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Abstract
Purpose of Review The review presents an overview of advanced robot programming approaches which aims to ease robot
programming and speed up the deployment of industrial robots, and then some considerations are shared with respect to
requirements in new trends of manufacturing.
Recent Findings The new trend of customization along with Industry 4.0 is appearing which is a challenge for robotized systems.
The bottleneck is mainly the efficiency of deployment of industrial robots because traditional programming methods are not
intuitive and always time-consuming. Advanced robot programming techniques are expected to ease robot programming and
make it accessible for non-experts.
Summary A review on advanced robot programming is here presented, firstly introducing the background of this research,
followed by reviewing literatures in four categories: programming by demonstration for low-level motion, programming by
demonstration for high-level task, speech recognition-based and augmented reality-based programming approaches, and
finishing on discussing future works.

Keywords Advanced robot programming . Programming by demonstration . Speech recognition . Augmented reality

Introduction

With the deployment of industrial robots in manufacturing,
productivity and quality have been boosting for decades.
The critical role of the robot mainly owes to its capacity for
repeating a wide variety of tasks with high speed and accuracy
in long term; in terms of cost, the deployment of the robot

takes days to months of programming by robotics engineers.
On the other hand, the new trend of customization faced by the
manufacturing enterprises changes this situation and brings
new characteristics, production in small volume but large var-
iants, and short cycle. This irreversible momentum urges the
robot to be deployed from task to task efficiently.

However, traditional robot programming approaches,
namely, lead-through (also called kinesthetic teaching),
drive-through, and off-line programming, are time-consum-
ing, unintuitive, and high skill demanded. Tedious program-
ming has become the crucial bottleneck during robot deploy-
ment, which also has high prerequisites for most practitioners
in manufacturing and makes industrial robots hard to be wide-
ly used in small and middle enterprises (SMEs).

In order to resolve the above bottleneck, several advanced
robot programming techniques have been developed by re-
searchers to ease robot programming and speed up the deploy-
ment of industrial robots. With the development of artificial
intelligence, related technologies have also been applied to
make industrial robots more intelligent and make robot pro-
gramming accessible to non-experts. The main existing tech-
niques of advanced robot programming can be viewed as dif-
ferent variants of programming by demonstration (PbD) pipe-
line; meanwhile, there are other methods based on speech rec-
ognition and augmented reality. The PbD approach is unique as
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the robot system learns, improves, or duplicates actions based
on human demonstrations. It provides the users with an intui-
tive and fast way of programming by allowing the task to be
performed naturally and leaving the robot system to observe,
follow, and learn from sensory information. Furthermore, ap-
proaches based on programming by demonstration can be clas-
sified to two categories that are PbD for low-level motion and
PbD for high-level task. Speech recognition-based robot pro-
gramming methods provide the translation between human
voice and commands to be executed on an industrial robot.
And approaches using augmented reality techniques aim to
provide information closely related to robot tasks by placing
virtual objects in the real world and allowing the human to
interact with them using specific devices.

The rest of this paper reviews advanced robot program-
ming techniques by classifying them into four categories as
follows: PbD for low-level motion, PbD for high-level task,
speech recognition based-, and augmented reality-based ap-
proaches, and finished by a discussion about future works.

PbD for Low-Level Motion

Programming by demonstration for low-level motion refers to
learning robot trajectories or force controllers from human dem-
onstrations specifically which includes two fundamental stages,
namely, “data acquisition” and “data modeling.” In the data
acquisition stage, methods are proposed to capture human mo-
tion data during the process of demonstration. In the data
modeling stage, the aim is to extract critical information from
captured data and provide the robot with the ability to adapt the
learned skill to different situations. Researches focusing on pro-
gramming by demonstration in trajectory level have a long his-
tory, and related theories and methods are gradually improved.

Firstly, we discuss two kinds of techniques used to record
the demonstration trajectory of human as shown in Fig. 1. One
is mapping-based method that records human motion data by
cameras, inertial sensors, data gloves, and other sensors; then
map these data from human to robot [1–3]. The advantages of
this kind of method are two folds that one is intuitive for

human demonstrators and the other is smooth trajectories
can be captured. Because of the differences in configuration,
size, and ability existing between human and robot, these ad-
vantages are valid only on the promise that a mapping func-
tion from human to robot can be built. The other is non-
mapping-based methods that sensors on robot record its own
motions as it is passively teleoperated by human or moved
using kinesthetic teaching [4, 5]. This kind of method omits
the correspondence problem between human and robot and is
quite straightforward for robots, while the cost is that it is hard
to acquire a smooth and accurate trajectory. And it is also not
easy for demonstrators to control a multi-degree-of-freedom
manipulator using non-mapping-based methods.

Given human demonstration data that have been acquired
using one of the methods described above, we now discuss
methods for generating robot movement using this data. The
simplest way is to use this data directly, but it will fail if there
exist differences between application and demonstration.
Considering the generalization ability between different appli-
cations, it is necessary to learn a robot motion model on the
base of demonstration data. The existing methods can be con-
cluded into two broad categories based on what is learned, as
stated in [6]. One category tries to learn a policy that is con-
sistent with the demonstrated behaviors [7–12]. Here the pol-
icy is a mapping from states to actions, which can be executed
by the robot to generate similar actions like demonstrations.
The other category tries to learn a cost function that the dem-
onstrator tries to optimize [13–18]. Here the cost function is a
mapping from states to a scalar cost value. For the policy
learning methods, the policy becomes invalid and needs to
be relearned when the underlying state transition model of
the robot system changes. For the cost learning method, the
cost function together with the information of state transition
model can be optimized to obtain a policy, which makes it
consistently effective under changing domain dynamics.

Policy Learning

As we know, the traditional robot programming methods al-
ways rely on teach pendant to define trajectories or end-

Fig. 1 Demonstrated trajectory
acquisition methods. Left:
mapping-based. Right:
kinesthetic teaching
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effector poses and then replay the same trajectories by robot.
The shortcoming of such teaching reproduction way is obvi-
ous as it only follows the defined trajectories but cannot adapt
to environmental changes. Policy learning is also known as
behavioral cloning which can generate desired trajectories
when the environment changes using a motion model built
with critical information extracted from demonstrated data
automatically. The most important phase of policy learning
is data modeling.

In the results of early researches, critical points were ex-
tracted from trajectories demonstrated using teach pendant,
and motion policies were modeled by a sequence of critical
states and actions between two states [19, 20]. With the de-
velopment of statistical learning, Hidden Markov Model
(HMM) was applied in which the system was assumed to be
a Markov process and the demonstrations were modeled by a
series of transitions between discrete states [21, 22]. Because
demonstrations were modeled as discrete states and transitions
between them in these methods, it is hard to generate a smooth
trajectory which makes it impossible to control robot joint
motions directly. In practical applications, researchers gener-
ally use the average of multiple trajectories or interpolate be-
tween discrete states to obtain a continuous and smooth
trajectory.

In order to model continuous trajectories directly, various
approaches were proposed, and one of the most representative
methods is known as Dynamic Movement Primitives (DMP)
which formulates the demonstrated trajectory as a dynamic
system with a set of differential equations [2, 23].
Representing a movement with a differential equation has
the advantage that a perturbance can be automatically
corrected by the dynamics of the system. Furthermore, the
equations were formulated in a way that adaptation to a new
goal is achieved by simply changing a goal parameter. This
characteristic allows generalization easily. There are two
kinds of DMPs: discrete and rhythmic. For discrete move-
ments, the base system is a point attractor, and for rhythmic
movements, a limit cycle is used. Both point attractor and limit
cycle attractors of almost arbitrary complexity can be
achieved. DMP is one of the most used frameworks for tra-
jectory learning from a single demonstration, since the dem-
onstrations by different people for the same task cannot be the
same; DMP is hard to take the uncertainties among multiple
demonstrations into consideration. In addition, many
hyperparameters contained in DMP need to be defined in ad-
vance, and the performance of DMP will decrease with im-
proper hyperparameters.

Taking the uncertainties among multiple demonstrations
into consideration, Gaussian mixture model (GMM)-based
approaches were proposed in which different stages of dem-
onstrations were modeled by multiple Gaussian distributions
and uncertainties in the same stage were stated as the covari-
ance of Gaussian distribution [24, 25] as shown in Fig. 2.

Cost Learning

Cost learning also known as reward learning assumes that
desired trajectory results from the optimization of a hidden
function, known as a cost function or reward function. The
goal of suchmethods is to extract the hidden function from the
available demonstrations. Subsequently, the robot reproduces
the learned motions by optimizing cost functions. Different
from policy learning which needs to be relearned in the pres-
ence of heavy environmental changes, the learned cost func-
tions can be optimized together with the information of a new
environment to obtain a valid policy.

The problem of cost learning is commonly casted in the
Markov decision process (MDP) setting and solved by the so-
called inverse reinforcement learning (IRL) methods [13].
There are two challenges of cost learning: first, this problem
is ill-posed as there might be multiple cost functions that op-
timally explain the available demonstrations; second, it is hard
to use only one cost function to generate entire demonstrations
since demonstrations may be acquired from different tasks or
different stages of one task. For the first challenge, approaches
were proposed to find a unique cost function by minimizing
the differences between feature expectations of the resulting
policy and feature expectations of demonstrations. And
maximum-entropy-based and maximum-margin-based IRL
were commonly used in these approaches [14, 15]. For the
second challenge, rather than using one cost function for entire
demonstrations, different cost functions are used to generate
different demonstrations [26]. Researchers also proposed to
apply multiple cost functions for one demonstration in the
case that the demonstration was composed of multiple sub-
stages and every two successive substages were generated by
different cost functions [6].

Force Controller Learning

To further improve the robot ability of interacting with the
environment, force controllers are necessary. Devices which
can be used to record force data from human directly are not
ready, and mapping-based data acquisition methods are im-
possible without available devices. Non-mapping-based
methods such as teleoperation and kinesthetic teaching were
used to record the force information of human demonstration
as the base of modeling process. In terms of the outputs of
learned model, we can summarize the existing methods into
two categories. In the first category, the outputs of learned
model are trajectories of positions and forces [27], while re-
sults of methods in the second category are impedance param-
eters [28, 29] which are inputs to a compliant controller. And a
wide range of probabilistic modeling approaches such as
GMM and Gaussian process regression (GPR) are applied to
model the demonstrations [3].
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PbD for High-Level Task

Programming by demonstration for low-level motion always
focus on learning individual robot motions, while program-
ming by demonstration for high-level task aims on learning
complex tasks which are composed of a combination of indi-
vidual actions such as setting a dinner table or assembly tasks
in manufacturing. Programming by demonstration for high-
level task can speed up the deployment of industrial robots
greatly which is similar to the interaction between a “teacher”
and a “student” in the factory. To get the information of tasks
human demonstrated, non-mapping-based kinesthetic teach-
ing was applied by many methods. As mentioned before, it
is not easy for human to control a multi-degree-of-freedom
manipulator using kinesthetic teaching especially for complex
tasks. A more natural mapping-based approach was adopted
in most researches in which the task can be demonstrated
naturally and captured by external sensors such as cameras
and motion capture systems, and then the semantics of human
operations are extracted and transferred to robot motions. The
main challenge of this approach is to extract the semantics of
human operations accurately. Normally three kinds of tech-
niques are proposed to tackle this challenge including object
position-based semantic understanding, action- or gesture-
based semantic understanding, and constraint-based semantic
understanding.

Object Position-Based Semantic Understanding

The underlying idea of these approaches is that human oper-
ations during task demonstrations will change the positions of
objects in the scene; thus, different operations can be identi-
fied using changes of objects positions before and after one
operation.

Semantic scene graph was proposed in [30, 31]. It was
extracted from image sequences and used to find the

characteristic main graphs of the action sequence via an exact
graph-matching technique, thus providing an event table of
the action scene, which allows extracting object action rela-
tions and semantic understanding. An abstract action repre-
sentation method was proposed in [32]. Given the tracked
point clouds for all objects involved in the manipulation, a
set of spatial relation predicates were evaluated for all object
pairs at all video frames by object segmentation and tracking,
and then action descriptors were built upon spatial Predicate
Vector Sequences (PVS). As we can see, semantics of human
actions were inferred from changes of object positions in the
methods mentioned above; the limitation is that it cannot be
applied to identify actions changing object positions
insignificantly.

Action- or Gesture-Based Semantic Understanding

The underlying idea of these approaches is to convert the
semantic understanding to human action recognition or ges-
ture recognition since the semantics are corresponding to hu-
man actions directly.

For gesture recognition, some methods were achieved
based on a single image [33, 34], and another methods
were implemented using multiple historical images [35].
For action recognition, a template-based method for rec-
ognizing human actions was proposed in [36]. Since
many actions are visually similar, a multimodal
information-fused action recognition method was pre-
sented in [37]. With the development of deep learning,
convolutional neural network-based action recognition
methods were designed [38–41]. Although impressive
results have been achieved in public datasets, the
convolutional neural network-based methods rely on
massive training data which may be impossible in in-
dustrial environment.

Fig. 2 Modeling multiple
demonstrations using GMM
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Constraint-Based Semantic Understanding

The underlying idea of these approaches is to extract the con-
straints or rules from multiple task demonstrations, and then
apply these constraints to solve similar tasks.

A hybrid dynamic system was used to model spindle as-
sembly task in [42], and events and states in the demonstrated
sequences were represented by a directed graph, and then the
optimal, task-level execution strategy was selected based on
execution time and control effort. The underlying constraints
were identified by the robot itself based on multiple human
observations in [43]. The constraints were then considered in
the planning phase, allowing the task to be executed without
violating any of them. A syntactic approach aiming to cap-
tures important task structures in the form of probabilistic
activity grammars from a reasonably small number of demon-
strations was described in [44]; grammars can be recursively
applied to help recognize unforeseen, more complicated tasks
that share underlying structures after learning. And the pro-
posed method was evaluated in Towers of Hanoi experiments.

To further verify the feasibility, several robot programming
by demonstration systems for high-level tasks have been pro-
posed in the scenarios of industrial assembly [45•, 46, 47].

In summary, the aims of PbD for low-level motion is learn-
ing trajectories or force controllers of single manipulation, and
methods for trajectories learning are relatively mature and
have been applied to several applications. In terms of force
controller learning and PbD for high-level task, there still have
issues to be solved in future researches such as non-rigid ob-
ject manipulation.

Speech Recognition-Based Approaches

Since speech is one of the most common ways of human
machine interaction; speech recognition-based advanced ro-
bot programming approaches are proposed for sending human
commands to robots in the industrialized circumstance. In
order to make it applicable in the communication with robots,
the first thing to be done is to develop a system for automatic
speech recognition (ASR) which is always available with the
help of Microsoft Speech Engine.

Vocal commanding between a human and a robot, used in
industrial applications, was explored in [48]. The speech rec-
ognition and text to speech application were developed capa-
ble of supporting a dialog between human and robot for pick-
and-place and welding tasks. An interactive industrial robotic
system for robot pick-and-place tasks, combining voice com-
mands from humans, was presented in [49]. This study has
also presented that vocal commands can be recognized suc-
cessfully at the noise level of 89 dB in industrial environment.
Similar system was also presented in [50] to manipulate the
objects placed randomly on a table with industrial robot ABB

IRB140. Although there are some works implementing robot
programming by speech recognition, the tasks executed by
robots were quite simple, and mapping between vocal com-
mand and robot motion is defined in advance. To program
robot for complex tasks using speech recognition, simply rec-
ognizing vocal commands may be not enough, and enabling
robots with the ability of understanding is important. And
linking speech recognition with mixed reality [51] in robot
programming is an interesting direction for future researchers.
In this scenario, robot trajectories can be defined by operators
using mixed reality techniques, and different choices in graph-
ical user interface can be called using vocal commands.

Augmented Reality-Based Approaches

To alleviate the fact that reprogramming robotic systems re-
quires expert knowledge, another advanced robot program-
ming approach based on augmented reality techniques is pro-
posed. Despite the development of more powerful hardware
and software, the usage of augmented reality (AR) system is
mainly limited to gaming applications. Merging AR with ro-
botic systems brings new human-robot interaction (HRI) pos-
sibilities, and robot programming could be intuitive and flex-
ible with the aid of these technologies.

An AR interface was proposed in [52] that uses a marker
cube attached to a probe, which allows a user to guide a virtual
robot by setting waypoints and orientations. The AR scene is
visualized through a desktop monitor. As an improvement, an
AR manufacturing paradigm was proposed in [53] in which a
user can specify the fly of a robot trajectory through free space
or in contact with a surface, visualize a preview of the robot
movement, and monitor and modify robot variables during the
simulation or execution mode. And a drag- and drop-like pro-
gramming method for common pick and place tasks, using
AR devices such as Microsoft HoloLens, was presented in
[54]. AR was integrated with tactile feedback in [55]. It was
proposed to help engineers for programming an industrial ro-
bot easily and naturally and provide assistance in real time.
AR-based industrial robot programming framework is also
described in [56]. It was found that the AR-based framework
can significantly ease robot programming and motion plan-
ning and reduce the necessity for extensive training of the
human workers, in other words, make robot programming
accessible for non-experts.

A detailed review of AR research in robotics was given,
and some future challenges were pointed out in [57•]. Even
though advances in wearable devices enable integration of AR
in different areas of robotics, there are still issues that need to
be addressed. For instance, current wearable devices have a
limited field-of-view, poor tracking stability, especially in the
presence of occlusions, and crude user interfaces during inter-
action with the 3D contents of the augmented environment.
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Despite improvements in robot programming brought by AR
techniques, further researches are still needed for the usage of
AR in robotic systems outside of the laboratories. For reliabil-
ity and robustness of the real-world applications, the complex-
ity of the visualization and registration methods should be
reduced. Moreover, accurate and semi-automated calibration
is needed in order to integrate AR in robotic systems.

Conclusions and Future Works

In summary, researches on advanced robot programming fo-
cus on developing the easy-to-use and affordable, especially
for SMEs, robot programming tools. The role of humans in
advanced robot programming is expected to be an assistant,
without requiring expertise in robotics. Four categories of ap-
proaches are reviewed and impressive progresses have been
achieved both in programming for low-level motions and
high-level tasks.

Based on recent research results and demands of Industry
4.0, we think that the following issues are still challenging for
existing methods and need to be tackled in future researches.

– Accurate pose estimation of parts in demonstration. Since
assembly task is a crucial process in manufacturing as it
takes 40–60% of total production time with 20–30% of
overall production cost [58], applying robot program-
ming by demonstration techniques in assembly tasks is
quite promising direction in the future. One of the most
challenging issues is to locate parts manipulated by hu-
man accurately owing to the high-precision characteris-
tics of assembly task.

– Non-rigid object manipulation. Rigid objects are mainly
considered in existing robot manipulation tasks; however,
plenty of non-rigid object manipulation tasks are still fin-
ished by humans in factories, such as laying wire harness
along a guiding groove. If these works can be done with
robots, efficiency of production can be improved further.
However, modeling and controlling of non-rigid object
manipulation tasks are still open problems.

– Multimodal information-fused robot feedback control.
Feedback control is the foundation of robot interaction
with environment; visual information is widely used in
existing methods, while force and tactile information are
hardly used. Further study on multimodal feedback con-
trol methods using vision, force, and tactile information
can effectively improve anti-disturbance ability of robot
systems.

– Real-time collision avoidance. Human-robot collabora-
tion may be a common scene in future factories, and
ensuring the safety of human is the most important thing
in this situation. Real-time collision avoidance and path
generation is a way to provide the required safety, but the

efficiency of obstacles modeling and robot path genera-
tion is needed to be improved.

– Grasping planning. Many great improvements have been
achieved for robust grasping planning, such as Dex-Net
[59••]. However, existing methods mainly focus on plan-
ning for a parallel robot gripper with fixed stroke; grasp-
ing planning for grippers with different strokes and more
fingers is worth to be studied in the future.
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