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ABSTRACT Routing is a complex and critical stage in the physical design of Very Large Scale Integration
(VLSI), minimizing interconnect length and delay to optimize overall chip performance. With the rapid
development of modern technology, VLSI routing faces enormous challenges such as large delay, high
congestion, and high-power consumption. As a rising optimization method, Swarm Intelligence (SI) inspired
from collective intelligence behaviors through cooperation or interaction with the environment provides
effectiveness and robustness for solving NP-hard problems. Many researchers have consequently used SI
techniques to solve routing-related problems in VLSI. This paper reviews the application of several SI
techniques to the VLSI routing filed. Firstly, five commonly used SI techniques and related models, and
three classic routing problems are described: Steiner tree construction, global routing and detailed routing.
Then an overview of the current state of this field is given according to the above categories, and the survey
offers informative discussions from five aspects: 1) Steiner minimum tree construction; 2) wirelength-driven
routing; 3) obstacle-avoiding routing; 4) timing-driven routing; 5) power-driven routing. Finally, under
three new technology models: X-architecture, multiple dynamic supply voltage and via-pillar, the future
development trends are pointed as follows: 1) suggesting suitable SI techniques to specific routing problems
for advanced technology models; 2) exploring new and available SI techniques that have not yet been applied
to VLSI routing.

INDEX TERMS Particle swarm optimization, swarm intelligence, routing, very large scale integration,
Steiner tree construction.
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I. INTRODUCTION
Very Large Scale Integration (VLSI) is a process of form-
ing an Integrated Circuit (IC) by incorporating thousands of
transistors into a single chip [1]. As integration continues to
increase, more and more features, even a complete system
can be integrated into a single chip. As the pillar of infor-
mation industry, the design and manufacturing of VLSI are
playing an increasingly important role in driving economic
development, deepening industrial structure and lifestyle
changes.

Physical design is the most time-consuming step in the
design process of IC, and it is also one of the most important
and active research field in VLSI computer-aided design
technology. Due to its complexity, the whole process of
physical design is often divided into partition, floorplan-
ning, placement and routing. Routing plays a key role in
VLSI physical design as it determines the specific shape and
layout of interconnect, impacting performance, power and
manufacturability, which is traditionally divided into the two
steps of global and detailed routing. Global routing needs to
connect all nets with all capacity constraints satisfied. While
detailed routing takes a global routing solution with a small
number of capacity violations (overflows), or none at all.
And under the premise of ensuring spacing constraints and
more sophisticated design rules, detailed routing completes
the assignment of wires within the routing area.

With the rapid development of IC, these characteristics
are presented: the feature size is getting smaller and smaller,
the chip area is getting larger and larger, the power sup-
ply voltage is getting lower and lower, and the number of
routing metal layers is also increasing. Traditional routing
algorithms, which operate in isolated layout regions-channels
or switch-boxes, are usually assumed to be routed on the
premise of a small number of metal layers, making it dif-
ficult to accommodate more metal layers. Gradually, over-
the-cell routing with six or multi-layer routing lead to the
adoption of similar graph-theoretical techniques in global and
detailed routing, perhaps with different layouts, resource and

delay models [2]. The routing algorithms require a better
balance between wirelength minimization and congestion.
In general, congestion is optimized by considering constraints
such as obstacles, number of vias, and capacitance. However,
the continuous reduction of process size and the increase of
integration complexity make traditional routing algorithms
unable to perform such multi-objective tasks well, and the
design of routing algorithms faces new challenges.

Swarm Intelligence (SI) is an important category of opti-
mization technique, which is inspired from simple behav-
iors and self-organizing interaction among agents like ant
colonies foraging, bird flocking, animal herding, bacterial
growth, honey bees, fish schooling, and so on [3]. Each
SI algorithm has its own unique advantages. The specific
behaviors of these animals in solving problems have different
help for searching optimal solutions, so the performance of
each SI algorithm is different for different problems. But
these SI algorithms have one thing in common, that is,
each of them has several agents working simultaneously.
And experience learning or information sharing or compe-
tition among individuals can enable swarm to grow rapidly,
improving search efficiency and precision. Therefore, many
researchers have started applying various SI algorithms with
great promise because of their high computational effi-
ciency, reliability, scalability, self-organizing, longevity and
low-cost [4]. In recent years, SI techniques have been widely
used on many practical real-world problems in the fields
of scheduling [5], production [6], facility control [7], [8],
transportation [9] and so on.

The survey has the following four main objectives. First,
we give an introduction about key concepts in VLSI routing,
such as Minimum Spanning Tree (MST), Steiner tree and
related routing issues including global and detailed routing.
Second, the applications of some SI techniques in routing
problems are listed to provide an overview of the current
state of this hot field. Thirdly, we investigate and research
some advanced processes, and give a discussion about the
construction of routing models and evaluation models that
are suitable for such processes. The final important goal is
to identify future trends and research directions to better
guide subsequent research efforts. This study discussed the
contributions which were published in the relevant journals,
conference proceedings and theses.

The rest of the paper is organized as follows. The core def-
initions and related concepts of SI techniques and VLSI rout-
ing issues are respectively presented in Sections II and III,
so that they are easily linked to the rest of the research
in this paper. Then, Section IV focuses on the investigated
routing problems using the five SI algorithms to present
a current state of the art. Section V provides a discussion
of related issues, including multi-layer routing based on
X-architecture, global routing in a Multiple Dynamic Sup-
ply Voltage (MDSV) chip design environment, and routing
problems under the via-pillar process. Section VI clarifies the
future trends and opportunities under each type of problems,
while Section VII is to make a conclusion for this paper.
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TABLE 1. Overview of different types of SI technique.

II. SWARM INTELLIGENCE TECHNIQUES
A system in which unintelligent entities exhibit collective
intelligence behavior through cooperation or interaction with
the environment is called Swarm Intelligence, having the
characteristics of natural distribution and self-organizing
characteristics [10]. It can show obvious advantages without
the premise of centralized control and providing a global
model. Inspired by nature and biology, SI techniques obtain
collective intelligence behaviors through two fundamental
concepts, self-organization and division of labor, and are
widely used in optimization problems. Many heuristic opti-
mization algorithms are developed on the basis of simulating
the behavior of different biological populations.

This section introduces the basic principles and math-
ematical models of five SI algorithms commonly used in

VLSI routing problems: Ant Colony Optimization (ACO),
Particle Swarm Optimization (PSO), Differential Evolution
(DE), Artificial Bee Colony (ABC), Firefly Algorithm (FA).
Table 1 outlines several important characteristics of these
techniques.

A. ACO
1) INSPIRATION AND BASIC IDEAS OF ACO
In the 1990’s, ACO was introduced as a nature-inspired
method for the solution of various combinatorial optimization
problems [11]. The ACO algorithm is inspired by the feeding
behavior of real ant colonies in nature. When looking for
food, the ants will randomly explore the area near the nest.
If an ant finds a source of food, it will evaluate the food
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and brings some food back to the nest, leaving a pheromone
along the way to guide other ants to find the food source. And
the concentration of pheromones may depend on the quantity
and quality of the food. Then the pheromone will gradually
evaporate. If two ants find the same food at the same time
and take different routes to return to the nest, the pheromone
smell on the more complicated path will be lighter, and the
ant colony will tend to another route closer to find food. Thus,
the probability of selecting the path of the ant from the nest is
proportional to the concentration of the pheromone on each
path, and each passing ant will leave a pheromone on the way
to achieve communication between the individuals, forming
a positive feedback phenomenon [16]. The diversity of ant
colonies and the characteristics of positive feedback make the
ACO algorithm both innovative and learning.

2) MATHEMATICAL REPRESENTATION OF ACO
The feasible solution of the problem to be optimized is rep-
resented by the ant’s walking path, and all the paths of the
whole ant colony constitute the solution space of the problem.
Artificial ants construct solutions from sequences of solution
components taken from a finite set of m available solution
components C = {cij}. And a solution construction starts
with an empty partial solution sP = ∅. Then, at each step,
the current partial solution sP is extended by adding a feasible
solution component from the set N (sP) ∈ C\sP, which is
done probabilistically as represented in Eq. (1) [16].

p(cij
∣∣∣sP ) = ταij · η(cij)

β∑
cil∈N (sP) τ

α
il · η(cil)

β
, ∀cij ∈ N (sP) (1)

where ταij is the pheromone value associated with compo-
nent cij, and η(·) is a weighting function that assigns a heuris-
tic value to each feasible solution component cij ∈ N (sP)
at each step. α and β are positive parameters determining
the relation between pheromone information and heuristic
information.

The pheromone in Eq. (1) through the following
pheromone evaporation process to increase the pheromone
values associated with good or promising solutions, and
decrease those that are associated with bad ones [17].

τij←

{
(1− ρ)τij + ρ1τ, if τij ∈ sch
(1− ρ)τij, otherwise

(2)

where ρ ∈ (0, 1] is the evaporation rate. Different versions of
ACO algorithms update pheromones in different ways.

B. PSO
1) INSPIRATION AND BASIC IDEAS OF PSO
PSO was first proposed by Kennedy and Eberhart
in 1995 [12]. Its main idea is derived from the study of birds
clustering behavior, using the characteristics of bird popu-
lation attracted by habitat to guide human decision-making
process. At the beginning, the flock flies in the air in no
specific direction until one bird finds its habitat. Trapped by

the habitat, other companions will be affected by neighbor-
ing partners and habitats, and gradually fly to the habitat.
In this process, two kinds of crucial information will be fully
utilized, namely the experience from the bird itself and its
neighboring partners. In the PSO algorithm, each solution
of the optimization problem, called ‘‘particle’’, is regarded
as a bird in the search space. All particles correspond to all
possible solutions in the solution space. Each particle has no
weight and volume, and its fitness value is determined by
the objective function. The speed of a particle determines the
direction and distance of its flight. And the particle completes
the search in the solution space by learning form its own
experience and the optimal particle in the group. In recent
years, many scholars have carried out related research on PSO
due to its simple calculation, easy implementation and low
control parameters.

2) MATHEMATICAL REPRESENTATION OF PSO
In the PSO algorithm, particles dynamically adjust their posi-
tion information by learning their best individual position and
the global best position in the swarm. Consider a minimiza-
tion problem with D-dimensional search space, assuming
that the population size of is M , and the speed and position
update formulas of the Standard Particle SwarmOptimization
(SPSO) [18] are as follows:

V t+1
ij = ω · V t

ij + c1 · r1 · (P
t
ij − X

t
ij)+ c2 · r2 · (G

t
j − X

t
ij)

(3)

X t+1ij = V t+1
ij + X

t
ij (4)

where 1 ≤ i ≤ M , 1 ≤ j ≤ D. In Eq. (3), ω is the inertia
weight to better balance the exploration and exploitation of
the algorithm. c1 and c2 are acceleration coefficients, which
respectively adjust the step size of the particle flying to its per-
sonal best position and the global best position. r1 and r2 are
mutually independent random numbers uniformly distributed
in the interval (0,1). Ptij and G

t
j are the best position of the

particle i and the global optimal position of the population
respectively, satisfying the following formula:

Pti =

{
X ti , if f (X ti ) < f (Pti )
Pt−1i , if f (X ti ) ≥ f (P

t
i )

(5)

Gt = Ptg, g = arg min
1≤i≤M

[f (Pti )] (6)

In 1999, Clerc and Kennedy introduced constriction coef-
ficient [19] in the evolution equation, relaxed the speed limit,
and thus improved the convergence speed of the algorithm.
The speed update formula is as follows:

V t+1
ij = χ · (V t

ij + ϕ1r1(P
t
ij − X

t
ij)+ ϕ2r2(G

t
j − X

t
ij)) (7)

where ϕ1 and ϕ2 are acceleration coefficients, and χ is con-
striction coefficient satisfying:

χ =
2

[2− ϕ −
√
ϕ2 − 4ϕ]

, ϕ = ϕ1 + ϕ2, ϕ > 4

However, some dimensions that are close to the opti-
mal solution are likely to be far from the optimal solution
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although the particle position is improved after updating.
Therefore, a kind of Cooperative Particle Swarm Optimiza-
tion (CPSO) [20] is proposed to solve this problem. CPSO
divides the dimensions of particles into several groups and
each group is optimized with a single particle swarm. Then
calculate the fitness value after combining the dimensions.
Finally, the corresponding update is performed according to
the update rules of the SPSO algorithm.

In order to solve the problem that PSO is easily trapped into
local optimal when dealing with complex multi-peak prob-
lems, Liang et al. [21] proposed Comprehensive Learning
PSO (CLPSO), in which particles have more learning objects
and thus have more potential flight space.

C. DE
1) INSPIRATION AND BASIC IDEAS OF DE
The DE was proposed by Storn and Price on the basis of evo-
lutionary ideas such as Genetic Algorithm (GA) in 1997 [13].
The essence is a multi-objective (continuous variables) evolu-
tionary algorithm. And it is used for solving the overall opti-
mal solution inmultidimensional space. In community of DE,
the individual trial solutions which constitute a population
are called parameter vectors or genomes [22]. DE generates a
population of individuals by encoding with a floating vector,
and the optimization process includes mutation, hybridiza-
tion, and selection operations. The basic idea is described as
follows: Starting from a randomly generated initial popula-
tion, a new individual is generated by summing the vector
difference of any two individuals in the population with a
third individual, and the fitness value is used to determine
whether to retain the old individual. Through continuous
evolution, retaining good individuals, and eliminating inferior
individuals, DE guides search to the optimal solution.

2) MATHEMATICAL REPRESENTATION OF DE
The DE algorithm involves three control parameters, namely
population size NP, scaling factor F , and crossover rate CR.
The optimization process includes the following three
operations.

a: MUTATION OPERATION
After initializing the population, DE employs the mutation
operation to produce a mutant vector. Reference [23] gives
five commonly used variation strategies as follows:

V t
i = X tr1 + F · (X

t
r2 − X

t
r3 ) (8)

V t
i = X tbest + F · (X

t
r1 − X

t
r2 ) (9)

V t
i = X ti + F · (X

t
best − X

t
i )+ F · (X

t
r1 − X

t
r2 ) (10)

V t
i = X tbest + F · (X

t
r1 − X

t
r2 )+ F · (X

t
r3 − X

t
r4 ) (11)

V t
i = X tr1 + F · (X

t
r2 − X

t
r3 )+ F · (X

t
r4 − X

t
r5 ) (12)

where V t
i = {v

t
i,1, v

t
i,2, . . . , v

t
i,D} is mutant vector. The indices

r1, r2, r3, r4, r5 are mutually exclusive integers randomly
generated within the range [1, NP], and these indices are
randomly generated once for each mutant vector. The scal-
ing factor F is a positive control parameter for scaling the

difference vector. X tbest is the best individual vector with the
best fitness value in the population at generation t .

b: CROSSOVER OPERATION
Crossover operation is applied to each pair of the target vector
X ti and mutant vector V t

i to generate a trial vector: U t
i =

{uti1, u
t
i2, . . . , u

t
iD}. Crossover operation is defined as follows:

utij =
{
vtij, if randj[0, 1) ≤ CR or j = jrand
x tij, otherwise

(13)

where the crossover rate CR is a user-specified constant
within the range [0,1), and controls the fraction of parameter
values copied from the mutant vector.

c: SELECTION OPERATION
Selection operation typically screens individuals based on
fitness values. The selection operation can be expressed as
follows:

X t+1i =

{
U t
i , if f (U t

i ) ≤ f (X
t
i )

X ti , otherwise
(14)

D. ABC
1) INSPIRATION AND BASIC IDEAS OF ABC
The ABC algorithm was proposed by Karaboga in 2005 [14].
The basic idea is that the bee colony cooperates with each
other to complete the process of collecting honey through
individual division of labor and information exchange. The
minimal search model for bee colony to achieve collec-
tive intelligence includes three essential components: food
sources, employed bees and unemployed bees, and two behav-
ior patterns: the recruitment to a rich nectar source and the
abandonment of a poor source [24]. The employed bees
correspond to the collected food sources, store information
about a certain food source, and share the information with
other bees with a certain probability. The unemployed bees
are mainly responsible for finding and mining food sources,
and there are two types of unemployed bees, respectively:
scouts, searching the environment surrounding the nest for
new food sources, and onlookers, waiting in the nest and
establishing a food source through the information shared
by employed bees. In the beginning, all food sources are
discovered by scout bees. Thereafter, the mining of nectar is
completed by employed bees and onlooker bees. The sharing
of food sources information is realized in the form of a swing
dance in the dance area. After finding the food sources and
collect their nectar, employed bees return to the nest and
express the yield rate of food source through the duration
of swing dance. That is, the yield rate is proportional to the
likelihood that the food source is selected. Onlooker bees are
employed after watching the swing dance and begin searching
for the corresponding food source neighborhood and collect-
ing honey. While the employed bee whose food source has
been exhausted becomes a scout bee. ABC works through
the transformation of three different types of roles to find
high-quality honey sources.
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2) MATHEMATICAL REPRESENTATION OF ABC
In ABC, the location of food sources represents the possible
solutions of the problem, and the amount of nectar in a food
source corresponds to the quality (fitness) of the relevant
solution. In the basic form, the number of employed bees is
equal to the number of food sources (solutions).

Assume that the dimension of the problem isD, the number
of food sources is SN , and the position of honey source i
is expressed as X ti = [x ti1, x

t
i2, ..., x

t
iD]. The initial position

of honey source i is randomly generated in the search space
according to Eq. (15):

xij = Lj + rand(0, 1) · (Uj − Lj) (15)

where L and U represent the lower limit and upper limit of
the search space, respectively.

At the beginning of the search, ABC algorithm utilizes the
following expression to generate a new honey source location
V t
i = [vti1, v

t
i2, ..., v

t
iD] around the honey source i:

vij = xij + φ(xij − xkj) (16)

where k ∈ {1, 2, . . . , SN }, and not equal to i. This parameter
indicates that the employed bee randomly selects a nectar
source other than i from SN nectar sources. φ is a random
number between [-1,1], which decides the magnitude of the
perturbation. When the fitness of the new honey source Vi is
better than Xi, the greedy selection is adopted to replace Xi
with Vi, otherwise keep Xi. Eq. (16) indicates that when the
search is close to the optimal solution, the step size will also
be adaptively reduced.

After all the employed bees complete the operation of
Eq. (16), they fly back to the information exchange area
to share the honey source. And an onlooker bee chooses a
food source depending on the probability value pi, which
is associated with food source. And it is calculated by the
following expression:

pi =
fiti

SN∑
n=1

fitn

(17)

During the search process, if the honey source Xi has
reached a threshold l by a defined number of iterations c
and does not find a better food source, the honey source
will be abandoned, and the corresponding employed bee will
be converted into a scout bee. The scout bee will randomly
generate a new food source in the search space to instead Xi.
The above process is described as Eq. (18):

X t+1i =

{
L + rand(0, 1) · (U − L), ci ≥ l
X ti , ci < l

(18)

E. FA
1) INSPIRATION AND BASIC IDEAS OF FA
FA is a simulation of the biological characteristics of fire-
fly luminescence in nature. It was proposed by Yang to
effectively deal with multi-modal and global optimization

problems [15]. The algorithm simulates the search and opti-
mization processes into the attraction and movement of the
firefly individuals, and measures the objective function of
solving the problem as the position of the individual. In this
algorithm, the reason why fireflies attract each other depends
on two factors: their own brightness and attractiveness. The
fluorescence brightness emitted by fireflies depends on the
target value of their location. The higher the brightness,
the better the position, that is the better the target value.
Attractiveness is proportional to their brightness and they
both decrease as their distance increases. For any two flashing
fireflies, the less bright one will move towards the brighter
one. If no one is brighter than a particular firefly, it will move
randomly.

2) MATHEMATICAL REPRESENTATION OF FA
The FA achieves target optimization through continuous
updating of brightness and attractiveness. And the brightness
of fireflies with distance r is expressed as follows:

I = I0e−γ r (19)

where I0 is the original light intensity and γ is the light
absorption coefficient.

The attractiveness of a firefly is expressed as below:

β = β0e−γ r
2

(20)

where β0 is the attractiveness at r = 0.
Firefly i is attracted by firefly i′ and the position update

formula is as follows:

X t+1i = X ti + β(X
t
i′ − X

t
i )+ α

tεti (21)

where the third term is randomization with αt being the ran-
domization parameter, and εti is a vector of random numbers
drawn from a Gaussian distribution or uniform distribution
at time t . Furthermore, the randomization εti can easily be
extended to other distributions such as Lévy flights [15].

III. ROUTING PROBLEMS IN VLSI
As the current IC industry continues to advance toward
ultra-deep sub-micron processes, the integration of chips is
further improved. Since more and more circuit components
can be integrated on a single chip with the limitation of stor-
age space and packaging process, the VLSI design approach
faces new challenges. Among them, routing is one of the top
ten problems that the current physical design needs to solve
urgently [25]. In terms of chip size and capacity, the rout-
ing problem requires a circuit chip scale of tens of thou-
sands of large modules and millions of small modules, and
requires this work to be completed within a reasonable time.
In addition, the quality of the routing severely affects other
requirements in the design process, including timing and
interconnection analysis. In order to reduce the high complex-
ity of the routing process in chip design, the routing is usually
divided into two steps: global routing and detailed routing.
The global routing is a rough routing process, its function
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FIGURE 1. A three-pin net connected by (a) a spanning tree and
(b) a Steiner tree, respectively.

is to reasonably distribute each part of the nets to be routed
to each routing area in the chip, thereby clearly defining the
routing problem of each routing area. The detailed routing is
to complete the specific routing of each routing area under
the guidance of the global routing results. This section gives
a list of common subproblems in VLSI routing.

A. STEINER TREE
The shortest path problem of two-pin nets is one of the most
basic problems in VLSI routing, which looks for the shortest
routing path by given the position of the two pins while
considering the obstacles. Commonly found strategies are
maze routing [26], line probe methods [27], pattern rout-
ing [28] and so on. However, in actual routing problems,
there are often more than two pins in a net. A common
approach to dealing with multi-pin nets is to decompose the
multi-terminal net into a set of two-terminal nets, that is,
construct an MST with pins as nodes. In order to reduce
the length of the routing tree, in addition to original nodes
formed by given pins, the final MST can be constructed by
introducing additional nodes called Steiner points. As shown
in Figure 1(a), a three-pin net connected by spanning tree is
given. The Steiner tree connection model corresponding to
the net is shown in Figure 1(b). It can be seen that the length of
the routing tree is greatly reduced after the introduction of the
Steiner point. Therefore, the Steiner tree model has gradually
become the best connection model for multi-pin net which is
a key link in VLSI routing.

1) PROBLEM DESCRIPTION
The Steiner Minimum Tree (SMT) problem is to connect
all pins through some extra points (called Steiner points) to
achieve a minimal total length in VLSI routing.

In most routing problems, the segments can only route
horizontally or vertically. This kind of routing tree is called
Rectilinear Steiner Tree (RST). Rectilinear Steiner Minimum
Tree (RSMT) construction is a NP-hard problem, which is as
follows [29]: Given a set of points in the plane, the RSMT
problem seeks to connect the points with a RST, which is a
tree made up of horizontal and vertical line segments with
the minimum cost. The cost of any edge in the tree is the
rectilinear or Manhattan distance between its endpoints, and
the cost of a tree is the sum of its edge costs.

However, this way of routing only horizontally and
vertically limits the optimization of wirelength, so more

FIGURE 2. (a) Multilayer design. (b) Grid graph for routing.

FIGURE 3. A GRG based on grid-graph.

research-oriented non-Manhattan architectures were pro-
posed [30], [31]. Non-manhattan architecture routing trees
mainly include Hexagonal Steiner Tree (HST) [30] and
Octagonal Steiner Tree (OST) [31]. The routing directions
of HST are considered at 0◦, 60◦ and 120◦ to the horizontal
direction called Y-routing, while OST with X-routing allows
45◦ and 135◦ directions in additon to traditional horizontal
and vertical orientations. The non-Manhattan architecture
related issues involved in this paper refers to X-architecture.
Diversification of interconnection structures improves rout-
ing quality and improves chip performance.

B. GLOBAL ROUTING
The global routing problem is a typical graph theory problem.
The Global Routing Graph (GRG) abstracts the routing area,
routing capacity of each area, pin information of routing
areas, and the relationship between different routing areas
into a grid graph, and then uses the corresponding graph
algorithm to solve this problem.

1) PROBLEM FORMULATION
For global routing, modern designs usually have several metal
layers and two adjacent layers are linked by vias as shown
in Figure 2(b). We use a grid diagram to describe the global
routing model, that is, the entire routing area is divided into
a set of rectangles with rows and columns interlaced. Each
Global Routing Cell (GRC) is represented by one vertex, and
the adjacency relationship between GRCs is represented by
horizontal and vertical edges. For a given set of nets, their
pin sets are mapped to the vertices corresponding to the GRC
according to the placement of this GRC. Figure 3 gives a
GRG which is a set of dotted grids of interlaced rows and
columns. Each dotted grid box represents a GRC, and a pin
set is placed in the corresponding GRC according to the result
of the layout. Each GRC is mapped into GRG as a vertex (v)
of GRG, and two GRCs having an adjacency relation are
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connected by an edge (e) of GRG. So the relationship between
GRC and GRG is one-to-one.

The global routing problem of VLSI can be described as
follows: There is a grid-graph G specifying a set of vertices
V and a set of edges E . As shown in Figure 2, each vertex
vi ∈ V corresponds to a rectangular region (or GRC) of
the chip, and each edge eij ∈ E corresponds to a boundary
between adjacent vertices. And there is a set of nets N , each
net ni ∈ N includes a set of pins Pi and each pin corresponds
to a vertex vi. The routing solution for a net is to find a tree
that connects all pins of the net by using vias and routing
edges. A solution of global routing is a set of SMTs in a grid
graph, and a net corresponds to a Steiner tree that satisfies
constraints. The goal of this phase is to minimize the length
of the Steiner trees.

When evaluating a routing solution, one is typically con-
cerned with three metrics, that is overflow, wirelength,
runtime [32].

Overflow refers to the total amount of demand that exceeds
capacity over all edges, here the demand corresponds to the
number of routes that pass though the vertex [28]. In the
actual design, we want this index to be as small as possible,
ideally zero. The overflow of a routing edge e is defined as
shown below:

overflowe =
{
de − ce, if de > ce
0, otherwise

(22)

where de represents the amount of nets that pass through e.
The capacity ce of routing edge e represents the number of
available routing tracks it contains.

Wirelength is the total length of the segments that need to
be connected for all nets, and it is desirable to be as small as
possible. When using the routing tree models, the wirelength
is generally equal to the length of the routing trees. Therefore,
in many cases, various minimum trees are needed to be
designed to solve the global routing problem. The Steiner tree
mentioned above is one of the most common and effective
models for solving global routing. In multi-dimensional rout-
ing, this calculation can also include vias.

Time is an indicator that we are particularly concerned
about especially when reusing global routing to guide the
layout algorithms [33].

2) COMMON GLOBAL ROUTING TECHNIQUES
Here is a brief list of some common global routing techniques.

a: MAZE ROUTING
Maze routing is one of the most classic ways to solve the
global routing problem, which considers all possible routes
between a given source and a given sink on a routing graph.
This technique finds the routing path with the least cost from
source to sink by applying various shortest path algorithms.
The earliest maze routing algorithm comes from Lee’s algo-
rithm [26], which is the most widely used minimum path
algorithm for finding two-pin nets, but it has the problems of
large search space and high complexity. Subsequently, the A*

search technique [34] is used to improve Lee’s algorithm to
speed up convergence. For the problem of multi-pin nets,
multi-source and multi-sink maze routing [35] developed
from maze routing is applied to the tree edges, which con-
siders more potentially better routes.

b: PATTERN ROUTING
Pattern routing routes a two-pin net with predefined patterns
like L-shaped and Z-shaped patterns, which is more efficient
thanmaze routing. However, the solution qualitymay become
worse because not all possible routes in the bounding box of
a two-pin net are considered [36].

c: DECOMPOSITION TECHNOLOGY FOR MULTI-PIN NETS
This technology decomposes the task of global routing,
that is, a multi-pin net is decomposed into several two-pin
nets. The commonly used methods are SMT construction
and MST construction. SMT often provides tree topologies
with shorter wirelength, while MST shows greater flexibility
because it can produce more L-shaped two-pin nets.

d: LAYER ASSIGNMENT
For multi-layer global routing, layer assignment maps a 2-D
global routing result back to the original multi-layer solution
space. Dynamic programming [37], Integer Linear Program-
ming (ILP) [38], etc. are often used on this problem. Its main
research focus is on minimizing the number of vias.

e: OPTIMIZATION STRATEGIES
In order to improve the quality of solutions, researchers
have put forward various optimization strategies. Rip-up
and reroute [39] allows the nets passing through con-
gested regions be ripped up and rerouted for finding
alternative routes. And negotiated congestion routing can
balance the competing goals of eliminating congestion
and minimizing the performance degrading due to tim-
ing critical paths [40]. This idea based on negotiation
mechanism has been widely used in the design of routing
system.

C. DETAILED ROUTING
Detailed routing realizes exact routing paths consider-
ing geometrical constraints based on the global rout-
ing solution, which is an important stage because it is
directly related to the routing completion and design rule
satisfaction.

1) PROBLEM FORMULATION
For detailed routing based on grid models, the goal is to
find a legal routing path on a given routing grid and detour
the crowded area as much as possible. The relevant defi-
nitions and problem formula for detailed routing are given
below [41].
Definition 1: Channel (Routing Area). A rectilinear

polygonal region between circuit blocks that can be used for
interconnections (shown in Figure 4).
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FIGURE 4. Routing area with obstacles.

Definition 2: Component. A set of pins and wire segments
of a net which have been interconnected. Each unconnected
pin is a trivial component.

The routing area is a right angle polygon. The location
where the pins appear may be in the area or on the boundary.
At the same time, wewould like to take into account obstacles
of various shapes and sizes. Detailed routing requires that
all components of each net be connected within the routing
area. The primary goal is to make the routing area as small
as possible, and second, to minimize the number of vias and
the wirelength of each net. At this stage, many other factors
are also considered like power consumption, delay, coupling
of interconnects, and so on.

2) COMMON DETAILED ROUTING TECHNIQUES
Here is a brief list of some common detailed routing
techniques.

a: BASIC PATH SEARCH ALGORITHM
Like global routing, detailed routing also uses the path search
algorithm to find the wire routes such as Lee’s algorithm, A*,
Soukup’s algorithm [42], LCS* [34], etc.

b: RIP-UP AND REROUTE
Most of detailed routing researches are based on serial
routing. As with the global routing, serial routing is often
optimized by rip-up and reroute. However, such a sequen-
tial net-by-net approach is ineffective in handling congested
designs and it usually creates unnecessary detour [43].

c: PARALLEL ALGORITHMS
In order to reduce the dependence of routing results on the
order of nets, a parallel detailed routing algorithm based on
multi-commodity flow model is proposed [44], which can
simultaneously route for multiple nets. Ozdal [45] presented
an insightful technique to perform escape routing for dense
pin clusters and a Lagrangian relaxation based heuristic was
proposed.

d: TRACK ASSIGNMENT
Track assignment is an ideal bridge between the global and
detailed routing, which can effectively solve the mismatch
between the two, thus better guiding detailed routing. In track
assignment, segments extracted from global routing solution

are assigned to routing tracks. This technology provides a bet-
ter initial routing scheme for detailed routing by considering
constraints such as local nets, congestion, and the location of
vias.

IV. ROUTING PROBLEMS USING SWARM INTELLIGENCE
The purpose of this section is to introduce the application of
SI techniques in VLSI routing. By analyzing the roles of SI
techniques in routing problem, readers can more quickly and
clearly realize the key points and difficulties to be solved in
VLSI routing and advantages of SI in these aspects.

It is known that the basic optimization goal of routing is
to minimize the interconnected wirelength while consider-
ing as many other optimization objectives as possible like
obstacles, power consumption, timing and congestion. There-
fore, every surveyed paper usually involves more than one
routing problem mentioned in Table 2. And the application
of SI techniques on global routing problems in Table 2 is
given according to the most critical optimization objectives
of surveyed papers.

A. APPLICATION OF ACO
1) APPLYING ACO TO SMT CONSTRUCTION
ACO algorithm is widely used to construct SMTs [46]–[48].
In general, we generate the Hanan grid of the terminal set T .
Then place the ants in each terminal that needs to be con-
nected. An ant will determine a new vertex by some rules
and move to that vertex via an edge in Hanan grid. Each ant
maintains its own tabu-list, which records the visited vertices
to avoid revisiting it again [46]. Every time the ants move,
the ants will leave a footprint called pheromone on the edge
that has just passed, which will evaporate at a constant rate.

The process of an ant moving to the next vertex depends
on a higher value pi,j, which is a trade-off between the
desirability and the trail intensity. Given ant m in vertex i,
the desirability of vertex j is defined as follows:

ηmj =
1

c(i, j)+ γ · ψm
j

(23)

where γ is a constant,ψm
j is the shortest distance from vertex

i to all the vertices in the tabu-list of others as quickly as
possible. We use Eq. (2) to update the trail intensity in Hanan
edge (i, j), where the increment of updating is given by the
following formula:

1τi,j =


Q
c(St )

, if (i, j) ∈ Et

0, otherwise
(24)

where c(St ) is the total cost of the current result tree St , Et
is the edge set of it, and Q is a constant which matches the
quantity of the tree cost. Based on Eq. (1), the probability of
an ant using edge (i, j) to move is defined as follows:

pij =


[τij]α · [ηmj ]

β∑
k 6=tabu−list(m) [τik ]

α
· [ηmk ]

β
, if j ∈ A

0, otherwise

(25)
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TABLE 2. Application of SI techniques to the VLSI routing problems.

Algorithm 1 Construct Steiner Tree by ACO
Input: terminal set T, connection graph
Output: a rectilinear Steiner tree T

1 Place an ant on each vertex in the terminal set T and put
the vertex into its tabu-list;

2 Set the current sub-tree t empty;
3 while ant number > 1 do
4 Select an ant m randomly;
5 AntMove(m);
6 Add the edge m passing into t;
7 if m meets m1 then
8 Add vertices in tabu-list of m to that of m1;
9 m dies;

10 Relocate(m1);

11 Prune(t);
12 Return;

whereA is the set made up of all vertices, which are connected
with i and are not in the tabu-list of ant m [46].

The process of constructing an RST using ACO is shown
in Algorithm 1 [47]. In Step 5, function AntMove(m) decides
the next vertex that the current ant m will move to. And the
encounter between two ants is described in Step 7 to 10.When
ant m encounters ant m1, ant m dies, and the vertices in the
m’s tabu-list are added into m1’s. If m1 is still in the original
position, Relocate(m1) will re-create its position. When there
is only one ant left, the tree is built. At the same time,Prune(t)
is used to delete all 1-degree non-terminal vertices in the tree.

However, using ACO to find SMT is still time consuming
because the ant’s movement is based on the Hanan grid,

FIGURE 5. Definition of distance between two edges.

FIGURE 6. (a) BOTTOM_ORIENT. (b) TOP_ORIENT. (c) BOTTOM_ORIENT
segment. (d) TOP_ORIENT segment.

and only a small segment can be moved per iteration. So [47]
extends the tabu-list of each ant to record the edges instead of
the vertices that this ant has visited so that every movement
is not constrained by Hanan grid. They defined the distance
between the two sides as follows: The distances between edge
L1 and L2 in Figure 5(a), 5(b), 5(c), and 5(d) are h, h+w, h and
h+w, respectively. And there are two possible ways to move
when the shortest path is L-shape, which are TOP_ORIENT
and BOTTOM_ORIENT. One orientation is chosen to move
based on both the trail intensity and the topology. For a given
edge orientation, the rules we find the closest vertex to the
edge are shown in Figure 6. In Figure 6(c) and 6(d), vertex
B represents the current location of an ant, and the closest
vertex out of its tabu-list is vertex C . Next, the ant needs
to decide the orientation of edge (B,C). Figure 6(c) shows
that the closest vertex to edge (B1,C1) is A1 with distance
|A1A′1| for BOTTOM_ORIENT. While for TOP_ORIENT,
the distance between A2 and edge (B2,C2) is |A2A′2|, which
is shown in Figure 6(d). So the gain in BOTTOM_ORIENT
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is |A2A′2|−|A1A
′

1| and the gain in TOP_ORIENT is |D1C1|−

|D2D′2|. The authors rewrote Eq. (23) according to this rule
as follows:

ηd =
[gaind ]λ

distd
(26)

where d is the two orientations (BOTTOM_ORIENT and
TOP_ORIENT), gaind is the gain in orientation d , distd is
the distance from the closest vertex out of its tabu-list to the
edge in orientation d , and λ is a constant that is the trade-off
between the closest distance and gain. In this way, an ant can
cross several edges of Hanan grid in each iteration and one ant
will be removed from the set of alive ants in each movement.

This ACO-Steiner algorithm [47] can be used to construct
initial trees for all nets and optimize the routing tree itera-
tively to further reduce wirelength. Moreover, this algorithm
can generate different topologies with the same wirelength
for a net, which is beneficial to reduce congestion scarifying
only a little wirelength.

Reference [48] presents an Obstacle-Avoiding Rectilin-
ear Steiner Minimum Tree (OARSMT) algorithm based on
ACO. In this algorithm, an efficient graph reduction method,
called T-Reduction, is adopted to reduce the searching space.
This method is implemented by maintaining an FIFO queue.
Firstly all 2-degree vertices are pushed into the queue. Then
pop the first vertex from the queue, delete the vertex and
its adjacent edges, and its adjacent non-terminal vertices are
pushed into the queue while the queue is not empty. Later,
non-terminal convex corner points are reduced. And finally
reduce 1-degree terminals. Such terminals can be deleted
along with their adjacent edges. It’s worth mentioning that
T-Reduction method is very efficient when the case scale is
not large and is also suitable for escape graph reduction. And
a greedy obstacle penalty distance (OP-distance) local heuris-
tic is used in this OARSMT algorithm at the same time, where
the OP-distance is used to estimate the distance between two
vertices in the presence of obstacles. The proposed algorithm
has a high optimization capability of wirelength and can
handle complex obstacle cases including both convex and
concave polygon obstacles.

2) APPLYING ACO TO GLOBAL ROUTING
ACO-Steiner can be easily extended to other routing prob-
lems such as power-driven routing. References [49] and [50]
implement ACO algorithms on both grid-less Manhattan
architectures and non-Manhattan routing architectures that
use diagonal routing, which aim at limiting the power con-
sumption of the chip. The difference is that, [50] actives
power on the chip not only by minimizing wirelength and
vias, but also capacitance.

In [50], the characteristics of ant colony’s memory,
stochastic decision making and strategies of collective and
distributed learning are used to find the shortest possible
routes, then choose the one that minimizes capacitance from
those routes. Unlike [46], an ant will not die when meeting
another ant, but rather a particular connection is marked

as completed. Completing these paths can also reduce redun-
dant paths, thereby decreasing the number of vias. The first
step of the algorithm is to create a Hanan grid, then start
routing nets using ACO. Notice that small nets are routed first
in order to minimize obstruction from bigger nets. The spe-
cific ACO-Route approach can be described as Algorithm 2.
The probability of unvisited nodes are calculated through the
heuristic to minimize the distance between the ant and other
ants and pheromone values (Step 10). If the ant meets another
ant, for both the ants add the routes traveled by one to the
route list of the other. The experiments prove that ACO is suc-
cessful in solving the multi-constraint optimization problem
of VLSI chip power minimization.

Algorithm 2 ACO for Routing

1 Create Hanan grid;
2 Order nets according to degree and then size;
3 Initialize a small amount of pheromone on the whole
grid;

4 while termination condition is not met do
5 Route
6 for each ant do
7 Empty ant’s memory;
8 Place ant at some terminal node;
9 Construct a complete tour for ant;
10 Calculate the probability of unvisited nodes;
11 Deposit pheromone on the paths taken by the

ant;

12 Find the best ant of the iteration;
13 Update the global pheromone value;
14 End Route
15 Find the shortest ant routed solution, and check if

any part of this solution interferes with any other
solution.

B. APPLICATION OF PSO
1) APPLYING PSO TO SMT CONSTRUCTION
The PSO algorithm introduced in Section II is usually used to
solve continuous problems, while VLSI routing is a discrete
problem. For this reason, many scholars have improved SPSO
to solve actual discrete problems. At present, PSO has been
widely used in SMT construction for VLSI routing problem,
and has achieved good results. The key of SMT construction
is the selection of Steiner points.

a: RST CONSTRUCTION USING PSO
Dong et al. [51] proposed a routing algorithm based on
discrete particle swarm optimization (DPSO-RA), aiming at
length and the bound of connectivity rate. The algorithm
adopts a novel encoding and several update operations for
DPSO, and achieves interconnection of all destination nodes
in VLSI.
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FIGURE 7. (a) The establishment of Steiner matrix. (b) Particle coding of
Steiner matrix.

Particle Encoding. Each particle represents an MST.
DPSO-RA encodes the particle by establishing Steiner
Matrix. A particle Xi is a matrix and is expressed as:

x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...

xn1 xn2 · · · xnn

where n is the number of components waiting for intercon-
nection. Each bit of the particle encoding corresponds a node
in the Steiner Matrix, and is valued in binary. The nodes to
be connected, called ‘‘terminal nodes’’, are taken as input
from the user or are generated randomly in the form of x
and y-coordinates. If a node is selected to construct the RST,
the value of the bit is ‘1’, otherwise ‘0’. Usually, the matrix
will be reduced by deleting some rows and columns that do
not have any terminal nodes.

Steiner Matrix is established by the horizontal and vertical
lines’ cross-points of the components. And it represents the
possible locations of the Steiner nodes of RST. Figure 7(a)
shows a Steiner Matrix of 10 components (blue) to be con-
nected. Its corresponding particle is shown in Figure 7(b).

The velocity Vi of particle Xi is also a matrix, expressed as
follows:

v11 v12 · · · v1n
v21 v22 · · · v2n
...

...
. . .

...

vn1 vn2 · · · vnn

where each bit of the velocity represents the probability of
selecting the corresponding node in Steiner Matrix.

Fitness Function. The cost of MST is the fitness value of
this particle, which is calculated by Prim’s algorithm.

Update Operation.DPSO-RA redefines the operations of
PSO and uses Eq. (3) and (4) as the position and velocity of
the particle respectively.
Definition 3: ‘‘−’’ Operation. The result of ‘‘−’’ operation

between two particle locations is a velocity.
Definition 4: ‘‘+’’ Operation. The result of ‘‘+’’ operation

between two velocities is a new velocity.

FIGURE 8. Obstacle-avoiding construction by generating virtual vertexes.

Definition 5: ‘‘×’’ Operation. The parameters c1 and c2
are constants, r1 and r2 are random numbers between 0 and 1.
The result of ‘‘×’’ operation between a velocity and parame-
ters is still a velocity.

Algorithm Processes.
Step 1. Initialize the particle swarm.
Step 2. Calculate the fitness value of each particle.
Step 3. Update pbest and gbest .
Step 4. Calculate the self-adaptive inertia weight for each

particle.
Step 5. Update the velocity and position of particles.
Step 6. If the termination condition is met, the algorithm

ends. Otherwise return to Step 2.
References [52] and [53] also use Steiner Matrix to encode

the particles, and introduce the mutation operation of GA
into DPSO. In [52], a matrix corresponding to a particle
represents both position and velocity. Its velocity is updated
by Eq. (3), while Eq. (4) is not used to update the position of
the particle. The algorithm updates the position by selecting
only some bits of the position matrix of the particles from
the previous generation. This is the mutation process they
introduced that can increase the efficiency and robustness of
DPSO. Reference [53] uses PSO algorithm with constriction
factor, that is, Eq. (7) is used to update the velocity and
Eq. (4) is used to update the position. This algorithm adapts
a novel mutation operation by selection of some bits of the
previous position vector along with the information of the
initial Steiner Matrix.

Shen et al. [54] considered wirelength and obstacles at
the same time and then proposed a novel OARSMT con-
struction algorithm, which avoids obstacles by generating
virtual vertexes of the real vertexes. The algorithm designs
the following obstacle-avoiding strategy for the case where
the three types of routing across obstacles shown in Figure 8.
Take Figure 8(a) as an example. First, vertices S and T
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respectively produce corresponding virtual vertices, which
have the same horizontal coordinate with the left (or right)
edge of the obstacle and the same vertical coordinate with the
original vertices. Next, sequentially connect S, S ′, T ′ and T ,
and dismantle the violate edges.

The OARSMT construction is divided into the following
two steps:

(1) Divide all the pins of the net into k groups, and generate
corresponding RSTs based on the above-mentioned obstacle-
avoiding strategy. The algorithm places the pins that are close
to each other in a group, while making the amount of each
group of pins (at least two pins) as small as possible.

(2) Wirelength minimization is the optimization goal, and
then [54] connects all of the groups considered as real ver-
texes to construct the final RST.

In this algorithm, Prüfer number [79] is used to encode
the solution of RST, and 0-1 coding is used to select Steiner
points. For example, a particle is represented by:

X ti =
[
2 5 4 5 4 100
0 1 0 0 1 15

]
where the Prüfer number is {2,5,4,5,4}, and the Steiner point
selection scheme is {0,1,0,0,1}, the total length of this tree is
100 and the obstacles quantities of this particle is 15.

The algorithm introduces crossover and mutation opera-
tors inspired from GA to handle Prüfer numbers which are
discrete magnitude. Based on SPSO (Eq. (3)), the following
position update formula is given for solving the discrete
problems:

X ti = c2 ⊕ F2(c1 ⊕ F1(ω ⊕ F(X
t−1
i ),Pt−1i ),Gt−1i ) (27)

Eq. (27) uses the ‘‘+’’ operation to connect the following
three parts, in other words two operations including mutation
and crossover operation.

(1) Mutation operation:

λti = ω ⊕ F(X
t−1
i ) =

{
F(X t−1i ), r0 ≤ ω
X t−1i , else

(28)

where F represents the mutation operator from GA with
the probability of ω, and r0 is a random number on the
interval [0, 1).

(2) Crossover operation:

δti = c1 ⊕ F1(λti ,P
t−1
i ) =

{
F1(λti ,P

t−1
i ), r1 ≤ c1

λti , else
(29)

X ti = c2 ⊕ F2(δti ,G
t−1
i ) =

{
F2(δti ,G

t−1
i ), r2 ≤ c2

δti , else
(30)

where F1, F2 represent the crossover operators that influence
self-cognitive and social-cognitive respectively, and the prob-
abilities are c1 and c2. r1 and r2 are random numbers on the
interval [0, 1).

This paper proposes a novel framework of PSO to
solve OARMST problem and extends the application of
SI algorithm in VLSI physical design. Many of the later

FIGURE 9. Four options of Steiner point for a given line segment.

works [55]–[61], [67], [68], [80], [81] are also based on this
PSO framework of Eq. (27).

b: OST CONSTRUCTION USING PSO
Liu et al. [55], [56], Huang et al. [56], [57], and
Liu et al. [58]–[61] have done a lot of research work on the
construction of Octagonal Steiner Minimum Tree (OSMT)
based on the following interconnected structure, and have
achieved excellent results.

Interconnected Structure. There are four choices for line
segment L of connecting pins A and B as shown in Figure 9.
And [55] gives four definitions about selection of Steiner
points.
Definition 6: Choice 0 (as shown in Figure 9(b)). The

Choice 0 of Steiner point corresponding to edge L is defined
as leading rectilinear side first from A to Steiner point S, and
then leading non-rectilinear side to B.
Definition 7: Choice 1 (as shown in Figure 9(c)). The

Choice 1 of Steiner point corresponding to edge L is defined
as leading non-rectilinear side first from A to Steiner point S,
and then leading rectilinear side to B.
Definition 8: Choice 2 (as shown in Figure 9(d)). The

Choice 2 of Steiner point corresponding to edge L is defined
as leading vertical side first from A to Steiner point S, and
then leading horizontal side to B.
Definition 9: Choice 3 (as shown in Figure 9(e)). The

Choice 3 of Steiner point corresponding to edge L is defined
as leading horizontal side first from A to Steiner point S, and
then leading vertical side to B.
Particle Encoding. Based on the above design of inter-

connected wire, [55] uses numerical encoding called Edge-
to-Point encoding to represent each candidate OST: For a
net with n pins, a spanning tree would have n-1 edges,
n-1 Steiner points and one extra bit which is the fitness of
particle. Besides, two bits represent the two vertices of each
edge. Namely, the particle is encoded with a numerical string
of 3×(n-1)+1. For example, a particle can be expressed as
follows:

7 6 0 6 4 1 7 5 1 5 1 2 1 3 0 1 8 1 5 2 2 0.0100

where the number ‘0.0100’ is the fitness of the particle and
each number in bold represents the Steiner point choice.
Taking the first substring (7, 6, 0) for instance, it represents
one edge of the spanning tree which is composed of Vertex 7,
Vertex 6 and the Steiner point choice (Choice 0).

Reference [55] introduces mutation and crossover opera-
tions as particle update strategies like [54]. Like the prob-
lems of RST, we also study related problems of OST
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such as Obstacle-Avoiding Octagonal Steiner Minimum Tree
(OAOSMT). References [56]–[58] consider the construction
of OST with key issues such as obstacles, delay and number
of bends, also based on this encoding method and particle
update strategies, while using Union-Find Sets (UFS) to
prevent the generation of invalid solutions. Reference [60]
constructs OSMT based on self-adapting PSO with an effec-
tive Hybrid Transformation Strategy (HTS) to enlarge the
search space. While [61] presents a unified algorithm for
both octagonal and rectilinear SMT construction, and also
applies HTS to PSO, which can achieve a better wirelength
optimization. These two algorithms both have an ability to
obtain multiple topologies of Steiner trees with the same
wirelength, so that it can provide different topology options
for congestion optimization in global routing.

2) APPLYING PSO TO GLOBAL ROUTING
PSO is also widely used for global routing because of its
simplicity and the ability to quickly converge to an ideal
solution.

Minimizing wirelength and reducing congestion are the
most common and important tasks for global routing.
Liu et al. [68] proposed a high-quality VLSI global router in
X-architecture called XGRouter, which was based on ILP
techniques, partition strategy and PSO. Their ILP formula-
tion, called O-ILP, considers the congestion uniformity to get
a more even routing distribution without generating too many
hot spots and the solution has no overflowed edges. At the
main stage of their algorithm, ILP is formulated from the
original routing sub-region and an improved PSO is designed
to solve the O-ILP formulation. In their proposed PSO,
the 0-1 integer encoding is used for particle encoding, which
can satisfy the completeness and non-redundancy principle.
And based on the update formula of particles (Eq. (27)),
a check strategy is incorporated in the crossover and muta-
tion operators to meet the soundness principle. Finally, not
only the wirelength but also the congestion uniformity is
considered into the fitness function to generate better solu-
tions. Reference [67] presents some enhancements based on
XGRouter. In this paper, some new types of routing are intro-
duced and PSO algorithm is combined with maze routing.
This improved algorithm can be applied tomulti-layer routing
model, which can achieve good results on overflows and total
cost of wirelength.

With the continuous development of the manufacturing
process and design scale of IC, the feature size is continuously
reduced, the parasitic effect of the connection is not negli-
gible, and the interconnection delay exceeds the gate delay,
which becomes the main factor determining the performance
of the circuit. Therefore, it is necessary to consider other typi-
cal performance optimization targets except wirelength, such
as delay and power dissipation. Several techniques have been
used to reduce interconnection delay − wire sizing, buffer
insertion, and buffer sizing. Among them, buffer insertion
is the most effective interconnection optimization method to
reduce delay.

FIGURE 10. (a) Location of obstacles. (b) Corresponding vertex value.

Ayob et al. [63] employed PSO to solve buffer insertion
problem in VLSI routing, with considerations on wire and
buffer obstacles. They used distributed RC network as inter-
connected model and applied the Elmore Delay formulation
to calculate the interconnection delay from source to sink.

a: ELMORE DELAY CALCULATION
For computation delay where the iterative calculation starts
from source then advance to the sink, each node in the wire is
labeled with a resistance-delay pair (r, t) where r is resistance
of wire and t is delay time accumulated up to that node,
respectively [82]. If the subsequent segment is wire, then the
subsequence delay pair (r ′, t ′) is defined as:

r ′ = rw + r (31)

t ′ = (r + rw/2)cw + t (32)

where rw and cw are the resistance and capacitance of the wire
segment, respectively. If the segment consists of wire with
buffer then (r ′, t ′) is defined as:

r ′ = rb (33)

t ′ = r(cw + cb)+ rw(cw/2+ cb)+ db + t (34)

where db, rb and cb are the intrinsic buffer delay, buffer output
resistance and buffer input capacitance, respectively.

b: GRID-GRAPH MODEL
This algorithm utilizes a grid-graph model to represent rout-
ing path and buffer placement location. Figure 10(a) shows
the location of source and sink (dark), buffer obstacle (gray)
and wire obstacle (dark). And Figure 10(b) shows the cor-
responding value of each vertex location. The value is set
to 1, which indicates the presence of wire obstacle for routing
the path. The region whereby buffer is not permitted (buffer
obstacle area) will be set to 2. Value = 0 represents the area
that is possible for routing path and for buffer placement
location.

c: PARTICLE ENCODING
In this problem model, each of the solution of path routing in
each iteration is represented by one particle of PSO. If using a
maximum number of 8 doglegs, each particle can be encoded
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FIGURE 11. PSO VLSI routing mapping.

by a seven-vector of position which is from e1 to e7 shown
in Figure 11. And eeven is the location in grid graph measured
from origin along x-axis and eodd is the location in grid graph
measured from origin along y-axis [63]. One path from source
to sink is generated by connecting these continuous segments:
source→e1→e2→e3→e4→e5→e6→e7→sink. For a more
complex case study, number of doglegs can be increased by
increasing the vector position, e to n value. Thus particle i
with the position and velocity are presented as:

xi =



e1
e2
·

·

·

en−1
en


, vi =



ve1
ve2
·

·

·

ven−1
ven


(35)

d: FITNESS FUNCTION
The fitness of this algorithm is the delay time calculated
accumulatively from source to sink, including both wire
segment and wire segment terminated with buffer. Taking
Figure 11 for instance, the number of total segments used can
be calculated as Eq. (36)

p = (
∑n

a−1
|ea − ea+2|)+ |xsi − en−1| + |xso − e1| (36)

where n is amaximumnumber of dogleg and ea represents the
location of a node in grid graph. xso and xsi are x-axis coordi-
nates for source and sink. For every 6 segments, a buffer will
be placed randomly. From the value of P and the correspond-
ing buffer location, the delay time can be determined using
Elmore delay within iterative calculation.

However, the algorithm did not perform wire and buffer
sizing. Hence, Yusof et al. [64] extended Ayob’s work by
employing Binary Particle Swarm Optimization (BPSO) in
buffer insertion and wire sizing in the presence of wire and
buffer obstacles. In this algorithm, particle position X can be
modelled as follows:

X = [x1x2...xq]T

where xq represents the type of wire with/without buffer for
the respective to grid segment, q. For each x, seven bits
are used to represent the case study, where the first 3 bits
represent the type of wire used, the fourth bit indicates the use
of buffer, and the last 3 bits represent the type of buffer used.
The fitness function is determined by capacitance-delay pair
(c, t), where c represents the total ground capacitance at node
v in a delay model. And a new capacitance-delay pair (c′, t ′)
for the preceding interconnected segment is determined as
follows:

c′ =

{
cw + c; case1
cw + cb; case2

(37)

t ′ =

{
rw(cw/2+ c)+ t; case1
rw(cw/2+ cb)+ db + rbc+ t; case2

(38)

The particle velocity is updated by Eq. (3), and the positionX ,
is updated for next iteration t for each bit d , using Eq. (39)
based on the probability of the normal distribution.

X t+1id =


1, r <

1

1+ e−v
t+1
id

0, r ≥
1

1+ e−v
t+1
id

(39)

where r is random number of [0,1].
In addition, Yusof et al. [65] also proposed a two-step

BPSO approach to obtain the best path of wire placement
with buffer insertion from source to sink. The algorithm uses
two BPSOs respectively to find the shortest path of wire
placement and the best location of buffer insertion along
the wire. The fitness function used for the second BPSO is
the time delay formulation based on the iterative RLC delay
model.

However, the low exploration capability of BPSO method
sometimes leads to a low convergence rate of the routing algo-
rithm. To overcome this drawback, Nath et al. [66] proposed
a two-step modified constricted PSO with the integration
of the mutation (CPSO-MU). PSO-MU discovers the mini-
mal path of placing the wire at first and explores the finest
location along the wire for inserting the buffer in the final
step. Compared with [65], CPSO-MU can accomplish global
convergence with a slighter number of iterations and produce
a less interconnect delay.

C. APPLICATION OF DE
1) APPLYING DE TO SMT CONSTRUCTION
Manna et al. [69] described an improved DE for finding
RSMT. The entire search space is represented by an n-by-n
null matrix, where n is the dimension of search space. Then
randomly change the element from ’0’ to ’1’ to produce
an initial population. In order to better solve the discrete
problem, they redesigned the three links of DE as follows:

(1) Mutation. Choose one particle randomly, then change
the elements of the matrix randomly from ’0’ to ’1’. The
elements which are already equal to 1 are kept intact. This
new matrix is treated as mutant matrix.
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FIGURE 12. DDE for OSMT construction: (a) mutation operator when
difference set is empty; (b) mutation operator when difference set is not
empty; (c) crossover operator.

(2) Crossover. Crossover is performed between mutant
matrix and target matrix to generate a trial Matrix using
Eq. (13). If a generated random number is greater than the
CR then an entire row (or column) is copied from target par-
ticle’s positionmatrix to newly formed trial particle’s position
matrix. Otherwise the row (or column) is copied from the
mutant matrix.

(3) Selection. The fitness values of trial matrix and target
matrix are compared. The target matrix will be replaced by a
matrix with better fitness value.

The proposed algorithm works well in both small and
large dimensional routing problems. And because of DE’s
simplicity and flexibility, it can also be used in other discrete
optimization problems.

In 2019, Wu et al. [70] proposed a feasible and effective
X-architecture SMT construction algorithm based on Dis-
crete Differential Evolution (DDE). And they designed new
mutation and crossover operators combined with UFS for
DDE. In this work, every particle is encoded as a numerical
string by Edge-to-Point encoding like [55]. And the last bit
represents the length of OSMT, while the fitness is set to the
function of the length. Eqs. (8), (13) and (14) are adopted as
particle updating formulas, respectively representing muta-
tion, crossover and selection operations.

They designed novel operators and the corresponding
evolution of using DE to search for OSMT is shown
in Figure 12.

(1) Mutation. The subtraction operation in Eq. (8) refers
to the difference set operation, and the addition operation
refers to the union operation of the set. Choose three particles
randomly, respectively p1, p2, p3. So the subtraction operation
can be divided into two cases:

• One is that the result of p2 − p3 is empty set. Edge
m1 to be mutated is randomly selected from particle p1,

then delete this edge, and p1 is divided into two sub trees.
Combining with UFS, two points are randomly selected
from the two sub trees respectively and reconnected as
the mutation particle (as shown in Figure 12(a)).

• The other is that the result of p2 − p3 is not empty. The
elements of the difference set are as part of the edges of
mutation result. Then select the remaining from the edge
set of p1 to reconstruct a new tree as the final mutation
particle (as shown in Figure 12(b)).

(2) Crossover. When the mutated particle m crosses with
the current particle i, the following action is performed: The
common edges of the two trees are used as the starting
set, and the remaining edges are used as the candidate set.
Combining with UFS, constantly extract the remaining edges
from candidate set until the crossover result is a legal tree
(as shown in Figure 12(c)).

(3) Selection. A greedy strategy based on fitness is adopted
in selection operation.

Compared with DPSO-based RSMT [29] and OSMT [55]
construction algorithms, this kind of DDE can achieve a
greater wirelength reduction on solving RSMT problem and
in terms of constructing OSMT, the wirelength optimization
ability is similar to that in [55]. It can be seen that DE has
certain advantages over PSO in finding RSMT.

2) APPLYING DE TO GLOBAL AND DETAILED ROUTING
DE is alsowidely used inVLSI global routing. Reference [71]
uses DE for 3D IC global routing to minimize wirelength
with respect to Through Silicon Vias (TSV). The mutation
operation of the algorithm uses Eq. (8), that is, the mutation
operator creates mutant vectors by perturbing a randomly
chosen vector Xr1 with the distinction of two other randomly
chosen vectors Xr2 and Xr3 . The crossover and selection
operations are performed by Eqs. (13) and (14), respectively.
And [72] uses DE for restrictive channel routing and use
the horizontal and vertical constraints in the solution vector
encoding to eliminate unfeasible solution, which leads to
lower complexity and reducing search space.

D. APPLICATION OF ABC
1) APPLYING ABC TO SMT CONSTRUCTION
[73] presents an ABC algorithm for solving the routing
optimization problem, showing noteworthy improvements in
reduction of the total interconnected length. The problem is
to find a RSMT to connect all terminals or pins, without any
severe loss of generality from a grid graph. And the search
space is also represented by Steiner Matrix. Since ABC is
good at exploration but poor at exploitation, they introduced
two steps in the algorithm to improve the exploitation. One
is to design a new probabilistic function for selecting food
sources that takes into account the type and complexity of
the problem, which is described as follows:

pi = e−
fiti
ρ (40)

VOLUME 8, 2020 26281



X. Chen et al.: Survey of SI Techniques in VLSI Routing Problems

where ρ is a constant depending on the type and complexity
of the problem dealt. The other is a new equation to exploit the
food sources in onlooker bee phase of the algorithm, which
is described as follows:

vij = xbest + φ(xbest − xij) (41)

where xbest is the best solution in the current iteration. Using
Eq. (41), the worst solution will get the best chance for local
search and the best solution in the current population can
modify all other solutions in next generation.

The specific procedures for solving RSMT problem with
ABC are shown in Algorithm 3.

Algorithm 3 Construct RSMT by ABC

1 Define objective function, f (x), maximum number of
iterations, maxit and a counter, c ;

2 Initialize a population of bees xi (i = 1,2,. . . ,NP) and
iteration counter iter = 0;

3 while iter < maxiter do
4 for i = 1:NP/2 (employed bees) do
5 Calculate new solution by Eq. (16);
6 Calculate f (xi) for all i;
7 Calculate pi by Eq. (40);

8 for i = 1:NP/2 (onlooker bees) do
9 Select solution based on pi;
10 Calculate f (xi);
11 Calculate pi by Eq. (40);
12 Use greedy selection;

13 if for particular xi, f (xi) doesn’t improve until c then
14 Scout produces new solution using Eq. (18);

15 iter = iter + 1;

Later in 2015, Zhang and Ye [74] proposed a discrete ABC
for the OARSMT construction which is used for routing the
multi-terminal nets in VLSI design. The algorithm generates
the escape segments for OARSMT firstly, and then use the
discrete ABC to search a near-optimal solution. Compared
with the basic ABC algorithm, their algorithm has the follow-
ing improvements: (1) A key-node-based encoding scheme is
adopted to build a tight searching scope for representing the
feasible solution; (2) For Steiner tree construction, a modified
classic heuristic is presented as the encoder that can construct
the Steiner tree with a good solution quality; (3) A key-node
neighborhood configuration and two local search operators
with an indefinite search step length are applied to the local
search strategy; (4) In addition, a global search operator is
designed to avoid the generation of the same initial solution
every time and a merging operation is used to enhance the
global search.

2) APPLYING ABC TO GLOBAL ROUTING
Bhattacharya et al. [75] utilized ABC to find the optimum
wire length of a chip during global routing. The search space

of the problem is represented by the Steiner Matrix. In this
case, the solutions act as the food sources and the nectar
amount of the food sources decides their fitness.

Three phases are used to obtain a solution:

a: EMPLOYED BEE PHASE
Initialize a number of solutions (equal to half of the popula-
tion size). Each solution is generated by randomly selecting
some elements of its corresponding matrix and setting it to 1
(These points can be regarded as Steiner points in the original
global routing graph), while the original terminal nodes are
kept unchanged.

b: ONLOOKER BEE PHASE
The fitness value of each matrix is obtained using the Prim’s
algorithm. The probability value of each solution (matrix)
is then obtained by Eq. (17). Depending on this probability,
the solutions are selected in the onlooker bee phase.

c: SCOUT BEE PHASE
For any food source (matrix), the solution is discarded and
the algorithm will enter the scout bee phase if the solution
is not improved within the set threshold range. And the new
solutions are generated by randomly selecting points in the
original matrix.

Repeat the above steps until the termination condition is
satisfied. Then the best solution is determined according to
the fitness value and the optimal wirelength is obtained.
In this paper, ABC can work efficiently because the candidate
solutions are obtained from the parents by means of a simple
and elementary operation method. This method is imple-
mented based on finding the difference between randomly
chosen parts of parent solution and a random solution from
the population. So that the convergence of the algorithm is
hastened. Compared with a quick and robust global router
NTHU 2.0 [83], which solves all International Symposium on
Physical Design (ISPD) benchmarks, [75] can generate better
results and more optimum routing configurations.

Zhang and Ye [76] applied the ABC algorithm to the
routing for two-terminal nets and compared its performance
with the maze algorithm. In order to adapt the ABC algorithm
for solving the routing problem of two-terminal nets, several
parts of ABC are altered as follows: (1) The algorithm adopts
a sequence encoding method, which divides the solutions
of the problem into two parts: the row-based solutions and
the column-based solutions; (2) Half of the initial solution
is generated by pattern routing, and the other half is ran-
domly generated to speed up the algorithm convergence;
(3) A local search operation is designed to exchange the
front part sequences or behind part sequences of the auxil-
iary solution and the current solution to generate two new
solutions, and then select the best solution from the new
solutions and the current solutions as the updated current
solution; (4) A dynamic attractiveness probability is designed
for adjusting the positive feedback of this algorithm during
the different stages. The experimental results demonstrate
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that ABC algorithm can find the less cost routing paths
for the routing problem of two-terminal nets than the maze
algorithm.

E. APPLICATION OF FA
1) APPLYING FA TO GLOBAL ROUTING
Nasir et al. [78] applied FA on VLSI routing to find the mini-
mum time delay by choosing the path and placing the buffers
intelligently. The proposed algorithm employs the location
of doglegs to model the firefly that represents the routing
solution. Like the previous model of using PSO to solve
routing problem [63], in this work, a distributed RC network
is still used as interconnected model and the Elmore Delay
formulation is applied to compute the interconnect delay from
source to sink. And the same grid-graph model, as shown
in Figure 8(a) and 8(b), is used to represent the areas that
are possible for routing path and information about obstacles
and buffers. In the model of Figure 9, each firefly represents
a candidate solution of the problem. Similar to the particle
swarm, the position of each firefly in FA is also a seven-vector
from e1 to e7. Thus the general representation of the firefly in
VLSI routing problem as follows:

xi =



e1
e2
·

·

·

en−1
en



Algorithm 4 FA for VLSI Routing Problem

1 Define objective function f (x), and maximum number of
iterations, maxit;

2 Initialize a population of fireflies xi(i = 1, 2, . . . , q),
parameters: γ , β0, α, and iteration counter iter = 0;

3 Place the buffers randomly for the population;
4 while iter < maxiter do
5 for i=1 : q (all q fireflies) do
6 for j = 1 : q do
7 if Ii < Ij then
8 Move firefly i towards j using Eq. (21);
9 Place the buffers randomly for firefly i;
10 Perform correction if necessary;
11 Evaluate new solution according to the

f (x), update Ii and global best if
necessary;

12 Output the firefly with the highest light intensity;

Algorithm 4 gives the FA algorithm for VLSI routing opti-
mization problem. The algorithm generates the initial firefly
population randomly, and the location of a firefly is evaluated
by the fitness function. And light intensity of firefly Ii at

xi is determined by fitness f (x) using Eq. (31) to Eq. (34).
At each iteration, each firefly will fly to a firefly with larger
light intensity, using Eq. (21) as the position update formula,
where distance r is the Cartesian distance between the two
fireflies. However, after the firefly moves towards another
agent, the new position suggested might be invalid due to
inexact coordinate location. Therefore, the correction strategy
in Step 10 is proposed to mainly focus on two situations: one
is that the solution is a decimal, and the easy way is to round
it off; the other is that the solution exceeds the coordinate
boundary, and the measure taken is to ignore this iteration.
Next (Step 11) is the fitness evaluation of the new firefly and
the update of the light intensity. The final solution is obtained
by continuously iterating and updating the global best. The
author compared this method with PSO-based routing algo-
rithm [63] and the same optimal solution was obtained. For
the routing problem without buffer insertion, the algorithm
process is roughly the same as Algorithm 4, only needing to
omit Step 3 to Step 9.

In [62], FA, the PSOwith inertia weight (PSO-W), the PSO
with constriction factor (PSO-C) and the PSO with muta-
tion (PSO-MU) are used to minimum wirelength in global
routing. And both FA and PSO-MU yield lowest minimum
wirelength, but the calculation time consumed by FA is about
6 times that of PSO-MU and 10 times that of PSO-W. It can
be seen that traditional FA algorithm has a better optimiza-
tion capability than traditional PSO algorithm, but a good
improved PSO algorithm such as PSO-MU can achieve the
same optimization results as traditional FA, and the time
complexity is much lower.

In [77], FA and ABC are used to connect all terminal nodes
under the initial setting of the randomly generated terminal
nodes coordinates. And the performance of the two algo-
rithms in terms of minimizing the interconnected length is
compared. The experimental results show that FA can achieve
shorter wirelength in the search for terminal nodes of RSMT,
but the computational cost is larger. Therefore, if our ultimate
demand is only time delay reduction by minimizing intercon-
nected wirelength, FA is no doubt a better choice. However
if the runtime requirement is higher, it is recommended to
choose ABC.

V. RELATED DISCUSSIONS
At present, most of routing problems are aiming at mini-
mizing interconnected wirelengths, while at the same time
considering more and more factors in the routing process
such as: obstacle-avoiding routing, minimizing the number
of vias, delay and congestion optimization, etc. Chip perfor-
mance can be further optimized through these routing opti-
mization efforts. Therefore, a distribution of SI techniques
per VLSI routing research problem is given in Figure 13,
respectively SMT construction, wirelength-driven routing,
obstacle-avoiding routing, timing-driven routing, power-
driven routing. As can be seen that most of the routing
problems with SI techniques aim at optimizing the wire-
length, while the optimization for delay, obstacle and power
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FIGURE 13. Distribution of SI techniques per VLSI routing subproblem in
the surveyed works.

consumption is rare. As the continuous development of
modern technology, the industry urgently needs an efficient
automated routing process. The researchers summarized the
characteristics of routing problems in different design envi-
ronments, and have built a series of routing models and
evaluation models under various new processes, such as
multi-layer routing based on X-architecture, global routing
for MDSV design, new problem models under the advanced
via-pillar technology, etc.

A. MULTI-LAYER ROUTING BASED ON X-ARCHITECTURE
In recent years, more and more researches [55]–[58], [60],
[61], [70], [84], [85] have been conducted on X-architecture
SMT construction. However, most of the SI algorithms are
used to solve the RSMT problem. Because the early global
routing algorithms are based on Manhattan architecture,
the wirelength and interconnection delay are optimized by
optimizing the Steiner tree topology, transforming the wire
width, and inserting buffers, thereby helping to upgrade per-
formance of the chip. Moreover, when the global routing
based on Manhattan architecture optimizes the interconnect
length, its optimization ability is limited since the rout-
ing direction can only be horizontal and vertical. There-
fore, it is necessary to change the traditional Manhattan
architecture from the root of the problem. The proposed
X-architecture model makes up for the limitation of the
RST routing directions, which can make full use of the
routing area and interconnection resources. So that it can
further reduce the chip area, shorten the wirelength, reduce
power consumption, and make many performance indica-
tors in the physical design get promoted. At present, most
of the research works on solving non-Manhattan architec-
ture Steiner trees are based on exact algorithms [86], [87]
and traditional heuristic algorithms [30], [31]. The time
complexity of the exact algorithms grows exponentially
with the size of the problem, while the traditional heuristic
algorithms are mostly based on greedy strategies and are
prone to local extrema. And when constructing Steiner trees,
they do not make full use of the geometric properties of
non-Manhattan architecture, and cannot guarantee the quality
of Steiner trees. Therefore, it is of great practical significance
to explore routing algorithms based on various SI techniques.
At present, some works [55]–[58], [60], [61] have applied
PSO to X-architecture routing and achieved good results.

As IC design enters the nano-field, the number of routing
metal layers continues to increase, making multi-layer global
routing face a huge challenge. However, the research work
on non-Manhattan architecture mainly focuses on the con-
struction of Steiner tree, and there is a lack of research on
multi-layer global routing algorithms. The current research
status at home and abroad [88]–[90] shows that although
the non-Manhattan structure can effectively reduce the wire-
length and chip area, greatly improve the performance and
density of chips, but the cost of the number of vias are
increased at the same time. In multi-layer routing, the num-
ber and size of vias are key optimization goals. Therefore,
constructing an efficient multi-layer global router under the
non-Manhattan architecture is an important theoretical and
practical work.

B. MDSV DESIGNS FOR GLOBAL ROUTING
With the development of process technologies, nanoscale
Complementary Metal-Oxide-Semiconductor (CMOS) cir-
cuits have experienced a dramatic increase in transistor den-
sity over the past three decades, resulting in increased density
of power consumption in the circuit. According to related
research, the power density on the microprocessor increases
at twice the rate every three years. Such high-density power
consumption will cause the temperature of the wafer to
overheat, which will reduce the reliability of the circuit.
Therefore, the problem of power consumption has to be
taken seriously. However, most current routing algorithms
are proposed to reduce the number of overflows, wirelength
and computation time, and all functions operate in the same
voltage mode. This traditional voltage supply mode can eas-
ily cause excessive unnecessary power consumption. This is
because all of the functions of the chip operate in the same
high-voltage mode, while other devices that can operate in
the lower-voltage mode also operate at high voltages, increas-
ing the power consumption of the chip, thereby reducing
battery life. In order to change this voltage supply model,
industry chip companies and researchers have proposed Mul-
tiple Supply Voltage (MSV) design modes that can control
the voltage of different functional components to effectively
reduce power consumption through complex control strate-
gies. So multi-voltage design is widely used in advanced
applications or low power applications. Compared to MSV
designs, MDSV technology can further reduce power con-
sumption. In the MDSV design, the voltage of each power
domain can be dynamically changed according to the cor-
responding power modes. In some power modes, such as
standby mode and sleep mode, some power domain can even
be set to completely off to save power.

The introduction of MDSV brings new opportunities and
challenges to the physical design of VLSI circuits, and
causes the update of the entire layout domain algorithms.
It puts forward new requirements for the physical design
process with MDSV as the voltage supply model including
layout planning and placement, routing, parameters extrac-
tion, etc. It also poses a great challenge to the study of EDA
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(Electronics Design Automation) tools, which is closely
related to the global routing. Reference [91] is the first time
to build a corresponding global router for a MDSV design
mode. However, this work has oversimplified its mathemat-
ical problems, and failed to conduct corresponding exper-
imental research from the goal of reducing power. In the
MDSV design mode, a net may pass through more than one
power domain, some of which may be off and the other power
domains are still in active modes. For an active net that has
long-distance routing in a closed power domain, a functional
conflict may occur if its repeater is placed in a closed power
domain. Therefore, limiting the routing length of the active
net in the closed power domain is an extremely important
global routing problem in theMDSVdesign. In [92], a length-
limited maze routing algorithm is proposed to control the
wirelength of the routing path. At the same time, [93] also
proposes a fast SMT construction algorithm that considers the
limit of the routable wirelength within obstacles. But none
of them considers that the length constraints under differ-
ent power domains are different. Therefore, the two global
routers [92], [93] may still produce some illegal routing
results under the MDSV design mode.

The existing research work on the MDSV design mode
mainly focuses on some local stages such as layout and clock
tree construction, and lack an effective and complete solution
of global routing under theMDSV design. If the novelMDSV
is introduced into global routing phase, new global routing
issues will arise, including new constraints and mathematical
models. It is necessary to propose more effective algorithms.
In the research of our team and the industry companies
including Cadence Design Systems in the US, we found
that the global routing algorithms under MDSV design can
effectively reduce the large amount of power consumption,
but the current academic community lacks research on the
global routing under MDSV design mode. In fact, in order
to solve the dynamic power problem, scholars have also
developed some new tools based on MSV and other related
technologies. However, in these tools, the relevant routing
algorithms need to be changed to solve the routing problems
in the new design mode. Therefore, it is of great theoretical
value and practical significance to find an effective global
routing algorithm under the MDSV design and construct an
efficient low-power global router.

C. MULTILAYER ROUTING UNDER
ADVANCED VIA-PILLAR PROCESS
Under current manufacturing processes, interconnect delay
has exceeded gate delay and is a major factor in determining
circuit performance. The interconnect delay is mainly opti-
mized during the routing phase. Therefore, it is necessary
to consider more performance optimization targets such as
delay in routing process in order to optimize the performance
of the chip. With the development of process technology,
the resistance of metal wires and vias increases exponen-
tially, which brings more stringent constraints to traditional

routing-related algorithms. It leads to the existing methods
being prone to excessive delay in the solution process, and
increases the difficulty of timing convergence, thereby seri-
ously affecting the performance of chips. To this end, Syn-
opsys and TSMC (Taiwan Semiconductor Manufacturing
Company) jointly launched the key process of via-pillar
in 2017 as a representative technology for chip performance
in designs of 7 nm and below [94]. The via-pillar process is
based on the fundamental problem of high resistance affect-
ing the delay problem,which can greatly reduce the resistance
of themetal wires and vias, thereby greatly providing the opti-
mization of the delay and optimizing the overall performance
of chips.

After introducing the via-pillar process, many problems
in the traditional routing stage need to be updated, includ-
ing layer assignment, track assignment and detailed routing.
It is necessary to construct a new problem model under
the via-pillar process, and then design the corresponding
effective algorithm. Related issues under the via-pillar pro-
cess have become more complex, requiring careful con-
sideration of via location, via size, and delay optimization
issues. However, the research works on the traditional routing
problems mostly regard the vias as having no shape and
size. The size and position of the via are not considered
in the processing of the related routing subproblem, which
leads to the inconsistency between the final routing result
and the actual chip design requirement, and the failure rate
of chip production is increased greatly. At the same time,
the industry still adopts manual implementation for some of
the related routing problems under the via-pillar process, and
there is still lacking an effective automated design process.
Therefore, it is of great theoretical and practical significance
to seek an effective and complete automated routing algo-
rithm under the via-pillar process to construct an efficient
performance-driven multi-layer router.

1) LAYER ASSIGNMENT
In recent years, the work of layer assignment not only aims
at minimizing the number of vias, but further attempts to
reduce the delay [95], [96]. However, these works with con-
siderations for delay optimization do not take into account
the size of vias. It is assumed that the vias do not occupy
routing resources and thus do not affect the routing of metal
wires, which will seriously affect the accuracy of the final
global routing results guiding for detailed routing. Existing
research works on layer assignment either do not consider
the delay problem, or the via size, which are far from the
actual chip design requirements. After the introduction of
the via-pillar process, the relevant routing model needs to
consider the existence of via size, and the key performance
index of delay optimization. Therefore, the existing layer
assignment algorithms are no longer applicable to the prob-
lems under via-pillar process. And it is necessary to design a
corresponding effective algorithm.
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2) TRACK ASSIGNMENT
In order to speed up the detailed routing and enhance
the accuracy of global routing guidance performance, track
assignment is added between global and detailed routing.
However, the existing research works on track assignment
problems do not consider the local nets, or the location of
vias, or time delay, which will further aggravate the mismatch
of global routing to the detailed routing. Reference [97]
applies DPSO on track assignment problem, considering
local nets, overlapped conflict, wirelength and blockages.
And compared with the negotiation-based optimization algo-
rithm [98], it achieves less overlap cost. Thus, it can be seen
that applying SI techniques to track assignment problem is a
wise approach. For track assignment under the via-pillar pro-
cess, it is necessary to re-establish a new model considering
the via location, delay optimization, and avoiding open, while
further reducing the total overlap cost, wirelength and delay.
In order to effectively improve the global routing solution’s
guiding role for detailed routing, it is very important to con-
struct an effective, high-quality, and easily parallelized track
assignment algorithm.

3) DETAILED ROUTING
Detailed routing methods can be divided into serial algo-
rithms and parallel algorithms. In order to make up for the
effect of the order of nets on global results, the serial rout-
ing usually refines the routing results by means of rip-up
and reroute, and can quickly obtain a good quality solution.
But these serial routing methods [99], [100] may generate
some invalid solutions, while the parallel detailed routing
algorithms based on the multi-commodity flow model [44]
can simultaneously route multiple nets. However, these algo-
rithms do not take into account the delay optimization prob-
lem and the complexity is too high, which cannot solve the
performance-driven routing problem well. While the intro-
duction of via-pillar process can effectively optimize the
delay. Therefore, finding an efficient algorithm for detailed
routing under the via-pillar process is also a problem worth
exploring.

VI. PROSPECTS OF FUTURE STUDY
As one of the emerging optimization methods in recent years,
SI is becoming one of the most concerned optimization
areas. The simulation of the intelligent behaviors exhibited
by natural organisms provides new ideas and methods for
solving various complex optimization problems. The five SI
techniquesmentioned above have beenwidely used in various
fields of VLSI, especially in routing problems. Therefore,
the effectiveness and efficiency of SI in the routing filed
deserve scholars to further explore its potential.

A. ROUTING FOR ADVANCED TECHNOLOGY
MODELS USING SI
With the advent of various new processes and new technolo-
gies in the field of IC, more possibilities are provided for the

FIGURE 14. Yearly distribution of VLSI Routing subproblems solved by SI
techniques in the surveyed works.

optimization of routing problems. Figure 14 portrays the fre-
quency of published SI-based works for each surveyed VLSI
routing subproblem per year. To a certain extent, this survey
reflects the research trend of VLSI routing problems in recent
years. It can be seen that since 2009, scholars have begun to
focus on optimizing the time delay and power consumption in
routing. And the highest paper output was achieved in 2015,
while in the past four years, there have been few studies on
solving routing problems by SI techniques. So the appearance
of new processes brings new research prospect for routing
field, which can further optimize the wirelength, time delay,
power consumption and other important objectives, so as to
improve the overall performance of the chip.

1) USE SI TO SOLVE NON-MANHATTAN
ARCHITECTURE ROUTING
From the application of SI in the routing problems in
Section IV, most of routing algorithms are based on grid
graph. However, in the multi-layer routing model, there
are many kinds of routing directions of some metal layers.
If the original methods are directly applied to non-Manhattan
architecture routing problems, the algorithms will become
more complicated and have certain limitations. Therefore,
non-Manhattan architecture and the grid routing model are
not a good combination. Especially in the global routing
phase, it is necessary to rethink some essential problems
like the cost function of the routing edges, allocation of
routing resource, etc. In order to better solve non-Manhattan
construction routing problem of VLSI, it is of great signifi-
cance to explore effective strategies on the SMT construction
based on non-Manhattan architecture, rerouting of the con-
gested area, delay optimization, and the construction of layer
assignment algorithm.

2) USE SI TO SOLVE LOW-POWER GLOBAL
ROUTING IN MDSV DESIGN MODE
Compared with a single voltage mode, the global routing
in MSV design mode are more complicated, either facing a
computational explosion or falling into local extremum and
not being able to approach the global optimal solution, so that
people are beginning to seek various heuristic algorithms.
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FIGURE 15. Yearly distribution of the SI techniques applied to VLSI
routing subproblems in the surveyed works.

A large number of research results show that the SI algorithm
is indeed a powerful optimization tool and has strong vitality
in solving various NP-hard problems. Considering the use
of SI techniques to construct an effective strategy for solv-
ing the low-power global routing problem in MDSV design
mode, to a certain extent, can promote the construction
of an efficient VLSI global router in a MDSV chip design
environment.

3) USE SI TO SOLVE ROUTING UNDER
THE VIA-PILLAR PROCESS
For performance-driven multi-layer routing under the com-
plex via-pillar process, SI techniques are used reasonably
and efficiently to solve problems such as layer assignment,
track assignment and detailed routing. For example, in the
track assignment stage, it is a smart idea to find the optimal
assignment scheme by establishing a multi-objective SI opti-
mization framework when considering the location of vias,
local nets and delay.

B. EXPLORE NEW AND AVAILABLE SI TECHNIQUE
The exploration and exploitation abilities of the SI algorithms
are well played in the VLSI routing problems, and have
contributed greatly to improving the quality and runtime
of the routing algorithms. Among the above-mentioned SI
techniques, PSO is simple and easy to implement, and has
strong global optimization ability. Figure 15 gives a yearly
distribution of the SI techniques applied to VLSI routing sub-
problems in surveyed works. It shows that PSO has become
the most widely used SI technique in surveyed VLSI routing
problems since 2009. Since this technology was proposed,
it has attracted great attention from many scholars. In just a
few years, a research hotspot has been formed and a large
number of research results have been obtained. In recent
years, PSO has been widely used in VLSI partitioning [101],
floorplanning and placement [81], [102], routing [51]–[58]
and other fields [103], [104]. Moreover, in our preliminary
work [29], [55]–[61], [67], [68], [70], [80], [81], [97], PSO
has also been well applied to solve related problems in VLSI
physical design. A large number of experimental results show
that the PSO algorithm is indeed a beneficial optimization

tool and has strong vitality. Therefore, exploring new and
available SI techniques is also one of the research directions
for future VLSI routing problems.

1) QUANTUM PARTICLE SWARM OPTIMIZATION (QPSO)
In the PSO algorithm, the motion state of a particle is
described by position and velocity. With the evolution of
time, the motion track of the particle is fixed. At the same
time, the velocity of the particle is limited, so that the search
space is a finite and gradually decreasing region, and global
convergence cannot be guaranteed. Therefore, QPSO based
on δ-potential well model [105] is proposed and becomes the
most widely researched and used version. In QPSO, all parti-
cles have quantum behavioral properties and no longer follow
the Newtonian equations for the motion state of particles in
PSO, which is a deterministic description. Compared with
PSO, QPSO uses a simpler position-only moving model with
fewer control parameters. More importantly, particles of a
quantum system can appear anywhere at a certain probability
distribution to achieve global search.

In recent years, QPSO has been successfully applied in
various fields such as neural network [106], power sys-
tems [107], electronics and electromagnetics [108]. There-
fore, QPSO has an opportunity to better solve VLSI routing
problems that PSO can solve.

2) CPSO
The traditional PSO needs a mass of particles to deal with
high-dimensional problems, so that the calculation is quite
complicated and it is difficult to get a satisfactory solution.
The general approach to solving high-dimensional problems
is to adopt a divide-and-conquer strategy. Early CPSO algo-
rithms are also based on this strategy. The CPSO proposed by
Van den Bergh and Engelbrecht [20] decomposes the input
vector into multiple sub-vectors and performs PSO for each
sub-vector, and then integrates the search results into a global
swarm. In 2005, Niu et al. [109] introduced the master-slave
mode into PSO. A swarm is formed from one master swarm
and multiple slave swarms. The slave swarms execute PSO
(or its variants) independently to maintain the diversity of
particles, while the master swarm enhances its particles based
on its own knowledge and also the knowledge of the parti-
cles in the slave swarms. Reference [110] combines random
grouping and adaptive weighting, and proposes Coopera-
tively Coevolving Particle Swarm Optimization (CCPSO),
which can perform reasonably well with only a small number
of evaluations. Later based on CCPSO, they adopted a new
PSO position update rule that relies on Cauchy and Gaussian
distributions to sample new points in the search space, and a
scheme to dynamically determine the coevolving subcompo-
nent sizes of the variables [111]. This method has become
a very competitive method to solve complex multimodal
optimization problems.

PSO based on collaborative strategy is a powerful way
to deal with high-dimensional problems. Parallel execu-
tion of multiple populations can speed up the efficiency.
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And information exchange in subgroups can balance explo-
ration and exploitation, reducing the risk of premature con-
vergence and local optimal. In dealing with complex VLSI
routing issues, collaborative PSO has an opportunity to
achieve better solutions.

3) HYBRID SI ALGORITHMS
Each SI technique has its own unique properties and
will have different effects in different application sce-
narios. In recent years, in order to improve the per-
formance of various SI techniques, and further improve
the quality of the solution, various hybrid SI tech-
niques: PSO-ACO [112]–[114], ACO-ABC [115], [116],
DE-ABC [117], [118], FA-DE [119], PSO-DE [120], [121]
and other hybrid SI algorithms [122], [123] are proposed
and successfully applied in various fields. Reference [112]
proposes a two-stage hybrid swarm intelligence optimization
algorithm, using the randomicity, rapidity and wholeness of
PSO and GA for rough searching; and for detailed searching,
they made use of the parallel, positive feedback and high
accuracy of solution of ACO. Kefayat et al. [115] took the
advantages of the global search ability of ABC and the local
search ability of ACO to make up for the shortcomings of
ACO that are easy to fall into local optimum. In the hybrid
DE-ABC algorithm proposed by Yang et al. [117], employed
bees employ the mutation and crossover strategies of DE to
enforce their exploration ability while onlooker bees keep
their original updating strategy to retain the exploitation
ability. This algorithm improves the convergence speed and
searching ability of ABC.

Using a single SI technique is easily affected by the ini-
tial population and parameter settings, while mixing differ-
ent SI technologies, or communicating information through
the co-evolution of different types of populations, or learn-
ing some mechanisms from other SI techniques can greatly
improve the performance of the algorithm and avoid falling
into local extremes as much as possible. The above successful
cases show that the hybrid SI algorithms have opportunity to
be better applied to VLSI routing problems than the single SI
technique.

VII. CONCLUSION AND FUTURE WORK
SI techniques can solve a variety of NP-hard problems in
VLSI routing including Steiner tree construction,wirelength-
driven routing, obstacles-avoiding routing, timing-driven
routing, power-driven routing, etc. In the Steiner tree con-
struction problem, the Manhattan architecture cannot fully
utilize the routing resources because of its limited routing
orientation, while the non-Manhattan architecture was pro-
posed to solve this problem. And more and more research
works are based on non-Manhattan architecture, especially
the X-architecture. In this problem, SI techniques are mainly
used for the selection of Steiner points, and the wirelength
is used as an evaluation index. These evaluation indexes
guide the individuals to develop towards the optimal goal
in the form of functions. For example, in PSO and DE,

they exist in the form of fitness function and in ACO, ABC
and FA, they are respectively reflected as pheromone, food
sources and intensity. In the obstacles-avoiding routing, pres-
ence of obstacles may affect the selection of Steiner points.
By designing effective obstacle-avoiding strategies, mean-
while considering wirelength and the cost of routing through
obstacles, both the wirelength and congestion are minimized.
Timing-driven routing is usually done with a distributed
RC network as the interconnected model, using the Elmore
delay formula to calculate time delay from source to sink.
Power-driven routing, in addition to considering wirelength,
as well as the number of vias, capacitance and other con-
straints. The later study also introduced MDSV to further
reduce power consumption.

We investigate five classic and commonly used SI tech-
niques: PSO, DE, ACO, ABC, and FA in the field of VLSI
routing. Among them, ACO and PSO have been widely used
in most of the routing problems mentioned above, while the
remaining SI techniques are used less, most of which are
only used in the selection of Steiner points and the routing
problem considering the minimum interconnected length.
Therefore, we expect to see more available SI techniques
that will improve the quality of the solution can be applied
to the routing algorithms considering obstacles, delay, and
power consumption. Especially the QPSO, collaborative PSO
and hybrid SI algorithms, which are potential techniques, are
promising for better results.

Furthermore, it is crucial to introduce relevant new tech-
niques and new processes to achieve breakthroughs in the
field of VLSI routing, such as the X-architecture introduced
to make full use of the routing resources, theMDSV designed
to solve the low-power global routing, and the via-pillar pro-
cess introduced to improve the performance of themulti-layer
routing. The traditional routing models are not applicable in
these new design backgrounds, and the complexity is too
high. Therefore, exploring new routing models under these
new technologies and new processes is the development trend
of VLSI routing in the future. As a powerful optimization
tool, SI will continue to play a significant role in VLSI
routing.
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