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ABSTRACT The overwhelming increase of parcel transports has prompted the need for effective and
scalable intelligent logistics systems. In parallel, with the advent of Industry 4.0, a tight integration of Internet
of Things technologies andBigData analytics solution has become necessary to effectivelymanage industrial
processes and to early predict product faults or service disruptions. In the context of good transports,
the development of smart monitoring tools is particularly useful for couriers to ensure effective and efficient
parcel deliveries. However, the existing predictivemaintenance frameworks are not tailored to parcel delivery
services. We present REDTag Service, an integrated framework to track and monitor the shipped packages.
It relies on a network of IoT-enabled devices, called REDTags, allowing courier employees to easily collect
the status of the package at each delivery step. The framework provides back-end functionalities for smart
data transmission, management, storage, and analytics. A machine-learning process is included to promptly
analyze the features describing event-related data to predict potential breaks of the goods in the packages. The
framework provides also a dynamic view on the integrated data tailored to the different stakeholders, as well
as on the prediction outcomes, enabling immediate feedback and model improvements. We analyze a real-
world dataset including event-related data about parcel transports. To validate the hypothesis that the acquired
data contains information relevant to predict the package status (i.e., broken or safe), we empirically analyze
the performance of different, scalable classifiers. The experimental results confirm, in good approximation,
the predictive power of the models extracted from the event-related features. To the best of the authors’
knowledge, this work is the first attempt to address predictive maintenance in smart good transport logistics
to predict package breaks from real-world data.

INDEX TERMS Big data analytics, Industry 4.0, intelligent transports and logistics, Internet of Things,
machine learning, predictive maintenance.

I. INTRODUCTION
The emergence of Industry 4.0 factories has fostered the
diffusion of Internet of Things (IoT) technologies and big
data analytics tools in the industrial sector [1]. The so called
Logistics 4.0 has deeply increased the needs for transparency
in the supply chain and integrity control in good selling
and delivery (i.e., sell the right product at the right cost
and deliver it at the right time and place). As pointed out
by [2], a smart way to handle logistics entails relying on the
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following technological applications: (i) Resource planning,
(ii) Warehouse Management Systems, (iii) Transportation
Management Systems, (iv) Intelligent Transportation Sys-
tems, and (v) Information Security. Since the scope of this
work is to push advanced Information Technology solutions
into good transports, it falls into category (iii).

In recent years, parcel transports have grown at a surpris-
ingly high rate. The globalization and the spread of online
shops are the key factors that caused the significant growth in
the number of commodities delivered by specialized couri-
ers. To design intelligent logistics systems that are able to
address today’s challenges, couriers need to adopt advanced
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sensor and information technologies to avoid damages to
goods in packages [3]. The key requirements for a success-
ful customer-oriented intelligent logistics system have been
summarized in [4]. However, unsolved problems still raise
despite the use of modern intelligent logistic technologies.
Among the others, promptly identifying damaged packages
is still an open research issue. In particular, this is the main
challenge addressed by the present study. Predicting potential
package breaks is particularly useful in transport logistics,
because it may help decrease the waste of unusable merchan-
dise, reduce the transport means causing the breaks, promote
accountability for the transportation processes, provide early
warning at different stages of a delivery trip, yield better end-
user satisfaction, and promote high-quality couriers.

To predict critical situations as soon as possible, a rel-
evant research effort in the research community of indus-
trial data mining and machine learning has been devoted to
predictive maintenance [5], with a special focus on smart
factories. It entails automatically predicting critical events by
training data-driven classification or regression models. The
analyzed data consists of past events, product characteristics,
geo-spatial object tracking, and service usage monitoring.
Predictive maintenance has the twofold aim to (i) reduce
maintenance frequency to lowest possible state leading to a
huge cost saving in keeping resources in normal working con-
dition [6], and (ii) avoid catastrophic situations (e.g., product
breaks, faults, service disruptions) by detecting anomalies
a-priori from historical data. In the latter case, which is the
most relevant one to our purposes, maintenance should be
undertaken on time to prevent failure occurrence. The oppor-
tunities of using IoT, data analytics, and machine learning
approaches to predict critical situations have already been
investigated in several industrial contexts, among which vehi-
cle fleet management [7], oil and gas mining [8], and power
plant design [9]. This work is the first attempt to address
predictive maintenance in smart good transport logistics to
predict package breaks.

This paper proposes an IoT-based, big data analytics frame-
work, namely REDTag Service, to monitor the status of the
shipped packages and to early predict their accidental break.
It relies on an IoT-enabled device, which consists of a smart
ad-hoc hardware tag (hereafter denoted as REDTag). The tag
is applied on each shipped package. Notice that such a small,
cheap, and low-energy tag can be equipped with many differ-
ent sensors, in order to measure and record different events
based on the kind of item to monitor. Indeed, the REDTag can
track fall events, impacts, temperature, humidity, and position
of the parcels on which it is applied. A logical schema of the
REDTag components is provided in Figure 1.

The proposed framework provides back- and front-end ser-
vices for storing, managing, and analyzing REDTag data. It
relies on a Big Data architecture to store data in a scalable and
effective way and on a machine learning component, which
learns prediction models from the input data. A classifica-
tion model is trained on a subset of discriminating features
describing the tracked data in order to predict the status of

FIGURE 1. Logical schema of the REDTag component.

each package. The acquired data and the prediction outcomes
are displayed through dynamic and configurable informative
dashboards to allow courier employees tomonitor good trans-
ports and promptly react against potentially critical situations.
Customers can also get notified about where, when, and who
caused a damage to the transported packages, encouraging
the carriers to pay more attention to the transported parcels.

The effectiveness of the proposed approach has been
empirically validated in a real-world case study. The experi-
ments show that the descriptors used to describe the tagged
events are fairly correlated with package status. Thus their
predictive power can be exploited to train classification mod-
els with desirable performance.

The contributions of the paper can be summarized as
follows:
• This work is, to the best of the authors’ knowledge,
the first attempt to addressmachine-learning-based good
transport logistics to predict package breaks from histor-
ical data.

• It provides a data-driven solution with tight integration
with novel IoT-enabled technologies (i.e., the REDTag)
and with established Big Data scalable frameworks.

• A preliminary performance analysis has been conducted
on real-world data.

This paper is organized as follows. Section II discusses the
position of the paper with respect to the related literature.
Sections III and IV describe the use case scenario addressed
by thework and the framework enabling the proposed service,
respectively. Section V thoroughly describes the data ana-
lytics and mining steps. Section VI shows the experimental
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results achieved in a real scenario. Finally, Sections VII draws
conclusions and presents the future research agenda related to
this research activity, respectively.

II. LITERATURE REVIEW
Several previous studies have addressed predictive mainte-
nance problems in the field of industrial big data analytics.
For example, a pioneering work has been presented by [10],
where the authors highlight the need for a change of paradigm
from the traditional fail and fix maintenance practices to
the predict and prevent e-maintenance methodology. They
introduce one among the first examples of performance
assessment and prediction tools, which performs proac-
tive maintenance to prevent machines from breakdowns. As
recently pointed out by [11], [12], limiting the risks due to
unexpected faults/issues not only improves the management
activities but also reduces the economic, environmental, and
social costs.

In the context of Industry 4.0 factories, two main chal-
lenges need to be addressed in order to effectively accomplish
predictive maintenance tasks: (i) the tight integration of Inter-
net of Things (IoT) technologies in the smart factory context,
which enables smart sensor networks and smart machines
to share data with the system components [13], [14], and
(ii) the Variety, Velocity, and Volume of the acquired data,
which need to be analyzed through big data and machine
learning technologies [15]. Integrating IoT and data mining
technologies allows us to overcome the strong dependence
on human experts, which is unacceptable when the analyzed
data scales towards huge datasets.

A literature review of the state-of-the-art big data analyt-
ics solutions in manufacturing has recently been proposed
by [16]. The authors in [17] have presented a new prognostics
model based on neural networks to support industrial main-
tenance decisions. It predicts both failure likelihood and the
remaining equipment lifetime. Authors in [18] have proposed
a data-driven risk management framework based on time
series data analyses, while the frameworks presented by [3]
and [19] respectively address energy saving and optimization
and product life-cycle management and maintenance. With
the goal of detecting the health of a system, [20] has applied
anomaly detection algorithms to detect failure or a pending
failure from the system measurements. A particular attention
has also been paid to the application of Deep Learningmodels
in prognostics (e.g., [19], [21]). Despite Deep Neural Net-
work models are potentially more accurate than traditional
ones, they are inherently not explainable. In fact, they are
usually applied as a black-box, without giving any valuable
insight into the reasons behind the generated predictions. Fur-
thermore, they require accurate settings of the model hyper-
parameters in order to avoid data over- and under-fitting. To
address the above-mentioned issues, parallel research efforts
have addressed the visualization of the input data to perform
quality assessment and prognostics [22] and the self-tuning
of the machine learning algorithms to minimize human inter-
vention in the data analytics process [23].

This paper presents a predictive maintenance framework
tailored to the context of intelligent good transports and logis-
tics. It proposes a machine learning approach to predict pack-
age breaks based on the analysis of historical data acquired
by IoT-enabled devices. The proposed solution is designed to
be flexible, scalable, and incremental, thus allowing carriers
to monitor the status of good transports and promptly react
against potential package damages. To the best of our knowl-
edge, this work is the first attempt to analyze good transports
data in this way.

III. USE-CASE SCENARIO
The scenario of our use case can be summarized as follows.
Customers submit orders for goods. Orders are managed by
the employees of the courier. For the sake of simplicity, each
order is associated with a single parcel, which is going to
travel from a sender to a receiver. During good transports, the
courier employees track the status of the package by using the
REDTag technology. In case an event causes a package break,
it is unlikely to be detected immediately unless a prediction
system would be able to detect changes in the package char-
acteristics and forecast a potentially critical situation. This is
the main purpose of the REDTag Service, which is in charge
of providing courier workers and customers with ad hoc alerts
along with a detailed description of the current situation.

The framework keeps track of the following information.
• Customer: The sender and receiver of the package.
• Package: The package of the parcel carried by the trans-
port services.

• Tag: The IoT-enabled hardware tag (i.e., REDTag)
applied on each package.

• Worker: A employee of the courier, moving the package
at different stages towards its destination.

• Tag_event: The reading of the REDTag collected data
by a worker.

• Order: The shipping order made by a customer (sender)
to another (receiver).

• Segment: The progress level of a parcel towards the
destination. It is tagged by the worker who is currently
in charge of managing the parcel.

• GPS_worker: The geographical position of the worker
in charge of managing the parcel.

Based on the tracked information, the framework pre-
dicts whether the current status of a parcel is broken or
safe. The underlying assumption is that the collected data
about the previous events of package deliveries are likely
to be correlated with the current-delivery package sta-
tus. An empirical evaluation of such assumption is given
in Section VI.

IV. PROPOSED FRAMEWORK
This section describes the framework proposed to effectively
and efficiently monitor the status of the packages of a courier
during their transports.

The REDTag Service framework allows stakeholders
(e.g., customers, deliverers, retailers) to monitor the package
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FIGURE 2. The framework architecture.

status in real time. Figure 2 shows the architecture of the
proposed REDTag Service framework.

It provides a variety of back- and front-end services aimed
to support predictive maintenance activities. The back-end
services include:
• REDTag: The hardware technology enabling event
detection and package-data recording and collection.

• QueueManager: The IoT service adopted to coordinate
data exchange from the sensors to the back-end.

• Data ingestion: The Big Data technologies used to
manage the input data flow and to store them in a non-
relational database (Cassandra).

• Application server: The server running back- and front-
end services.

• Analytics engine: The machine learning modules in
charge of predicting package breaks based on historical
data.

The front-end services offer data visualization, aggrega-
tion, and reporting functionalities over the acquired data
as well as visualization of the prediction outcomes (i.e.,
the predicted status of the package). It allows stakehold-
ers to deeply analyze the real-time predictions in order to
react against unexpected events, limit inefficiencies, and
improve the quality of the offered service. A more detailed
description of the provided back-end services is given in
Section IV-A, whereas front-end services are described in
Section IV-B.

A. BACK-END SERVICES
This section details the most relevant characteristics of the
back-end services.

1) REDTag: EVENT DETECTION AND RECORDING
REDTag is a state-of-the-art event recording technology.1

It is designed to be attached to the packages to efficiently
and effectively record all the events occurring during parcel
transport. The tag consists of a red box (for which the name
comes from) equipped with sensors, batteries, memories, and
a processor. A networkingmodule is also embedded in the tag
to allow the processor to exchange data with external mobile
devices. REDTag has been adopted as event detection and
recording systems because it is fairly cheap, robust, small but
well visible. Notably, it does not require any configuration
setting before plugging it in the system. Furthermore, it has
been designed to be eco-friendly, having the possibility to use
just eco-sustainable electronic components. When it detects
an event, e.g. the acceleration is above a given threshold,
the REDTag stores it into its memory. Data downloads from
tags to smartphone are performed via NFC (Near Field Com-
munication). A specific smartphone application, operated by
courier workers, is in charge of sending data to the back-
end services. The key interactions between the architectural
elements of the REDTag Service are depicted in Figure 3.

1http://www.zirak.com/engineering_embedded_rfid/
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FIGURE 3. Relevant interactions among the architecture elements.

2) QUEUE MANAGER
When workers scan the REDTags, data acquired by the sen-
sors are sent to the back-end and gathered by a queue man-
ager. Apache Kakfa [24] is the technological solution adopted
in the REDTag Service framework for the data management
and distributed data processing. The platform is designed to
manage high-rate data streams and ensures reliability and
scalability by distributing jobs over multiple workers. In this
framework it is adopted to collect data from IoT devices
and manage data ingestion with the necessary reliability,
effectiveness, and scalability levels.

A Kafka REST Proxy Server exposes the Application Pro-
gramming Interfaces through which the event messages are
exchanged. Kafka has a dedicated channel per event type. The
event types are classified as follows: (i) package break, (ii)
new association tag/package, (iii) worker commitment for a
parcel, (iv) new tag event, (v) new delivery, (vi) new GPS
event. For event (i), the worker in charge can confirm the
break by manual inspection. When a worker is committed for
a given package, i.e., event (iii), a new session starts. Notice
that all the past events corresponding to the package (if any)
are downloaded from the tag and associated with the current
package segment.

3) DATA INGESTION
Once the data arrives to the back-end of the service, the data
ingestion component is in charge of the Extraction, Trans-
formation, and Loading (ETL) process [25]. Sensor data
are integrated with the carrier-provided information about
packages, workers, and customers. The database employed to

manage and store data is ApacheCassandra [26]: it is a largely
used NoSQL column-based database. It ensures scalability,
availability, and fault-tolerance capabilities.

4) ANALYTICS ENGINE
The analytics engine applies machine learning techniques to
predict the current status of the parcel package (i.e., broken
or not). To ensure scalability towards Big collections of data,
it is designed on top of Apache Spark [27]. A thorough
description of the data transformation and analytics steps are
given in Section V.

B. FRONT-END SERVICES
The application front-end provides stakeholders with a graph-
ical interface to visualize acquired data and prediction out-
comes under various viewpoints. Two main functionalities
are provided.
• Multi-dimensional view of the historical data. Views
aggregate data at different abstraction levels and accord-
ing to different facets.

• Real-time updates. Data and prediction outcomes are
dynamically updated as soon as new entries are stored.

A set of predefined dashboards offer different data views
according to the type of user interacting with the framework.
The front-end service relies on various standards for visual
analytics, among which Freeboard,2 Grafana,3 Kibana,4

2https://freeboard.io/
3https://grafana.com/
4https://www.elastic.co/products/kibana
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FIGURE 4. Example dashboards: event frequency and package status distributions.

ngx-admin.5, and Plotly6 All the visualization models require
human interactions, because domain experts interact with
the system and specify which kind of data they are really
interested in.

For example, the developer dashboards show the key infor-
mation about shipped packages and related events. Figure 4
shows a representative dashboard reporting the frequency
distributions of specific events and the percentages of bro-
ken/safe packages according to the prediction outcomes.
The statistics are computed separately for each package
or averaged over all the packages associated with specific
properties.

Users can also explore the routes of specific tags or pack-
ages (e.g., see Figure 5). Per-tag maps show the path of
the package associated with the selected tag, whereas per-
package maps draw the recorded package-route points along
with the associated events and update the event distribution
graph with information regarding the events. Figure 5 shows
the tag routes associated with a couple of packages. Notice
that segment ends may not exactly match a node due to miss-
ing annotations or approximated geo-location data. Segment
colours indicate the likelihood of package breaks during that
segment of shipment, according to the data analytics out-
comes (green= safe, blue= broken). Different point colours
are associated with different types of workers annotating the
events.

V. DATA ANALYTICS
The data analytics process, depicted in Figure 6, consists of
the following steps: (i) Feature extraction, which defines the
features used to describe the events related to the packages.

5http://akveo.com/
6https://plot.ly/

(ii) Feature transformation, which transforms the extracted
features in order to make them more relevant to predict the
package status. (iii) Classifier training, which learns classi-
fication models on the selected data. (iv) Model application
and tuning, which apply the models trained at the previous
step to predict the unknown package status. (v) Classifier
tuning, which entails refining the previously trained model
by exploiting the newly labeled data.

A. FEATURE EXTRACTION
The package-related events are collected through Apache
Kafka (https://kafka.apache.org/), i.e., a distributed platform
that builds real-time data pipelines and supports fault-tolerant
streaming applications. An Apache Spark application [27]
consumes the event messages of the Kafka streaming. The
well-known big data platform Apache Spark allows the sys-
tem back-end to accomplish many data preparation steps in a
scalable way. This allows a large number of carriers to send
data to the service at the same time.

At the service back-end, many different messages are col-
lected by the Kafka queue manager. Specifically, the mes-
sages related to the position of the workers, those related the
new takeovers from the couriers, and the messages reporting
the events recorded by the tags. In the pre-processing phase,
the messages are transformed to fit the logic schema of the
Cassandra database where they will be stored. In some cases,
the already available information is exploited to adapt the
structure for new input data and ease the information retrieval
process. For example, the events recorded from the tags are
not associated to any position. Hence, to simplify the next
data visualization and information extraction steps, the miss-
ing positions are filled up with the corresponding worker
positions. For each recorded package event, its GPS position
is set to the value of the time-weighted distance computed
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FIGURE 5. Example dashboard: tag routes over a map with predicted package status.

FIGURE 6. The analytics pipeline.

between the two time-closest GPS positions of the worker
responsible for a given package transport.

In the transportation process, while downloading the event
data, a new logical transportation segment is created every
time a scan of the REDTag is performed. A segment indicates
that the worker is now in charge of managing the package.
Once processed and stored in the database, data will be
processed by the analytics engine.

B. FEATURES ENGINEERING AND SELECTION
Event-related data are transformed and aggregated in order
to make them suitable for the next prediction phase. Each
event, related to an arbitrary package, can be modelled as
a set of multidimensional time series T (p) associated with
the package p. For example, a GPS event (see Section IV-
A) is stored as a set of GPS positions related to the package.
Since, in our context, all the spatial dimensions are deemed as
equally relevant, each series of points is summarized by its L2

norm. To synthetically describe the time series under multiple
aspects, we first extract various descriptive features according
to the methodology presented in [28]. Then, we filter the

generated features according to their discriminating power
to predict the target class by applying the feature selection
approach presented by [29]. At the end of feature engineering
and selection phase, package-related events are transformed
from time series data to a set of discrete attributes that are
fairly correlated with the class. The subset of selected features
is enumerated in Table 1.
To further enrich the discrete data model, we group event-

based data by package (i.e., by tagID), event type (regardless
of the corresponding sub-events), and package status (i.e.,
the class attribute). Next, the aggregation functions enumer-
ated in Table 2 are computed to describe the event-status
relationships.

C. CLASSIFIER TRAINING, APPLICATION, AND TUNING
Classification is an established technique to learn predictive
models from a set of labeled data (i.e., the training phase).
The generated models are then applied to a set of unlabeled
test records [30].

In our context, training and test data are collected from
the non-relational dataset and temporarily stored in a table
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TABLE 1. Feature definition.

TABLE 2. Aggregated features.

with the structure reported in Table 2. Each data entry cor-
responds to the occurrence of a distinct event for a given
package. The goal is to predict the status of the pack-
age (broken or safe) that has been tagged when the event
occurred.

To tackle the classification problem, many different
classification approaches have been proposed in literature
(e.g., Bayesian classifiers [31], [32], decision trees [33],
Support Vector Machines (SVMs) [34], [35], Neural Net-
works [36], ensemble methods [37], [38], and associative
classifiers [39], [40]). Among the variety of possible solu-
tions, we select those satisfying the following constraints
tailored to the analyzed application context.

• Scalability: Since the number of package-related events
is potentially very large, we focus on the algorithms for

which a parallel and distributed version is available in
Apache Spark MLlib library [41].

• Applicability to heterogeneous data: Since the event
descriptors are partly numerical and partly categorical,
we consider the scalable algorithms that support both
attribute types.

In light of the constraints mentioned above, we have con-
sidered the MLlib implementations of the following classi-
fiers: Gradient Boosting Classifier, Logistic Regression, and
Support Vector Machines [41].

VI. EXPERIMENTAL RESULTS
In this section we summarize the results of the empirical
evaluation conducted on a real-world dataset. The dataset
stores information about the shipping of fragile items,
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namely glasses. To collect data, packaged glasses have been
made fall from different heights and directions with different
speeds. The tags, placed all over the boxes, recorded all the
accelerations and impacts experienced by the packages. For
each fall, the condition of the glass inside the package has
been checked, in order to assign a status label (i.e., safe
or broken) to each sequence of signals gathered from the
REDTag IoT-enabled device.

The dataset consists of 22,700 entries (7,840 of which are
labeled as broken, whereas the remaining ones are labeled as
safe). The experiments are aimed to empirically demonstrate
that event-related information is actually correlated with the
package status in a real case study.

We run the experiments on an Intel(R) Core(TM) i7-8550U
CPU with 16 GB of RAM running Ubuntu 18.04 server. For
most of the executed experiments, the execution time is in the
order of tens of seconds for training the classification models,
whereas it is negligible for label assignment.

This section is organized as follows. Section VI-A briefly
describes the experimental design. Section VI-B shows a pre-
liminary data visualization to qualitatively show the complex-
ity of the addressed task. Section VI-C shows the results of
the pairwise feature correlation analysis, while Section VI-D
reports the results of classification process.

A. EXPERIMENTAL DESIGN
To quantitatively evaluate classifier performance in pre-
dicting package status, we apply a stratified 5-fold cross-
validation strategy and compute the following performance
metrics [30]:
• Accuracy: It is the percentage of events whose package
status (broken or safe) has been correctly assigned.

• Precision of class label broken: It is the ratio of the
number of events that have been correctly labeled as
brokenwith respect to the total number of events labeled
as broken.

• Recall of class label broken: It is the ratio of the number
of packages that have been correctly labeled as broken
to the total number of events that actually belong to class
broken.

• F1-score of class label broken: It is the harmonic mean
of precision and recall of class broken.

Since the main goal of predictive maintenance is to early
detect package breaks, the event counts for accuracy com-
putations are weighted by the relative class frequencies in
order to properly handle imbalances among the two classes.
Furthermore, for the class-specific metrics (i.e., precision,
recall, and F1-score) we specifically focus on the evaluation
metrics referred to the label broken.

B. PRELIMINARY DATA EXPLORATION
The scatter plot in Figure 7 shows the distribution of the train-
ing data points in a 3-dimensional space after Singular Value
Decomposition (SVD). SVD is an established process for
dimensionality reduction. It relies on a matrix factorization,
which transforms the input data into a latent space where the

FIGURE 7. Scatter plot of the training data (class labels: broken, safe) in a
Singular Value Decomposition (number of dimensions: 3).

FIGURE 8. Scatter matrix of the most significant pairs of feature
categories. Class value broken in red, class value safe in green.

key components (represented by the most relevant singular
values) are preserved [30].

To visualize the relative package positions in the latent
space, points in Figure 7 are coloured according to their class
membership. Specifically, points in red correspond to broken
packages, whereas green ones are mapped to safe packages.
The plot shows a mixed coloured point cloud, indicating
the absence of a clear separation between broken and safe
packages. This prompts the use of more advanced machine
learning solutions to tackle the prediction task.

C. ANALYSIS OF THE PAIRWISE FEATURE CORRELATION
The scatter matrix in Figure 8 shows the dependencies
among pairs of feature categories in the training dataset.
The presence of strongly correlated pairs of descrip-
tive categories (e.g., categories sum_numOverMeanStd and
sum_longestStrikeOverMean) is deemed as redundant in the
training data, because they provide roughly the same infor-
mation. To tailor the model to the features that are most
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FIGURE 9. Receiver operating characteristic curve. Stratified 5-fold CV.
gradient boosting classifier.

correlated to the class feature while avoiding data redun-
dancy, we take one representative for each pair of categories
with high pairwise correlation and, out of all the remaining
features, we keep only those that are significantly corre-
lated with the class according to the approach described in
Section V-B.

D. CLASSIFIER PERFORMANCE
The best weighted accuracy values achieved by the Gradi-
ent Boosting (GBC), Support Vector Machines (SVM), and
Logistic Regression (LR) Classifiers over all the performed
runs are 74.2%, 72.8%, and 61.1%, respectively. The prelim-
inary results show that the Gradient Boosting Classifier is the
most accurate model to predict package breaks.

The recall values associated with label broken, i.e., GBC
78%, SVM 85%, 67%, indicate that the SVM model fore-
casts a larger number of actual glass breaks (+7%), but it
generates also a higher number of false positive outcomes,
i.e., the precision gap between GBC and SVM is 6%. It
turns out that relying on SVM model predictions yields a
more sensitive alerting system, which generates approxi-
mately 25% extra alerts compared toGBC. The optimal trade-
off between model precision and sensitivity strongly depends
on the impact of the generated alerts on the operational costs
needed to apply package quality checks in the real scenario.

Figure 8 shows the Receiver Operating Characteris-
tic (ROC) curves corresponding to each Cross-Validation
fold of GBC, the mean ROC curve, and the baseline curve
achieved by random choice. The ROC graph [30] plots the
True Positive Rate (i.e., the percentage of entries labeled as
broken and actually broken) vs. the False Positive Rate (i.e.,
the percentage of entries labeled as broken but actually safe).
As expected, the achieved curves are all above the baseline
for the performed runs.

VII. CONCLUSIONS AND FUTURE WORKS
In this paper, we investigate the application of machine learn-
ing models to address the data-driven prediction of courier

package breaks in smart good transportation systems. We
analyze data acquired by an IoT-enabled device monitoring
the events collected by the courier employees during package
shipping. It presents also a Big Data analytics framework to
efficiently store andmanage analyzed data as well as to gener-
ate and visualize the prediction outcomes. In the experimental
evaluation, we explore the effectiveness of scalable classifica-
tion models predicting package breaks in real time scenarios.
The results show that Gradient Boosting Classifiers achieve
desirable accuracy and recall performance.

The presented results are mainly focused on classifier per-
formance. In our future research agenda, we aim to investigate
the scalability of the framework in terms of memory used and
communication costs in a Big Data scenario. Furthermore,
we plan to further investigate the applicability of self-tuning
approaches able to capture relevant changes in the predictive
patterns as soon as they emerge in the acquired data.
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