-
struct hNand according to Eq. 1 and security recommen-
dations from Section V. Now all computation logic can be
expressed via appropriate connections between hNands. As
an efficiency improvement, we also construct hNot out of
hNand by rewiring its inputs. It should be noted that the
construction of hNot does not reveal any new information
to the adversary, because in constructing hNot no private

encryption primitives are used. After evaluating the perfor-
mance of hNot and hNand as a function of security param-
eter (λ) in software and in FPGA, we perform a similar
evaluation on circuits for common programming operations
for different word sizes. Finally, we report performance of our
methodology as compared to the state-of-the-art libraries for
several benchmarks.

Our experiments are performed on a desktop computer
equipped with Intel i7-4790 3.60GHz processor with 16 GB
RAM running Ubuntu 18.04.2, using GCC 7.3.0 C/C++
compiler. The circuits are synthesized using Xilinx Vivado
2018.3 for the xc7a100tcsg324-3 board of Artix-7 family. The
TFHE library commit 3319e2c [29] is used for comparison.
As a baseline for the security parameter λ we select value
80. In Section VIII we justify this selection by showing the
effectiveness of different attacks.

B. HOMOMORPHIC GATES IN C++ PROGRAMS
Having BDD-processed HGs expressed as functions gives the
opportunity to run encrypted programs on ordinary comput-
ers without requirements of specific hardware. The program
enhanced by privacy-preserving data types would not have
any parts written outside standard C++.
To explore the practicality of the BDD-processed HGs,

we performed experiments to determine the trend of evalu-
ation time of the smallest HG, hNot, and the universal HG,
hNand, for ciphertext size 4 − 100. For a particular size of
ciphertext λ, we compiled the circuits for several values of
seeds and we plotted the average execution time required by
the gates as a function of increasing ciphertext size in Fig. 4.
As expected, higher security parameters increase the per-
formance overhead of BDD-processed HGs. Still, even for
λ = 80, we observed the time required to execute hNand
and hNot is 2.51 × 10−5 and 5.36 × 10−6 seconds respec-
tively, thus facilitating the use of our methodology in ordinary
computers. As it will be further explored in Section VII-E.2,
our solution is 3-4 orders of magnitude faster compared to the
fastest FHE library.

C. HOMOMORPHIC GATES IN FPGA
Since FPGAs operate natively on Boolean circuits, we further
investigated the possibility of such acceleration. We per-
formed the same experiments executing hNand and hNot
on hardware for ciphertext size varying from 4 − 100.
BDD-processed HGs and their corresponding Verilog codes
were generated using Circle, and their circuits were
synthesized with timing constraints. We consider the
post-synthesis time as reported by Vivado as an estimate of
the execution time for the BDD-processed HGs. Fig. 5 shows
the performance of hNand and hNot gates synthesized for
FPGA as a function of λ. The execution time required for
λ = 80 is 4.5 × 10−8 and 2.1 × 10−8 seconds for hNand
and hNot respectively. Therefore, by FPGA acceleration,
we were able to improve performance of BDD-processed HGs
by almost 3 orders of magnitude. This can be attributed to the
fact that each operation in software is executed in sequence,
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FIGURE 4. Execution time of hNot and hNand implemented in software.

FIGURE 5. Execution time of hNot and hNand synthesized for an FPGA.

so the overhead is correlated to the size of the BDD-processed
HG, while in hardware there is intrinsic parallelism, and the
overhead is correlated to the depth of the circuit.

Another observation is that when comparing the rate of
execution time increase between BDD-processed HGs in
C++ and FPGA, we notice that the performance penalty for
higher security parameters is much less for FPGAs. This is
expected, since the circuit depth does not grow linearly, and
for bigger circuits more parallelism can be exploited.

D. CIRCUITS OF PROGRAMMING OPERATIONS
Regular C++ programs do not operate on bits, but typically
use arithmetic operations on integers. Thus, in this subsec-
tion, we report the experiments performed on homomorphic
equivalents of addition (ADD) and multiplication (MUL), for
8-bit and 32-bit word sizes for each homomorphic circuit.

We evaluate the ADD and MUL circuits for λ 4-100.
The performance of these circuits is shown in Fig. 6. The
experiments demonstrate that for λ = 80 and 8-bit word
size, the execution times required for ADD and MUL are
1.63 × 10−3 and 5.83 × 10−3 seconds respectively. Sim-
ilarly, for 32 bit word size, the execution times for ADD
and MUL are 6.95 × 10−3 and 8.78 × 10−2 seconds
respectively.

FIGURE 6. Execution time of ADD and MUL for 8 and 32 bit word size in
software.

FIGURE 7. Execution time of ADD and MUL for 8 and 32 bit word size
synthesized for an FPGA. Dashed lines show 2-parameter interpolations.

As with evaluation of gates in FPGA, the performance of
the programming operations can be improved using FPGAs.
We synthesize the circuits for 8-bit and 32-bit word size.
Post-synthesis timing, as estimated by Vivado, is reported
in Fig. 7. For 32-bitMUL circuits, Vivado runs out ofmemory
and is not able to synthesize circuits for λ above 40 bits.
For 8-bit word size, the execution time for both ADD and
MUL is approximately 7 × 10−7 seconds. Extrapolating
the performance graphs for circuits with 32-bit word size,
we observe that the execution time of ADD and MUL for
λ = 80 is approximately 3.2 × 10−6 seconds. The results
presented in this section further prove that the performance
of homomorphic circuits can also be improved by 3 orders of
magnitude with FPGA acceleration.

We have also evaluated the performance of division (DIV)
as it is the most complex C++ arithmetic operation.
Our results show that, in software, DIV behaves similarly
to MUL, with a 20% performance degradation. On our
FPGA, DIV is 4 times slower than MUL. The trends of
degradation for different ciphertext sizes are very similar,
so we refrain from plotting DIV to avoid cluttering the
figures.
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TABLE 2. Runtime in seconds for the TERMinator Suite: This work vs TFHE.

E. COMPARISON TO STATE-OF-THE-ART
1) HELIB
Comparing the performance of our scheme to
state-of-the-art FHE is not straightforward. One of the widely
accepted standard FHE libraries, HElib [37], provides an
API for exploration of FHE capabilities. For general-purpose
computations, HElib can be used via logic gates as we do in
our framework. Unfortunately, this usage of HElib is imprac-
tical. To use HElib at its maximum potential, the program-
mer has to implement higher order operation primitives by
optimizing computation. This involves batching, parallelism,
circuit static analysis, and possibly developing ancillary
algorithms. There is an ongoing effort for streamlining and
automating these procedures to the extent possible.

In order to make a fair comparison between our work
and HElib in terms of performance, we use AES as a
benchmark, as a publication exists where the authors have
meticulously optimized AES in order to showcase the poten-
tial of HElib [38]. In that work, the authors use AES-128 as a
circuit. While our framework allows the use of a C++ AES
implementation directly instead of a circuit, the high-level
synthesis would add performance penalty; since [38] uses
AES as a circuit, we do the same. Thus, we use an AES-128
circuit from OpenCores.6 Afterwards, we synthesize this cir-
cuit to include only NAND and NOT gates, and we convert it
into a C++ function, which relies on calls to our hNand and
hNot.

The execution time of one AES encryption using our
methodology for λ = 80 is 4.75 seconds. In contrast, the
non-bootstrappable implementation in [38] takes 245 seconds
to perform the same operation, while the bootstrappable
implementation takes 1050 seconds. It should be emphasized
that we use our methodology out of the box; we do not imple-
ment batching, thread-level parallelism, or manual optimiza-
tion on the elements of the AES algorithm. Instead, we rely on
the Verilog circuit compiler optimizer. This offers a usability
advantage over HElib. Future work will explore further per-
formance improvements using batching and parallelism.

2) TFHE
Another state-of-the-art FHE library, TFHE [29], does
actually provide an API to Boolean logic gates. Hence, com-
parison of our approach with TFHE is natural. We com-
pare the performance of our framework with TFHE for two
reasons: First, to the best of our knowledge, TFHE is the

6https://github.com/jeremysalwen/combinatorial_aes

fastest FHE library that can be used as the underlying engine
for general-purpose computations. Second, TFHE provides
homomorphic gate access in the same way as in our work,
that makes comparison fair – batching, parallel execution,
or manual preprocessing are outside of the comparison.

For comparison on general-purpose computation, we use a
set of data-oblivious benchmarks from the TERMinator Suite
[39] that are grouped into three categories:

1) Basic - heavily based on arithmetic and logical
operations: Bubble Sort (bsort), Insertion Sort
(isort), Matrix Multiplication (matrix), and Sieve of
Erastothenes (sieve);

2) Encoder - implementing bitwise-intensive
cryptographic and hash applications: Jenkins (jen) and
Speck Cipher (speck); and

3) Microbenchmarks: the addition-intensive Fibonnaci
(fib) and the multiplication-intensive Factorial (fact).

Table 2 presents the execution time (in seconds) for the
benchmarks running on 8-bit and 32-bit SecureInt variables
with λ = 80 against TFHE. As the results demonstrate,
the proposedmethodology is 3 to 4 orders of magnitude faster
than TFHE, irrespective of the type of benchmark used or the
word size of the variables.

In terms of storage and memory requirements, our
methodology expands each bit to λ bits. TFHE, on the other
hand, represents each bit as a 2KB ciphertext. Furthermore,
with regards to the evaluation functions that are added to
the binaries, TFHE requires approximately 78MB of storage.
Our methodology, assuming the presence of only hNand and
hNot, requires 1.5MB for λ = 80.

VIII. EXPERIMENTAL SECURITY ANALYSIS
A. ANALYSIS OF INVARIANT VARIABLES
Here we explore the ability of the BDD representation to
obfuscate the processed function. Specifically, since the orig-
inal circuit is constructedwith distinct decryption and encryp-
tion blocks as submodules, we inspect whether any of the
internal wires of the hNand explicitly reveals any of the
decrypted bits of any of the two operands. In order to test
for leakage, we consider the following algorithm: For the
first input, we enumerate all possible values. For the second
input, we enumerate all possible encryptions of a specific
plaintext value (in this example, encryptions of 1). Should a
decrypted bit appear in any wire, it should remain constant for
all possible iterations of the above algorithm, since the second
decrypted input is always the same plaintext value.
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FIGURE 8. Number of invariants (Y-axis) vs number of evaluations
(X-axis) for constructed HG before and after BDD-processing (hNand). The
number of hNand’s invariant variables reaches zero at the 13th iteration.

We extend the Circle tool to support the presented algo-
rithm andmonitor all wires, reporting if any remains constant.
We have analyzed the invariants for different values of λ
and confirmed no invariants remain for all λs tested. As an
example, we demonstrate a circuit NAND HG (as Fig. 1, a)
with |c| = 6. For this circuit, which has 12 input wires,
we generate a list of all possible combinations of the first
input (26), and all possible encryptions of 1 for the second
argument (25). Therefore we have 26 · 25 = 2048 inputs.

Fig. 8 presents the invariant counts for all 2048 iterations
(in random order). Before we process the circuit using our
BDD engine, the invariant analyzer identifies an invariant at
the end of the 2048 rounds, and manual inspection reveals
that the decrypted ‘1’ value clearly appears in the internal
wire. On the contrary, after BDD processing (blue line of
Fig. 8), no internal value (wire) remains constant at the end
of 2048 iterations. Indeed, after 13 iterations, as denoted by
the arrow of Fig. 8, no invariants remain. The lack of constant
values after all iterations indicates that the decrypted value (or
any of its bits) never appears as plaintext in the hNand.

While the decrypted value does not appear in any of
variables inside the circuit, we also investigated potential
statistical bias of a wire towards a decrypted value, even
though it is not identified as invariant. Using Circle we
have explored the statistics of the values of the internal circuit
variables, but could not find any correlation that points to a
bias.

B. BRUTE-FORCE ATTACK
As mentioned in earlier sections, the hNand function is
included in the program (either binary or source code), and
thus can be identified by an attacker statically or dynam-
ically. We assume that the attacker can locate these pro-
cessing functions and can feed inputs to them to observe
the output. The attacker can generate an encryption mod-
ule, with the help of which the decrypted plaintext can be
recovered. We call this Constructed Encrypter attack. Fig. 9
shows an example of such an encrypter circuit. The construc-
tion hNand(x,hNand(x, x)) is always 1̃ for any value of x
(Eq. 4). Considering x as random noise to the encryption,
the encrypted value can be obtained out of the inverted 1̃
(i.e., 0̃ = hNand(1̃, 1̃)) and a multiplexer selecting either

FIGURE 9. An encrypter constructed from three hNands and a multiplexer.
rλ is a random ciphertext of size λ, m is a plaintext, c is an encryption of
m, 0̃ and 1̃ are encrypted values of 0 and 1.

FIGURE 10. The time required to decrypt a ciphertext using SAT-attack,
as a function of ciphertext size. The experiments are performed on leaked
encrypter model as well as constructed encrypter model for hNand.

1̃ or 0̃. In this way, different encryptions of bits can be
generated.

The memory requirements for a brute force attack can be
estimated by assuming the adversary is able to generate a
comprehensive truth table by constructing an encrypter out
of hNand. If the ciphertext is the address of a single bit,
then a 13-bit ciphertext requires 1kB of memory, a 43-bit
requires 1TB, and a 80-bit requires more than 1011TB. On
the other hand, from sequential evaluation of the constructed
encrypter, we estimate the time required to run all possible
combinations: 21.06λ−18s, which results in ≈ 1020 seconds
for λ = 80. Comparing the evaluation time of AES-128 on
the same computer, we roughly estimate that 1.08λ − 2.2 is
the number of AES bits that have the same strength as λ bits
with regards to brute-force attacks.

C. SAT ATTACK
Boolean Satisfiability attacks (SAT-attacks) have been proven
to be effective in breaking logic encryption [40] and cam-
ouflaging schemes [41]. SAT-attacks can be used to decrypt
ciphertexts by setting the desired ciphertext to the outputs of
the encrypter and ask a SAT-solver to generate the inputs.
In this section, we quantify the time needed for a SAT-solver
to decrypt a ciphertext given the constructed encrypter and
different sizes of random noise bits, and report the time
complexity.

To find the time complexity of breaking the scheme as a
function of the ciphertext size, we perform SAT attacks using
Z3 [42] on a 2.00GHz Intel Xeon CPU machine equipped
with 64 GB of RAM and 16 CPU cores running CentOS
6.10. Fig. 10 shows the results for our Constructed Encrypter
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FIGURE 11. The time and memory required for an encrypter circuit to get
inverted. The experiments are performed on leaked encrypter model as
well as constructed encrypter model for hNand.

attack for ciphertext sizes up to 26 bits. From the results,
we observe that the time needed for the SAT-solver to decrypt
a value increases exponentially with the ciphertext size. This
enables selecting the desired security strength, considering
that a higher number of noise bits requires longer process-
ing times. Extrapolating the results to 80 bits of ciphertext,
we find the best-fit functions in the form exp(ax + b) derived
from our experimental values, and report that the SAT solver
would need roughly 1014 years to decrypt, which we consider
intractable.

To better understand the resilience of our construction to
SAT-attacks, we also consider a stronger attack model, where
the attacker is assumed to have access to the BDD-processed
original encryption circuit: we call this scenario the Leaked
Encrypter attack. In other words the ‘leaked encrypter’ is
the original encrypter separated from the rest of the homo-
morphic gate and processed by BDD. It should be noted
that this attack contradicts our attack model outlined in
Section III-B and in this scenario, the adversary is assumed to
have acquired a part of the private key. Since the complexity
of the circuit is significantly reduced, Z3 requires less time
to solve for higher ciphertext sizes compared to the previous
attack model. However, as shown in Fig. 10, the complexity
is still exponential. Fig 10 depicts the time needed by an
adversary to decrypt ciphertexts up to 43 bits. Extrapolating
again to 80 bits of ciphertext size, the SAT solver would need
roughly 107 years to decrypt.

D. INVERSE CIRCUIT ATTACK
Both brute-force and SAT attacks can be used to decrypt
ciphertexts, but cannot be used to recover the decryption func-
tion. In this section, we explore the possibility to break the
encryption by inverting the constructed encrypter (Fig. 11)
using the circuit reversing function of Circle. The algo-
rithm implemented in the tool is briefly described below.

Any state of a combinational circuit can be defined by the
values of the minimal set of wires necessary to calculate the
output. Initially, it is the input wires. Then the set is updated:
The value of a new wire is computed by a logic gate which is

added to the set. At the same time the wires that are no longer
to be used are excluded from the set. Let function G describe
the forbidden states of the set of wires. Starting fromG0 = 0,
each computation of a new wire value and each exclusion of
a wire value form a sequence of functions Gi by the rules:
G+i+1 = OR(XOR(f (x, y), z),Gi) when z is created with a
gate f out of x and y; and G−i+1 = AND(Gi(z = 0),Gi(z =
1)), when excluding z. These rules ensure the property of G
in its definition.

In the second rule (G−i+1) function Gi has all the
information about z. Therefore, z can be calculated as z =
Gi(z = 0) or z = NOT(Gi(z = 1)). Both expressions
give the same result if forward computation of z is injective.
Otherwise, two different values of z are both valid and either
expression can be used for reconstructing the previous state
of the variable set. Circle calculates the sequence of Gi,
and working backward computes one by one all excluding
variables until the input ones. This computation is symbolic
and results in constructing a circuit having the inverse func-
tionality to the original circuit. We performed experiments
for λ from 4 to 30 for constructed encrypter model and
leaked encrypter model. The experiments were performed on
a 3.33 GHz Intel Xeon CPU with 96GB of RAM and 24 CPU
cores. Fig. 11 shows the results of inverting a constructed and
a leaked encrypter in terms of time and memory required.
The memory required for the constructed encrypter model
increased very quickly and was completely exhausted after
λ = 16. Thus, the small amount of data can only give a
rough estimate of the time required to invert a circuit for
λ = 80 which was found to be 1026 years, based on extrapo-
lation from the current data. For the leaked encrypter model,
the memory was not exhausted but the time required to invert
the circuit increased exponentially. From extrapolation of the
best fit curve, we find that the time to invert the circuit is
1015 years.

E. SECURITY SUMMARY
The security of the proposed method resides in a) the
definitions of the encryption scheme and the attack model;
b) the algorithms for constructing the encryption primitives;
and c) finding the limits for breaking the encryption in our
attempts using different methods. It is easy to see that pri-
vate elements D and E are black-box secure given enough
complexity in both λ parameter and the function formula.
We prove the security of BDD-processed circuit under the
assumption that at least one example of secure homomorphic
scheme exists for defined D and E.

Conceptual analysis reveals insights about the security
parameter λ. Our experiments to break the encryption using a
SAT solver [42] demonstrate impracticality for the attack for
λ values above 30 because of the time complexity. Memory
required to perform inverse circuit attack becomes prohibitive
for λ values more than 20. Attack methods based on precook-
ing re-encryption randomness clarify limitations on selecting
secure digest functions as explained in section V-E. Since the
choice of security parameter (λ) is crucial to performance,
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FIGURE 12. Fibonacci running on 8-bit and 32-bit SecureInt variables for
different ciphertext sizes.

the user can select the trade-off between security and perfor-
mance overhead given their threat model. In the case of mass
data leakage through microarchitectural vulnerabilities or
software/OS bugs, smaller λ values would add enough burden
to adversaries towards deciphering values, but the application
would incur minimal performance overhead. Fig. 12 shows
the trade-off between λ values and performance, for different
protected type ranges. In case nation-states are in the threat
model, then λ values more than 80 would be needed.

IX. CONCLUDING REMARKS
In this paper, we present a methodology that enables private
computation based on composed homomorphic operations
leveraging the properties offered by the BDD transformation
of Boolean functions. To automate circuit manipulations,
we develop Circle, which assists the development of linear
and non-linear decryption and probabilistic encryption func-
tions using our novel algorithm, as well as building circuits
for HGs. Using our developed class of private integers and
overloaded operators, end-users can effortlessly manipulate
sensitive variables in C++ programs.
We executed experiments measuring performance on

different levels of computation, starting from the gate oper-
ation to full C++ programs. Our framework can exe-
cute data-oblivious benchmarks 3 to 4 orders of magnitude
faster compared to the fastest state-of-the-art FHE schemes
(Table 2).

We also provided arguments supporting the security
of the proposed scheme as well as recommendations on
the construction and usage of the encryption components.
Furthermore, we performed experiments on the security of
our homomorphic construction demonstrating exponential
growth of difficulty to break the encryption given the increase
of the security parameter. Using the best-known algorithm for
breaking similar schemes, ciphertexts of 80-bit size require
millions of years to be broken.
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