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Abstract
Clouds play an important role in enhancing the realismof outdoor scenes in computer graphics (CG).Realistic cloud generation
is a challenging task, which entails processes such as modeling, photorealistic rendering and simulation of the clouds. To these
ends, several techniques have been proposed within the CG community in the last 4decades with one or more of the above
stated focuses. The growth of modern hardware has also enabled development of techniques that can achieve cloud display
and animation at interactive frame rates. In this survey, we review the prominent work in the domain and also summarize the
evolution of the research over the time.
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1 Introduction

Clouds form an integral component of several outdoor scenes
and are hence key to enhancing their realism. This applies
both to static and dynamic scenes. The focus in static scenes
is to obtain a photorealistic image where the clouds can con-
vey a convincingly real static appearance. On the other hand,
dynamic scenes could be more demanding with the addi-
tional requirement to have naturally evolving or animated
clouds. For applications such as movies, the computational
time to simulate or render the clouds might not pose any hard
constraints, while some other applications such as the flight
simulators and games might necessitate that the computa-
tional time spent on the clouds is only a small fraction of the
total frame time. In order to copewith the different scenarios,
the techniques could be offline, online or some combination
thereof in terms of their computational aspects.

Over the years, work has been done on the different
fronts to generate realistic clouds in CG. Cloud modeling
approaches strive to create shapes that resemble the real
clouds. In order to convey the impression of realness, clouds
further need an effective illumination model to capture the
light transport on the generated shapes. For dealing with
dynamic scenes, the animation techniques are required to
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produce a viable evolution of the modeled clouds as a func-
tion of time. Furthermore, while some applications require
the generated clouds and the rendering to be more accurate,
others can trade off their quality for the efficiency.

Clouds are broadly classified into around 10 types (Fig. 1),
differing significantly in their appearance and formation
dynamics [57,67]. Furthermore, clouds can also be classi-
fied based on the various parameters, for instance, elevation
(low, medium or high), content (water, ice) or structure (lay-
ered, scattered). In terms of their appearance, the cumulus
clouds and its variants are particularly interesting owing to
the interesting patterns they form. These clouds are formed
as a result of the strong vertical ascending currents and often
assume conspicuous shapes. Hence, a bulk of the research
in CG is directly or indirectly targeted toward these types of
clouds.

In this survey, we review the various techniques of cloud
generation in CG in the light of the aforementioned three
major aspects. Section 2 covers the prominentwork related to
cloudmodeling. In Sect. 3, the fundamentals of light transport
are introduced, followed by a review of the existing methods
to render and illuminate the clouds. Cloud animation tech-
niques are studied in Sect. 4 after a brief overview of the
basics of the underlying physics. The various methods are
discussed for their performance in Sect. 5, followed by the
conclusion in Sect. 6.
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Fig. 1 Various classification of clouds based on their elevation and
appearance [57]. Cloud elevation is often reported by weather stations
in feet above ground level (AGL)

2 Modeling

Cloudmodeling inCG refers to creating shapes that resemble
real clouds in their appearance. Varied types of techniques
have been proposed to the end of cloud modeling. This
includes mesh-based and volumetric methods, generating
shapes from texture or noise and even from images. In this
section, we discuss the existing modeling methods by clas-
sifying each method to the most relevant category it belongs
to.

Texture Some of the earliest work has employed 2D/3D
textures for the cloud shape modeling. A simple method to
model cloud structure is presented in [31] by Gardner. In
their paper, the authors employ ellipsoids to model coarse
three-dimensional cloud structure and apply a mathematical
texturing function (simplified Fourier series) on it to model
the cloud detail, shading intensity and translucence of the
sky. To create the cloud layers, the same parameters are
applied on a single textured plane instead of the ellipsoids.
The method supports both the vertical and horizontal cloud
development and could create impressive cirrus, stratus and
cumulus clouds for the technology available at that time.

Based on the Gardner’s work, Elinas and Stuerzlinger
[29]model clouds as composed of ellipsoidal primitives. The
ellipsoids are textured, and the texture properties like trans-
parency are controlled to simulate irregular appearance of the
clouds. The solid texturing of the polygonal mesh objects is
used by Ebert and Parent for modeling gaseous phenomena
in [26], where controlled transparency of objects or planes
defines the space occupied by the gaseous substance. Hard-
ware interpolated opacity on textures obtained with a fractal
algorithm is applied in [96]. In [103], the idea of digital
synthesis of Jupiter is explored by creating planetary atmo-

spheric flow. In their method, software tools are employed
to convert the texture images to particles. The particles are
input to a fluid dynamics engine that updates their positions
and converts them back to images.

Noise Texture mapping on 3D shapes could be a complex
problem. To this end, it is often easier to generate shapes
with the help of procedural noise. This observation has been
exploited in a number of works that employ one or more
kinds of noise to model the clouds. Spectral synthesis moti-
vated by turbulence theory is employed for cloud modeling
by Sakas in [82]. Texture is defined in the frequency domain
and transformed to the Euclidean space. In [40], a simple
noise-based approach to generate static procedural clouds on
GPU is implemented. Xu et al. [102] simulate clouds based
on a modified cellular automata method on the GPU. The
stochastic probability fields created from Brownian motion
functions control the cloud evolution.

Webank et al. [99] create several types of clouds pro-
cedurally through variations of density functions and cloud
shape functions. A control function additionally influences
the large-scale cover of the corresponding cloud type. The
other relevant parameters that define a particular cloud type
(elevation base, altitude range, etc.) are also passed as inputs
to the cloudmodeler. The volumetric effect for cumulus cloud
rendering in Neyret’s phenomenological shader [69] is cre-
ated by adding Perlin noise on the surface representation of
the cloud. Goswami and Neyret [34] model clouds through
hypertexture generation [74] inside large spherical parcels
based on the underlying physics parameters on theGPU. This
is improved upon inGoswami [32] by introducing cloudmap,
a precomputed noise texture to govern cloud shapes and to
improve the rendering efficiency.

Geometric Ebert in [25] uses volumetric modeling to gener-
ate cumulus clouds with the help of a procedural volumetric
implicit function. The idea to generate cloud density with
cellular automata and to evolve them with the time-varying
transition rules is introduced in [15,16]. Other variations and
optimizations [3,30] have also been proposed. Clouds are
modeled as isosurfaces using marching cubes by Trembilski
and Broßler in [95]. Given coarse geometric data, postpro-
cessing steps like refining, sharp edge smoothing and vertex
displacement are applied to achieve the cloud visualization.
Schpok et al. [87] provide a cloud modeling framework that
uses volumetric implicits to define the density, transparency
and shadowing of the cloud. The user interactively outlines
the cloud shape using ellipsoids and describes the low-level
details from a collection of preset noise filters.

Hufnagel et al. [44] visualize clouds fromweather volume
data by extracting information and interpreting the cloud type
and appearance information from it. The different types of
clouds are first identified and then modeled by placing par-
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Fig. 2 Cloud modeling with a hierarchical blobs in Neyret [6] and b
sketched 2D outlines by Wither et al. [101]

ticles (metaballs) of appropriate size, density and texture in
the scene. They extended the use of original metaballs with
flattened metaballs and metaballs textures to improve upon
the efficiency and realism of the clouds.

Shapes Shapes from meshes or curves have also served
as a useful inspiration to generate the clouds. Bouthors and
Neyret [6] model cumulus cloud shapes on meshes with the
help of a blob hierarchy superimposed on top of each other
(Fig. 2a). While placing a number of child blobs on the par-
ent, a combination of field functions controls several factors
like cloud size, overlap, bottom flatness. Sethi [88] models
clouds through B-Spline surface where the sampled height
values constitute the control points.

Wither et al. [101] present a method to model cumulus
clouds from sketched 2D outlines. The skeleton is inferred
from the sketched silhouette, followed by placing the spheres
along the skeleton which provides the final mesh (Fig. 2b).
In Stiver et al. [92], an input sketch is converted into a cloud
mesh and this mesh is filled with particles to model the var-
ious types of clouds. Cloud modeling is achieved in Yu and
Wang [106] by sampling input 2D shapes to particles and 3D
shapes to tetrahedrons. When using 2D shapes, the data are
stretched to 3D, leading to the step of extraction of medial
axis, which aids in the sampling process later. Correspon-
dence is established between the source and the target cloud
models, and the cloud is morphed along a linear or more
sophisticated path.

The clouds created for “Puss In Boots” [62] are modeled
as meshes representing shapes that could be used to dress the
set and house the animated characters. The meshes together
with the procedural noise are converted into a compact data
structure for sparse volume data named volumetric dynamic
grid (VDB) that enable fast and cache-coherent data access
of large volumes.

Image-based Cloud images captured from terrestrial angles
have been utilized to model the cloud shapes. Peng and Chen
[73] propose to capture variable cloudiness in input images
by formulating it as a labeling problem. Each sky pixel is
assigned a label based on the Igawa sky model (uses solar
zenith, azimuth, etc.) [45], while minimizing a formulated

Fig. 3 Cloud modeled and rendered from a single image by Yuan et
al. [107]

energy function with respect to the labels in the provided
input image.

Alldieck et al. [1] generate cloud models from a hemi-
spherical image input covering an entire sky. To this end,
firstly the sun illumination is filtered, followed by classifi-
cation of the cloud and sky pixels in the image and then
reconstruction of the sky without clouds. The cloud inten-
sity and opacity values are used to create vertices on the
hemisphere, which generates the cloudmesh. Clouds are also
modeled froma single image in [107] byYuan et al. by assum-
ing a symmetric cloud structure. The image is segmented into
various subregions, and the height field is computed using the
pixels labeled as clouds. A propagation procedure is devised
that constructs cloud geometry from the cloud pixels pro-
gressively. In order to improve the generated appearance, the
front part of the cloud is refined by adding shape constraints
and the backportion geometry is simplified. Finally, the cloud
surface obtained is filled with the particles via an adaptive
sampling process (Fig. 3).

Satellite-images The cloud distribution present in the satel-
lite images is employed as a tool to generate similar weather
visualization effects. Dobashi et al. [17,18] and Tomoyuki
andDobashi [94] proposed cloudmodeling in 3Dusingmeta-
balls by making use of a single satellite image. To this end,
cues are taken from the satellite image by classifying each
pixel as either cloud or background. Metaballs are gener-
ated in pixels with the maximum intensity identified as cloud
regions of the satellite image. After each such addition, the
center and radius of the metaball are approximated. The ter-
mination criterion is based on the difference of the synthetic
image with that of the satellite image, given an error thresh-
old. Wang et al. [100] generate satellite view clouds based
on the weather forecast data and group all the particles into
water, ice or snow to determine their extinction and scattering
coefficients. Kowsuwan and Kanongchaiyos [53] generate
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Fig. 4 Cirrus, altocumulus and cumulus cloud texture and the corre-
sponding density distribution, generated from single images byDobashi
et al. [19]

3D clouds from satellite images combined with the creation
rules of cellular automata.

Dobashi et al. [22,23] build a volumetric hierarchical data
structure for the earth-scale cloud visualization which cate-
gorizes the visible data blocks as surface, point or volume to
enforce the different levels of detail. Their system precom-
putes and stores the integrated intensities and opacities of
the cloud data for various viewing and lighting directions for
efficient rendering at runtime. Griffith [35] visualize clouds
generated by time-varying large eddy simulations (LES) for
virtual reality applications.

Dobashi et al. [19] synthesize density distribution of dif-
ferent types of clouds from single images. The initial and
common step while modeling various cloud types is the com-
putation of cloud image from a given image that extracts the
opacity and intensity of clouds in the given image. There-
after, cirrus clouds are created with 2D texture since they are
thin and seldom contain self-shadows. For the altocumulus
clouds, a three-dimensional density distribution is defined
using metaballs. In order to model the cumulus clouds, sur-
face shape is generated by calculating the thickness at each
pixel (Fig. 4).

Yuan et al. [108] extract geometric structures of clouds
frommulti-spectral satellite images. This is achieved by clas-
sifying pixels as clouds or non-clouds in the visual image,
estimating the cloud top height from the combined infrared
andwater vapor channels. Parameters such as cloud thickness
and extinction properties are inferred by using the mid-wave
infrared channel in combination with the visual one.

Table 1 compares someof the above statedmodelingmeth-
ods based on their various characteristics.

3 Rendering

For the sake of simplicity, cloud rendering can be assumed
to consist of two essential components. The lighting captures
the illumination or interaction of cloud particles with the sur-

rounding impinging light. The rendering technique employs
ray casting, rasterization or a variant to convert the existing
shape representation, light settings, etc., to display the final
cloud on the screen. In the following, we look into each of
these two aspects separately.

3.1 Illumination

Clouds receive their illumination from the light coming from
the sun, sky, ground and other cloud particles. An impor-
tant phenomenon that illuminates both the atmosphere and
the clouds is scattering. In a broad sense, scattering can be
defined as the redirection of the incident light due to inter-
actions with the molecules of the medium. The albedo for
the clouds is close to 1, which implies that there is very little
absorption of light. This leads to a high degree of re-emitting
of received light by the cloud particles in the forward direc-
tion, commonly known as anisotropic scattering [69,81]. For
a wide range of clouds, the optical effects occurring at the
cloud–atmosphere interface are also key to obtaining the right
effects.

Light transport equation The nature of scattering effect on
a particle is dependent on the particle size, the refractive
index and the wavelength of the visible light. For exam-
ple, Rayleigh scattering is responsible for giving the sky its
blue color due to scattering by its tiny particles. On the other
hand, for larger particles such as those in the clouds, forward
(Mie) scattering is predominant. The scattering phase func-
tion gives the angular distribution of light intensity scattered
by a given particle for a given wavelength. The scatter-
ing equation combines these terms to capture the scattering
behavior.

Considering the case of single scattering as shown in
Fig. 5, the intensity of light reaching at Pa is given by

Ia(λ) = Is(λ) exp(−τ(Pa Pb, λ))

+
∫ Pb

Pa
Ip(λ)βρ(l)F(θ) exp(−τ(PPb, λ))dl (1)

Here, λ is the wavelength of the light, Is is the intensity of
sky light in the viewing direction, Pb is the other end of cloud
falling in the view direction when connected to Pa, θ is the
scattering angle, F(θ) is the scattering phase function, and
τ is the optical depth obtained by integrating the attenuation
coefficient (βρ) along the path, where the gathered density ρ

is a function of the path length. The first term in the equation
accounts for the attenuated light on the path of Pa Pb, whereas
the second accounts for the scattered component [71]. In
order to solve themultiple scattering phenomena, the incident
intensity at point p (P in Fig. 5), Ip, has to be gathered for
all major contributing directions. Ip is obtained as Ip(λ) =
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Table 1 Summary of the
characteristics of various
modeling methods: if the
method is shown to support
physics on the modeled clouds
and produces two- or
three-dimensional cloud output
and the prominent feature(s)
representing the method

Method Animation 2D/3D Feature

[15]-2000 Micro-level 3D Cellular automata

[87]-2003 Procedural 3D Two-level modeling

[6]-2004 – 3D Hierarchical blobs

[101]-2008 – 3D Sketch-based interface

[22]-2009 – 2D Satellite image clouds

[19]-2010 – 2D and 3D Single-photo based

[107]-2014 – 3D Cloud shape from images

[34]-2017 Macro-level 3D Hypertextures

[99]-2018 Procedural 3D Field functions, morphing

Fig. 5 Single and multiple scattering of the light, as it passes through
the cloud before reaching the viewpoint [13]

Ic(λ) exp(−τ(PPc, λ)), where Ic represents the attenuated
light of the sun at the top of the atmosphere (point Pc).

The interaction of cloud with the sun light and its environ-
ment and hence its color is calculated using single scattering
model into account in several works such as [17,18,94,102].
In such a model, the light is assumed to be scattered only
once before it reaches the viewpoint (Fig. 5). While single
scattering assumption simplifies the computation, in reality
the light inside a cloud is scattered multiple times. Hence,
a significant amount of research work has been dedicated to
designing efficient rendering models and approximations to
capture multiple scattering.

Other effects Apart from scattering induced within the
cloud, work has also been done to reproduce other effects
that become prominent in certain clouds or lighting situa-
tions. Max et al. [61] compute photorealistic rendering of
clouds by using a diffusion approximation at the dense cloud
core but by additionally accounting for multiple anisotropic
scattering at the cloud borders where drop density is nearly
zero. Two important lighting factors accounted for by [69]
are as follows. Firstly, the rays crossing cloud corona are
treated differently by applying Lambertian illumination as
against the scattered illumination at the core. Secondly, con-
cave regions of the clouds facing each other act as light traps
and amajor source of re-emission in these regions. The reader

is also referred to [10] for more detailed exposition on vari-
ous facets of radiative transfer and [80] for calculating light
intensities in the presence of a participating media.

3.2 Rendering techniques

A majority of the methods in CG use volumetric representa-
tion of clouds for the purpose of rendering and illumination.
A fewof these techniques assume the volume to be composed
of particles for the sake of simplification of the light com-
putation. Apart from the representation, several variations
have also been suggested for rendering. This includes vari-
ants of the traditional ray casting as well as rasterization that
can also exploit the inbuilt hardware capability for a more
efficient rendering. In the following, we review the existing
methods based on their prominent rendering features.

Particle-based Blinn [4] is one of the earliest works in CG
that proposes light interaction with matter such as clouds
and dust. The medium is assumed to be uniform and com-
posed of particles on which a brightness function of the form
B = wμϕ(a)S is computed for each particle, which deter-
mines the amount of light escaping in the view direction.
Here,w is the albedo controlling the levels of scattering from
each particle (chosen to be low), μ is the cosine of the angle
between the normal of the surface and observer vector, ϕ is
the phase function, a is the angle between the observer and
the light direction and S is the scattering probability. They
have applied this model to illuminate the rings of Saturn and
the cloud layer on a hypothetical planet.

Kajiya and Herzen [48] focus on a more generic problem
to ray trace volume densities. They present an alternative to
the Blinn scattering model by modeling multiple radiative
scattering against particles with high albedo. The equation
is solved differently for low and high albedo approximations
and even expressed as spherical harmonics for the latter case.
(The scattering model followed is the same as with Blinn.)
Klassen [50] considers general sky illumination caused by
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scattering of the light by suspended air particleswithout using
cloud particles.

The generated clouds in [38] by Harris et al. are illumi-
nated by adapting the multiple, forward scattering lighting
model in [15]. However, instead of directly illuminating par-
ticles, a smooth 3D texture is constructed in every frame
with the particles’ attributes. Riley et al. [78] render sin-
gle and multiple scattering atmospheric effects with aerial
perspective. They assume the atmosphere to consist of two
broad particle types, air and moisture and apply different
phase functions to each to account for vast difference in their
scattering properties.

Billboards Billboards are texture-mapped polygons which
always face the viewer. In order to render the clouds from the
cellular automata simulation inDobashi et al. [15], a continu-
ous density field expressed asmetaballs is constructed at each
cell by taking a weighted interpolation with all its neighbor-
ing cells. Billboards are placed at the centers of metaballs,
sorted based on their distance to the sun or viewpoint and pro-
jected onto the image plane (Fig. 13a). The projection from
the point of view of the light source provides light inten-
sity reaching the clouds. On the other hand, the projection
from the camera achieves blending cloud densities with the
remaining scene. In their work, Dobashi et al. account for
single scattering of light and considered sunlight, transmitted
color from the sky and attenuation from the cloud particles
to compute illumination. The light shafts are also rendered
by scattering the sunlight passing through the cloud gaps. Yu
andWang [106] enhance the splatting of the modeled clouds
by employing line integral convolution to form various types
of convoluted and asymmetric textures, which are mapped
on the billboards.

Radiosity-based The warped blobs in [91] also carry an
intensity, a continuous field over which is constructed using
themodified smoothing kernels. The intensity to and from the
environment on the blobs is gathered as a result of a shooting
process, similar to radiosity in principle. In order to compute
the intensity field at any point in the environment, a ray is
shot and the scattering equation is integrated along the path
by determining the blobs that intersect with the ray. (Both
single scattering and multiple scattering are handled.)

Stratiform clouds (with mostly horizontal development)
are rendered by Bouthors et al. [7] (Fig. 6), by account for
single, double, triple and above levels of scattering in addition
to transparency. The effects reproduced by their method are
labeled in Fig. 6, (a) diffuse reflectance, (b) glory, (c) fogbow,
(d) pseudo-specular reflectance, (e) diffuse transmittance, (f)
ground-clouds inter-reflection and (g) forward scattering. An
altered Mie model is proposed for scattering with modified
phase function and extinction parameters. Radiosity accounts
for the light exchange between ground and the cloud.

Fig. 6 Real-time illumination of the stratiform clouds by Bouthors et
al. [7]

Specialized data structures Specific data structures have
also been developed to capture one or more rendering effects
efficiently. Miyazaki et al. [63] consider both the attenuation
in the sunlight and viewing direction by dividing the vol-
ume data into shadow-view slice (SVS) to render the clouds
(Fig. 7). The atmospheric density and the attenuation ratio
are stored as a single texture, which is mapped to the SVS.
In order to obtain the final intensity, the SVSs in the path of
the viewpoint are blended.

Liao et al. [55] propose a simplified method for rendering
dynamic clouds with the help of two new data structures.
The shadow relation table (SRT) is a 2D grid structure that
aids in determining the input illumination for every voxel.
Themetaball lighting texture database (MLTDB) aids in fast
computation of the scattering parameters by maintaining a
database of 32 × 32 projected metaball images with various
densities and viewangles. Like the previousmethods, the first
rendering pass entails illuminating each voxel in the octree,
whereas in the second step, a back-to-front traversal of the
octree is performed. While rendering in the second step, a
billboard with the most suited texture from the MLTDB is
selected for each node.

Bouthors et al. [8] propose an algorithm for interactive,
multiple anisotropic light scattering computation in clouds. It
approximates the light transport between an initial, receiving
point on the flat surface and reaching at any point inside
the volume using the concept of collector area (Fig. 10a).
The collector area is the piece of the surface that receives a
very large percentage of light from the source, which reaches
the current point rendered. It is determined iteratively as a
function of the rendered point and is inspired from the idea of
the most probable paths [75]. The method is implemented on
the GPU using shaders with several orders of Mie scattering
(Fig. 10b).

Umenhoffer and Szirmay-Kalos [97] present a real-time
method based on the particle hierarchies to render dynamic
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Fig. 7 Shadow-view slices and the associated rendering by Miyazaki
et al. in [63]

Fig. 8 Cloudmodeling and rendering generated by [71] with their mul-
tiple anisotropic scattering model

participating media under changing light conditions. A col-
lection of particles determined from a given direction are
grouped together as a block, the image of which replaces the
particles. In the next step, a depth impostor is generated for
each block, following which the particle blocks are rendered
one by one. During this step, separate volume–light interac-
tions with the particles are stored in the textures. Finally, the
blocks are sorted for the viewing direction and rendered in
back to front order in the rendering pass.

Max [58] used a variation of the shadow volume algo-
rithm on segment blocks to calculate a simplistic shadowing
and sunlight scattering effect on the clouds. In [26], Ebert
and Parent combine scanline A-buffer rendering with vol-
ume rendering. Since their work dates to the pre-shader time,
they create theA-buffer bydetermining all fragments for each
pixel which are then used for volume rendering.

Precomputations In order to cope with the high runtime
computational demand while rendering, several approaches
store precomputed illumination components. In Nishita et al.
[71], intensity of the first-order scattering of the sky light at
each voxel is precomputed and stored based on the optical
depth of that voxel from the cloud surface (Fig. 8).High-order
forward, anisotropic scattering of a voxel within the cloud is
captured by considering its form factor to its neighboring
voxels and also stored. This step takes advantage of the fact
that the scattering direction is narrow, and hence, only a few
neighboring voxels influence a given voxel to this end.

Harris and Lastra [39] proposed a cloud shading algo-
rithm for flight simulators wherein the rendering is split into
two stages. The more expensive multiple forward scattering

Fig. 9 a Cone-based regions identified for different illuminations for
per-pixel transparency and b results produced from the storm data, by
Riley et al. in [77]

is approximated in a preprocessing step, and the anisotropic
scattering is done at runtime. The space is assumed to be
filled with particles, and view-oriented textured polygons
(impostors) are dynamically generated for efficient render-
ing. Wang [98] extends this texture splatting on particles to
model about a dozen types of clouds with the help of artis-
tic control. To this end, the particles are textured differently
depending on the target cloud type.

The multiple scattering computation in [11] to render out-
door scenes with clouds and lightning is done in two steps.
Firstly, both the direct and indirect intensities at basic light
source points are precomputed and stored in a grid. Then, at
runtime, the intensities are computed in real time by using the
weighted sum of the basic intensities. The atmospheric scat-
tering effects are precomputed and stored in [21], while an
octree-based LOD provides cloud density to produce light-
ning scattering due to clouds.

The endless cloud animation in [46] is illuminated by sun-
light and skylight with multiple scattering by precomputing,
projecting onto spherical harmonics and storing the optical
depth and transmittance for the basic volume data. The trans-
mittance for each lighted voxel is clustered through sample
points using a binary tree structure. The tree contains the
sample points in the leaf nodes, together with the error and
mean values in the interior nodes.

Rendering of cumulus clouds is accelerated through pre-
computations in [109] by storing quantities like the optical
depth integral, single and multiple scattering in the reference
particle for multiple camera positions and light directions.
This information is utilized at runtime to compute the cloud
lighting without volume ray casting (particle blending is
used). A grid structure is employed to generate the parti-
cles, and for distant particles, a level-of-detail approximation
obtains a coarser representation.

Volumetric Riley et al. [77] provide a method for weather-
field data based on the particle scattering properties of the

123



P. Goswami

constituent fields. The input data are translated to particle
concentration, and volumetric transfer functions assign col-
ors and opacities to these primitives generating a continuous
field. The intensity attenuation or the optical depth inside
the clouds is calculated as a function of the particle extinc-
tion and concentration. In their illumination model, light is
broken into three categories assuming a scattering angle θ

(Fig. 9). The shown central blue line represents the unscat-
tered light. The other regions contributing to the forward
scattering are the central (0 to θ/4) and the peripheral (θ/4
to θ/2) regions, with their respective transparencies. Further,
the cloud is assumed to be composed of water and ice parti-
cles and different phase functions are applied to each.

In their approach, Schpok et al. [87] achieve interactive
rendering rates through slice-based volume rendering done
using both CPU and GPU (shaders). The noise is divided
into several octaves, which are stored as GPU textures.
Transformation matrices corresponding to each octave are
generated on the CPU. The user can tune parameters such
as opacity and sharpness through a UI. Volumetric photon
mapping is employed by Elek et al. [27] for the simulation
of light transport in clouds at interactive rates on the GPU.
Instead of rebuilding the photon map every time, temporal
coherence present in the cloud illumination is exploited by
storing a low resolution grid and upsampling it each frame
by reshooting a much smaller fraction of photons in each
frame. To account for the angular illumination information,
the Henyey–Greenstein function is used.

Duarte and Gomes [24] first create a 3D mesh from the
particles and then apply rasterization-based voxelization to
the mesh, leading to the computation of a distance field and
some noise parameters. These values are illuminated by ray-
marching through the volume density and accounting for
multiple scattering of light in the clouds. The clouds in “Puss
in Boots” [62] are illuminated by dividing them into zones
of first-order scattering (facing the light) and multiple-order
scattering (facing away from the light) zones. An ambient
occlusion pass is also added to account for visibility with the
help of spherical harmonics. Qiu et al. [76] simulate light
scattering in clouds via spherical harmonics and frequency
domain volume rendering (Fig. 10).

Image-inspired Dobashi et al. [12] proposed to solve the
inverse rendering problem which determines the rendering
parameters to display realistic clouds in the synthetic images.
This is done by estimating the parameters from real images of
clouds taking into account the difference between the color
histogramswith that of the synthetic image. The set of param-
eters involved (intensity of sky, sun, etc.) are determinedwith
the help of genetic algorithms. In order to obtain the best val-
ues, several iterations are performed for convergence. While
performing thematch between the synthetic and target image,
a set of images with different rendering parameter settings

Fig. 10 Interactive GPU-based multiple anisotropic scattering in the
clouds by Bouthors et al. [8] a collector area determined as a function
of the point rendered p and b rendered cloud

Fig. 11 Multi-scattered cloud rendering from the radiance-predicting
neural networks [49] method, combining Monte Carlo integration with
the data-driven radiance predictions

are precomputed to reduce the computational time. Both sin-
gle scattering and multiple scattering of light are taken into
account for rendering the clouds.

Kallweit et al. [49] render clouds by using radiance-
predicting neural networks (RPNN) together with Monte
Carlo integration on the GPU (Fig. 11). The learning data
consist of several cloud exemplars that help train on spatial
and directional light distribution. In order to render a new
scene, the descriptors are extracted from the visible points
of the clouds and supplied as input to the trained neural
network. The RPNN predicts the radiance function for the
desired shading configurations. The descriptor is hierarchi-
cal and fed progressively to the neural network to enhance its
ability to learn faster and predict better. The proposedmethod
can achieve effects such as the cloud whiteness in the inner
part, edge-darkening effects and silver lining in agreement
with the reference image, with a few minutes of computa-
tion.

Table 2 compares the above discussed methods based on
their various characteristics. Most of the modern approaches
leverage GPU computational power in the form of shaders
or CUDA, to perform one or more of the illumination sub-
routines. Some of these methods capture self-shadow of the
cloud or the shadow cast by it on the ground. Furthermore,
a number of these algorithms also account for multiple scat-
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Table 2 Summary of the
characteristics of various
rendering methods: if the
rendering method is CPU or
GPU-based, handles single or
multiple scattering and supports
shadowing, modeling method
used (T stands for texture, G for
geometric and I for image, based
on classification in Sect. 2)

Method CPU/GPU Scattering Shadow Modeling Feature

[71]-1996 CPU Multiple – Blobs (G) Lookup table

[15]-2000 CPU Single Ground Noise (T) Shafts

[39]-2001 CPU Multiple Self Particles (G) Impostors

[77]-2003 GPU Multiple – Particles (G) Cone light bands

[38]-2003 GPU Multiple Self Noise (T) Flat 3D texture

[87]-2003 GPU Single Self Noise (T) Procedural

[63]-2004 GPU Single Ground Volume (T) Shadow-View Slice

[21]-2004 GPU Multiple – Particles (G) Diffusion

[55]-2004 GPU Multiple Self Noise (T) SRT, MLTDB

[97]-2005 GPU Multiple Self Particles (G) Hierarchical impostors

[7]-2006 GPU Multiple Ground Noise (T) Radiosity

[8]-2008 GPU Multiple Self Noise (T) Collector area

[27]-2012 GPU Single Self Texture (T) Photon mapping

[12]-2012 GPU Multiple – Noise (T) Inverse rendering parameter

[109]-2014 GPU Multiple Self Particles (G) High performance, precomputed

[49]-2017 GPU Multiple Self Image (I) RDNN

[99]-2018 GPU Single – Noise (T) Procedural

tering (anisotropic in most cases) of light within the cloud
volume to compute the lighting.

A survey on optical models for direct volume rendering
is laid out in Max [59], in which methods are classified
based on phenomena like absorption, emission, scattering
and shadows. Cerezo et al. have surveyed participatingmedia
techniques in [9]. Hufnagel and Held [43] have presented a
survey on cloud lighting and rendering techniques. Ye has
discussed cloud renderingmethods in [104].Abrief overview
of the discussed renderingmethods together with some avail-
able tools and applications is also a part of the course [86].
[42] implements dynamic cloud rendering in the game engine
Frostbite.

4 Animation

In many dynamic scenes, the requirement is not merely to
model the clouds, but also to animate them. Cloud anima-
tion is a complex task, which entails dealing with the parcel
and environment physics and setting the right initial condi-
tions that leading to cloud formation.Whereas in atmospheric
science, the goal is to produce a simulation as close to the
ground reality as possible, in CG, we can benefit from the
fact that the animation has to only appear reasonably realis-
tic. This relaxation helps us design specific solutions that are
both simplified and accelerated. There are two broad types
of methods employed in CG to generate cloud animations:
procedural and physics-based.

4.1 Procedural animation

Procedural methods give the illusion of animating clouds
without the direct use of underlying physics. This is made
possible by modeling the basic behavior of the physics field
through noise, texture or obtaining cues from images, videos
or other sources.

Noise-based Gardner [31] achieved animation of the mod-
eled clouds by varying the modeled mathematical texturing
parameters in textured plane/ellipsoids with time. Ebert and
Parent [26] propose two different methods, surface- and
volume-based for animating the modeled texture gases. The
surface-based animation entails positioning planes at the
scene boundaries with evolving parameters, which provide
transparency and motion to the containing fluid. In order to
animate three-dimensional volume, each point in the fluid
is moved along a set path to generate swirling gases. Sim-
ilarly, Max et al. [60] employ 3D textures to render clouds
which are advected by the wind flow. Sakas andWestermann
[83] present a functional approach for the visual simulation
of cloud and fire where turbulence is generated using time-
varying fractals.

Turbulent theory is applied in conjunction with the spec-
tral analysis Sakas [82] to achieve animation. According to
Reynolds, a turbulent flow can be formulated as a superpo-
sition of two motions, u = Ū + u′, where Ū is the general
translative velocity component and u′ is the random fluctua-
tive movement. In this work, Sakas obtained the large-scale
wind movements to the clouds through Ū and turbulence is
captured through u′. These components are evolved by ani-

123



P. Goswami

mating spectral functions in the frequency domain, and the
presented results demonstrate the technique on clouds aswell
as water vapor in the indoor settings.

Much like with cloud modeling, its evolution is handled
by controlled variation of the density as a function of the
implicit function and time in [25]. In [70], Neyret animates
the procedural textures by advecting them as a fluid. This
method relies on a low-resolution grid fluid simulationwhere
density and texture are advected using the simulation. Sim-
ilar to mip-mapping, the texture is decomposed into several
layers to pick up the layers most suited to the local deforma-
tion. Schpok et al. [87] animate the obtained clouds with a
two-level approach.Whilemacro-level animation (keyframe,
etc.) governs the general direction of the cloudmovement, the
micro-level handles effects like wisps straying away, cloud
appearing or disappearing at the edges through pre-computed
volumetric texture noise (Fig. 14b).

Grudziński and Dȩbowski [36] generate particle-based
clouds with a probabilistic cloud generation function and a
few global variables. The particles are assigned parameters
like velocity, lifespan, maximum height, etc., as they are cre-
ated, and this helps create desired trajectories that resemble
a particular cloud type (stratus, cumulus, etc.). Kusumoto et
al. [54] animate cumulus clouds on multiple prespecified tar-
get fields for keyframe animation. The simulation contains
controlled heat sources to adjust the amount of heat gener-
ated on the ground, thereby influencing the buoyancy forces.
The effect of wind is incorporated by shifting all the grid
velocities by a user-specified wind velocity.

The procedurally modeled cloudscapes by Webank et al.
[99] are also animated procedurally through the process of
morphing between two selected models or density fields
(Fig. 12). An optimal transport function helps to establish
correspondences between the best pair matches in the source
and target cloudscapes. The animated primitives are created
from the interpolation of the identified pairs such that they
follow the shortest trajectory.

Image-based The cues for procedural animation can also be
extracted from images or videos. The motivation to convert
texture to particles in [103] is to update the fluid mechan-
ics properties of the regions through these particles, while
animating Jupiter’s atmosphere. The initial vorticity field on
particles is seeded using a large black and white image of
the planet with hand-marked vortex features, approximating
the contribution of each vortex in the surrounding elliptical
region. Thereafter, the particles are advected in two dimen-
sions based on the barotropic model [41].

Dobashi et al. [17,18] animate satellite clouds based on
user input flows of Bezier curves. The user input is estimated
by observing a sequence of satellite images, and the mod-
eled metaballs are advected based on this flow vector. The
cloud motion accounts for moving, appearing and disappear-

Fig. 12 A wide variety of clouds are modeled and animated procedu-
rally by Webank et al. [99]

ing clouds and can produce 3D animated visualization of the
clouds as seen from the space. In [105], the growth direction
of the turrets in convective clouds is formulated with the help
of the captured clouds videos.

Jhou and Cheng [47] animate clouds present in a given
image through automatic motion creation. Two parameters,
cloudiness and cloud structure, are extracted as cues from
the image and a content-aware wind field incorporatingmean
flow, and turbulence is generated to synthesize the cloud flow.
In the animation obtained, however, the maximum variation
between any two frames is limited.

Rule-based Dobashi et al. [15,16] for thefirst time employed
cellular automata for the cloud growth and extinction. The
simulation space is divided into a three-dimensional grid and
each grid cell stores physical variables like humidity (hum),
cloud (cld) and phase transition (act) (allowed state 0 or 1
for each variable). Given the simulation state at time t , these
variables are evolved for the next time step t+1 by employing
simple Boolean transition rules on each grid cell. Their sim-
ulation and rendering method is combined in [5] to produce
real-time results. The method is capable of creating clouds
advected by the wind, and empty regions with extinguished
clouds are reinitialized with new values. [15] additionally
employs ellipsoids to control these physical properties and
the cloud shapes and sizes (Fig. 13b).

4.2 Physics-based simulation

Stam [90] came up with the first unconditionally stable, grid-
based model to produce complex fluid-like flows while still
taking large time steps. Thiswork has been the basis of a large
number of grid-based fluid simulations in the last 2 decades,
including for the clouds. Additionally, the scientific literature
in meteorology and atmospheric science [84,85,89] has been
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Fig. 13 Cellular automata by Dobashi et al. [15] to produce cloud
animation a billboard projection, and b final rendering together with
the light shafts

a key reference to the researchers working with clouds in the
field of CG. In the following, we first touch upon the basics
of the fluid and cloud physics and then review the relevant
methods.

4.2.1 Fluid physics

Grid-based fluid solver The grid solver by Stam is based on
the Navier–Stokes equation and evolution of the involved
quantities in time (mass and momentum conservation,
respectively, given by the following equations).

∇ · u = 0 (2)
∂(u)

∂(t)
= −(u · ∇)u − 1

ρ
∇ p + ν∇2u + f (3)

Here, u represents the velocity field of the fluid, ν kine-
matic viscosity, ρ density, p pressure and f any external
force. Given the state of simulation at time t , the state at t+1
is calculated by executing four steps. In the first step, external
forces f like gravity are added to the field. The second step
accounts for the advection of the fluid on velocity (−u ·∇)u.
In the third step, the effect of the viscosity is accounted using
the diffusion term ν∇2u. The fourth step (projection) makes
the field divergence free. Finally, the advection step is carried
out, and to this end, each point of the field is traced back-
ward in the time using a virtual particle. This step ensures
unconditional stability with large time steps. Though the said
model demonstrates simulationof smoke andwasnot tailored
to work for clouds in its original form, it formed the basis
of several semi-Lagrangian cloud simulations later. Further-
more, with some modifications these equations can also be
applied for particle-based fluid simulations.

Cloud physics Cloud dynamics necessitates adding addi-
tional physics to a simple fluid solver that plays a key role
in generating clouds. Air is a mixture of variety of gases,
predominantly nitrogen (78%) and oxygen (21%) and a very
small percentage of water vapor among other components.

Hence, it obeys laws applicable to all the gases as given by
the ideal gas equation. In context of the cloud physics, a com-
monly used term is parcel which refers to an imaginary body
of air, to which the relevant thermodynamic quantities can
be imparted. Some of the relevant concepts involved in the
parcel physics are introduced below.

Humidity Absolute humidity is the concentration of water
vapor in the air and is measured by the mass of water vapor
divided by the mass of dry air in a volume of air at a given
temperature. Relative humidity is the ratio of the current
absolute humidity to the highest possible maximum humid-
ity. At 100% relative humidity, the air is saturated and can
no longer hold the water vapor, thus creating the possibility
of rain. It is pertinent to observe that the amount of water
vapor air can hold at any time dependent on the temperature
of air. The saturatedmixing ratio (ωs) is the threshold beyond
which the excess vapor present in the air condenses into liq-
uid water ωs = 621.97 es

P−es
, where es is the saturated vapor

pressure and P is the atmospheric pressure.

Temperature Temperature profile of the atmosphere and the
ground where the air parcels originate are important factors
governing the cloud formation. The atmospheric scientists
introduced additional notions of temperature for the sake

of convenience. The potential temperature Θ = T ( P0
P )

0.286

accounts for the pressure variation and the virtual temper-
ature Tv = T (1 + 0.61ω) for the moisture variation of
temperature, respectively. The virtual potential temperature
combines both these effects Θv = Θ(1 + 0.61ω). It is
interesting to note that the buoyant force which leads to
vertical movement of the parcels is expressed as fbouy ≈
(Θ

parcel
v −Θair

v )

Θair
v

g per unit mass. The temperature lapse rate gives

the rate of temperature change with the altitude. It has been
observed that Θv first drops with height and then increases,
due to which the parcels (water vapor) never leave the atmo-
sphere.

Thermodynamics The water vapor releases heat upon con-
densation to liquid water (Lc, latent heat of condensation per
unit mass) and absorbs heat during evaporation (Le, latent
heat of evaporation per unit mass). Specific heat of the air
(Cp) is the amount of energy required to raise its temper-
ature by one degree celsius. These physical quantities are
required to compute the evaporation/condensation of water
content inside the parcel and the change in its temperature
thereof.

We refer the reader to [34,37] for more detailed exposition
to the cloud physics.
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Fig. 14 a A frame of the GPU-based cloud simulation and rendering
achieved by Harris et al. [38] and b developing cumulus cloud modeled
with two-level modeling and rendering in Schpok et al. [87]

4.3 Methods

Based on the underlyingmodel,most of the physicalmethods
simulating clouds can be classified as either grid-based or
particle-based.

Grid-based Grid-based methods and their variations were
for long the only choice for simulating the micro-level cloud
physics. A grid-based solver is proposed by Overby et al. in
[72] for the interactive cloud simulation. Harris et al. [38]
(Fig. 14a) implemented an interactive cloud simulation on
the NVIDIA programmable graphics hardware. A 3D grid-
based simulation is structured as layers of 2D textures for
easy computation on the GPU, allowing gradual evolution of
clouds in calm skies. Their semi-Lagrangian solver incorpo-
rates the aforementioned cloud physics and also accounts for
the vorticity confinement.

Miyazaki et al. [67] used coupled map lattice (CML) to
model and simulate various types of clouds based on the
atmospheric fluid dynamics. CML is an extension of the
cellular automata and uses a 3D grid and the traditional
Navier–Stokes equations for simulation. The user specifies
the type of cloud desired together with the initial and bound-
ary conditions, grid resolution and other variables. All the
variables are stored in the grid cells and are implemented
throughgrid-based operations. Further, for generating certain
types of clouds Bénard convection is additionally employed.
Qiu et al. [76] also model clouds using CML. Miyazaki
et al. in [64] improve their existing technique by a more
direct inclusion of the heat equations (heat advection) and the
phase transition in the grid solver. Their model also accounts
for numerical dissipation by adding vorticity confinement,
which is generated as a function of the velocity field.

Mizuno et al. [65] model volcanic clouds using modified
physical laws that assume these clouds to be composed of
two materials, magma and air. In this formulation, the evolu-
tion of the velocity field is given by Navier–Stokes equation,
leading to the evolution of the mass of magma and entrained
air separately. Mizuno et al. [66] simulate volcanic clouds by

Fig. 15 Feedback control method based on the user specified contour
and computational fluid dynamics, to simulate desired shapes of the
cumuliform clouds by Dobashi et al. [14]

obtaining the pressure formulation in Navier–Stokes equa-
tions from coupled map lattice (CML) method. As against
defining the mass evolution of matter over time, [65,66] for-
mulate volcanic cloud density evolution as an equation.

In [20], Dobashi and Yamamoto develop a framework for
animating clouds surrounding the earth as seen from space.
The motion of clouds is controlled by physics based not just
on the Navier–Stokes equations, but also on the cloud ther-
modynamics and theCoriolis force. The input to their physics
is a pressure map supplied by the user, specifying regions of
high and low atmospheric pressure on the planet’s surface.

Dobashi et al. [14] present a method for guided cumuli-
form cloud formation, allowing the user to specify the desired
cloud shape which is achieved by the underlying simulation
(Fig. 15). Their physics is based on the existing approach of
parcels rising, cooling and phase transition from vapor to liq-
uid water together the aforementioned grid-based equations.
The cloud shape is guided by projecting the user-specified
contour in the simulation domain and determining its dif-
ference from the current cloud formation. This difference in
addition to an artificial geometric potential force is fed back
into the system to influence the parameters that control cloud
growth.

In [46], Iwasaki et al. produce endless cloud animation
from a limited volume data, inspired by the concept of
creating an endless video from a limited input video. At
runtime, the animation is created by stochastically select-
ing two similar volumes (one being the current frame) and
cross-dissolving them. Stam and Fiume [91] have presented
a model for animating smoke, fire and other gaseous phe-
nomena with the help of the advection–diffusion equation
on blobs. Each blob is characterized by its temperature, den-
sity and velocity in the simulation domain wherein the blobs
change in size and shape (termed as “blob warping” by the
authors) and is advected as a result of the diffusion process.

Particle-based Neyret [68] is one of the earliest works to
obtain a simulation of convective clouds based on high-level
physics variables. The parcels are modeled in 2D as par-
ticles (bubbles), which rise up due to the buoyancy force
and become visible upon condensation. A bubble undergoes
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mixing dynamics with the surrounding atmosphere and its
surrounding bubbles and also exerts attractive force toward
these neighbors. Bubbles can be dynamically created or
destroyed with the cloud evolution. Furthermore, vortices
attached to the bubbles are responsible for enhancing small-
scale shape and movement features on the clouds.

A particle-based cloud simulation on the GPU is proposed
by Barbosa et al. in [2]. The particle physics is handled using
position-based dynamics [56] and the cloud dynamics lever-
ages the principles introduced in Sect. 4.2.1. The cloud detail
is achieved by using adaptive particles, which can be merged
or split in regions where clouds disappear or more details
emerge, respectively. Additionally, the scalar fields such as
temperature are smoothened out to reduce the value differ-
ence between the neighboring particles. Elhaddad et al. [28]
also simulate clouds using particles but by approximating the
force between these particles based on the Lennard–James
potential.

Goswami and Neyret [33,34] proposed a hybrid, physics-
driven procedural model for real-time cumulus cloud ani-
mation and rendering on the landscape scale (Fig. 16a).
The atmosphere is represented implicitly through curves that
provide temperature and humidity values as a function of
the altitude. The cost of physics is significantly reduced by
carrying out it at the macro-level, on a few large parcels
on the CPU itself. The parcel–parcel interaction is handled
through smoothed particle hydrodynamics (SPH) forces, and
a drag force accounts for the friction with the surround-
ing atmosphere. The parcels also exchange mass with the
implicit environment owing to the processes of entrainment
and detrainment. The method also allows the user to experi-
ment on the atmospheric profile and select dewpoint altitude,
saturation ratio, etc.

The original idea of hybrid macro-physics and micro-
amplification is refined in [32] by incorporating a cloud
map for governing cloud shapes and coverage over the land-
scape (Fig. 16b). The physics computation is limited to a few
parcels within a unit octree. However, instead of generating
hypertexture directly inside each of the parcels, the parcel
physics attributes are projected onto a texture. In addition,
a cloud map containing a precomputed texture of noise is
employed. Both these textures are combined at runtime to
generate the animated cloud cover through volume ray cast-
ing in the shader. The reported benefits of this approach are
higher frame rates, more realistic cloud shapes and better
span, especially toward the horizon.

Duarte andGomes [24] simulate real-time cumulus clouds
based on the dataSkewT/LogP diagrams (Fig. 17b). Instead
of determining the required physical parameters or set-
ting initial conditions for the simulation, this information is
obtained from sounding data. The data provide the buoyant
force to solve the equation ofmotion of the air parcelswithout
solving differential equations. Authors [24,32,34] follow the

Fig. 16 a Hybrid physics inspired procedural animation and rendering
in [34] and b cloudmap replacing direct volume amplification in parcels
in [32] (overall application running at 200 fps)

Fig. 17 a High-performance rendering of cumulus clouds by Yusov
[109] achieved with the use of precomputed reference particle and b
cloud systems generated from sounding data by [24]

evolution of the parcels from their birth to death. Whereas in
[32,34], most of this process happens as a natural part of the
simulation, Duarte and Gomes [24] ensure it through explicit
steps.

Dobashi et al. have reviewed their various simulation and
rendering approaches in [13]. One or more of the cloud
modeling, rendering and simulations aspects is laid out in
[51,52,79]. Table 3 summarizes the above discussed anima-
tion methods on their various features.

5 Performance

In this section, we review some of the above stated methods
on their performance. Whereas the hardware capability in
the early days did not allow for high-performance computa-
tions, in the recent years,more dedicated techniques targeting
interactive simulation and rendering have been designed.

1980–2004 With the cellular automata method, Dobashi et
al. [16] reported a computation time of 0.19 s per time step
for simulation on SGI Indigo2 R10000 195 MHz. The CML
system in [67] allowed the user to model the clouds inter-
actively but is intended to produce the images and not for
real-time performance. For a grid size of 250 × 250 × 5,
2 s simulation and 30 s rendering time are reported on Pen-
tium III. The rendering speedup in Wang [98] is given to be
100× for their improved model over [39] by adjusting the
transparency of the sprites. For a dense cloud coverage, their
method takes 10 ms on a 733 MHz machine.

123



P. Goswami

Table 3 Summary of the
characteristics of various
animation methods: nature of
the animation technique, if the
animation is executed on
CPU/GPU and the prominent
feature of the method

Method Animation CPU/GPU Feature

[82]-1993 Procedural CPU Spectral synthesis

[90]-1999 Grid-based CPU Unconditionally stable

[15]-2000 Procedural CPU Cellular automata

[70]-2003 Procedural CPU Procedural textures

[38]-2003 Grid-based GPU GPU textures, vorticity confinement

[65]-2003 Grid-based CPU Coupled map lattice, volcanic clouds

[14]-2008 Grid-based CPU Cumuliform clouds, feedback control

[54]-2012 Grid-based CPU Keyframe control, target field

[2]-2015 Particle-based GPU Position-based fluid

[28]-2016 Particle-based CPU Lennard–James potential

[34]-2017 Particle-based CPU/GPU Macro-physics, micro-rendering

[24]-2017 Particle-based CPU SkewT/LogP diagrams

[99]-2018 Procedural CPU Key-frame interpolation, morphing

[32]-2019 Particle-based CPU/GPU Cloud map, macro-physics

Table 4 Various presented methods (2012–2019) compared for their modeling, rendering and animation times (Tm , Tr and Ta , respectively)

Method Model size (g/p) Tm Tr Ta Feature

[12]-2012 200 × 200 × 200/– – 30 s – Image-based (GPU)

[107]-2014 100 × 100 × 200/80 K 5 min – – Image-based (CPU)

[109]-2014 –/10 K – 36 ms – Precomputed lighting (GPU)

[2]-2015 –/840 K – – 1219 ms Position-based fluids (GPU)

[28]-2016 –/49K – 1173 ms – Lennard–James potential (CPU)

[34]-2017 –/82 – 42 ms/fr 4.3 ms/fr Macro-physics (CPU), micro-rendering (GPU)

[24]-2017 –/250K – – 44 ms/fr SkewT/LogP diagram (CPU)

[49]-2017 1200 × 1200 × 1200/– – 9 min – Deep scattering, RPNN (GPU)

[99]-2018 – – 10 s/fr 30 min Key-frame interpolation, morphing (GPU)

[32]-2019 –/12 – 3.3 ms/fr 1.6 ms/fr Cloud map, macro-physics

Some of the times are listed per frame (/fr). Model size is given in the sampling grid resolution and/or the particle count (g/p) used

Several of the approaches developed from 2003 onward
utilized the shaders on GPU for the rendering purpose. Riley
et al. [77] implement their visualization system on an Nvidia
GeForce FX 5800 Ultra with Cg and achieve a frame rate
of about 1–5 fps on the selected dataset. Harris et al. [38]
on an Nvidia GeForce FX Ultra card for the grid size 643

update physics 1–5 times each frame and with the forward
scattering can achieve a frame rate of around 30 fps for some
cases. The application without physics by Schpok et al. [87]
can run at a frame rates between 5 and 30 fps on a Pentium
IV processor on an Nvidia GeForce4 Ti4600. The dynamic
cloud rendering with the specialized data structures (scatter-
ing, self-shadowing and transparency) in [55] is capable of
running at more than 30 fps for selected parameters setting
on a 2.2 GHz AMDAthlon machine with an Nvidia GeForce
5600 graphics card.

2005–2011 The implementation of the stratiform clouds
in [7] with shaders is done on a PCwith anNvidiaQuadro FX

1400. Together with the multiple anisotropic scattering and
other captured effects, they achieve about 18 fps. The com-
putation time to animate satellite clouds in [20] took about
0.1 s for each time step on a desktop PC with a Pentium IV
3.6 GHz and a grid size 160 × 80 × 4. The collector area
algorithm by [8] is tested on a Pentium 4 at 1.86 GHz with
an Nvidia 8800 GTS graphics board for multiple anisotropic
scattering. For a cumulus cloud with 5K triangles and 5123

hypertexture, a frame rate of 2 per second is reported allow-
ing interactive rendering.

The cellular automata simulation in [102] is implemented
on an Nvidia GeForce 8600 GTX using Cg, and for a sim-
ulation volume of 64 × 64 × 64, a maximum frame rate of
21.3(19.6) is achieved without(with) illumination. Dobashi
et al. [22] use a PCwith an Intel Core 2Quad ExtremeQ6800
(2.93 GHz) and an Nvidia GeForce 8800 Ultra for visu-
alization of the earth-scale clouds. The original cloud data
dimensions 16,384×8192×32 occupied 4 GBmemory and
needed out-of-core processing. The rendering rates achieved
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are 5–30 fps. The endless cloud animation and associated
rendering [46] are tested on a PCwith an Intel Core i7 X-980
CPU and anNvidia GeForce GTX (implemented on CUDA).
For a volume size of 1282 × 64 voxels, the frame rates of up
to 26 fps are reported. During this period, some techniques
also leveraged CUDA apart from the shaders and benefitted
from the rapidly growing parallel computation capabilities
of the GPU.

2012–2019 In the problem of estimating rendering parame-
ters from the image, Dobashi [12] reports that after a time of
10–20 min of preprocessing, the optimal parameter estima-
tion takes less than a minute. Yuan et al. [107] generate the
cloud structure from an input image on an Intel(R) Core(TM)
i5-2300CPU2.80GHz, 4GBofRAMin about 5min (80,000
sampling particles produced). On an Intel Core i7 CPU and
an Nvidia GeForce GTX 680 GPU, precomputed lighting of
cumulus clouds in [109] took about 15 ms to render a high
quality image (Fig. 17a).

Most of the physics-based, real-time cloud simulation
methodswere developed during this period. Cloud animation
based on position based fluids [2] on an Intel Core i7-4770k
and anNvidiaGeForceGTX780TiGPU took around 736ms
for a single iteration in simulation for 540Kparticles,with the
adaptive particle merging and splitting feature turned on. On
an Intel i7-4790K CPU, Lennard–Jonnes force approxima-
tion [28] took 450 ms to compute a single frame consisting
of 500 particles per cell. Goswami and Neyret [34] report
achieving a frame rate of 21 per seconds for up to 85 physics
parcels (including simulation and rendering) on an Intel Core
3.4 GHzmachine and an Nvidia GeForce GTX 970GPU. On
a similarmachine, [32] reaches a peakperformanceof 200 fps
supporting both physics and visualization using cloud maps.
Duarte and Gomes [24] report consuming about 52 ms to
process single cloud dynamic step of the sounding data with
the wind when using 250 K particles on the CPU.

The procedural cloudscapes [99] on an Intel Core i7 with
an Nvidia GTX 970 took 10 s to render a single frame after
the additional computation time of cloud shapes and mor-
phing process. Another interesting development during this
period is the use of artificial intelligence for cloud genera-
tion [49]. On Nvidia Titan, a time range of few seconds to
few minutes is reported to synthesize images incorporating
high-order scattering inspired by the original cloud images.
In Table 4, modeling, rendering and animation times for the
various techniques published during 2012–2019 are listed.

6 Conclusion

A variety of cloud shapes based on various requirements can
be obtained through various cloud modeling approaches in
CG. Apart from the shapes and volumes, images have served

as a useful inspiration to generate rich cloud structures. Fur-
thermore, this step can also be delegated to technical artists,
for example, as done in the movie production. Cloud render-
ing on the other hand is a more complex task that involves
interaction of the light from the sun, sky and the ground with
the cloud particles to reproduce the right effect. Clouds dis-
play a great deal of forward scattering of the incident light,
whichmakes capturing light transport a volumetric and view-
dependent phenomena. It is impossible and impractical to
track all the light paths. Hence, all the methods optimize
the light transport by limiting the number of light bounces
through the cloud and also by designing the right phase
functions and making other suitable approximations. The
rendering quality and efficiency have been the primary focus
of a bulk of the developed research methods on this front.
To this end, approaches have been designed that leverage
GPU computational power, preprocessing and specialized
data structures.

Various clouds differ in their appearance and have distinct
features (silver lining, lit/unlit side, fogbow) that need special
treatment. Some techniques have worked toward reproduc-
ing these special effects. More recently, another emerging
trend is the use of the artificial intelligence to aid in ren-
dering computations. More methods are taking advantage of
the available information in images and videos to model and
render clouds. Machine learning methods can obtain clues
from images that can help identify the desired parameters
for realistic cloud rendering and to some extent are capable
of automating this task.

The simulationmethods in the computational fluiddynam-
ics are computationally intensive and carry minute details,
which are often unnecessary in CG. In the earlier work, due
to the limitation of limited hardware memory, manymethods
could simulate only limited volumes of clouds. This is fur-
ther exacerbated by the fact that even though most of the sky
is filled with the invisible air and nearly no clouds, it needs to
bemodeled for the simulation. This created a bottleneck both
in terms of memory and time efficiency. The use of adaptive
grids can partly solve this problem [93]. Eulerian methods
also have some other issues like numerical dissipation, res-
olution, etc. Efforts have also been made to design purely
procedural approaches that can convey the look of animated
clouds without physics computations; the application of such
approaches, however, has been limited.

To cope with this, researchers have looked into alter-
nate techniques to simulate the cloud physics. This includes
particle-based methods, hybrid physics-driven procedural
and sounding data-based approaches. While the grid-based
approaches have traditionally been more common and a nat-
ural choice to simulate the clouds, recently, several methods
have successfully demonstrated the strength of particle-based
approaches too. However, most simulations still need to set
the right initial conditions, state of the atmosphere, bound-
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ary regions, etc. Recently, methods have been designed that
can achieve interactive frame rates on the GPU while simu-
lating and rendering clouds over the landscape. The existing
methods can further explore the possibility of using artificial
intelligence to animate clouds, which could be a promising
direction for future research.
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