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ABSTRACT The goal of this study was to model the total leaf chlorophyll content (LCCtot) of Gannan navel
orange leaves using a field imaging spectroscopy system in the visible and near-infrared domain. The spectral
range from 400 to 1000 nm with 176 wavebands (a wavelength interval of 3.41 nm) or 360 wavebands
(a wavelength interval of 1.67 nm), labeled as ‘‘Datasets_1.67’’ and ‘‘Datasets_3.41’’, respectively, were
used. Although different spectral data types were used, better prediction results for LCCtot were based on
Datasets_1.67 for LCCtot prediction. Several prediction models of LCCtot were built based on partial least
squares regression (PLSR), artificial neural networks (ANN), ordinary least squares regression (OLSR), and
stepwise linear regression (SLR) using full spectral and effective wavelength (EW) data (raw spectral (RS),
first derivative spectral (FDS) and second derivative spectral (SDS) data). The determination coefficient
(R2), the root mean square error (RMSE) and the residual predictive deviation (RPD) were used to evaluate
the reliability and accuracy of the predicted LCCtot values. As a result, 14 (7 obtained from Datasets_1.67,
7 obtained from Datasets_3.41), 39 (21 obtained from Datasets_1.67, 18 obtained from Datasets_3.41) and
50 (27 obtained from Datasets_1.67, 23 obtained from Datasets_3.41) wavebands were selected from the
RS data, FDS data and SDS data, respectively, as the EWs for LCCtot prediction of navel orange leaves.
After that, PLSR and ANN predictive models were established using full spectra, and OLSR and SLR
predictive models were built using the selected EWs. The experimental results demonstrated that these
various regression methods were useful for estimating LCCtot in the order of PLSR models established
using full spectra from RS data (F-RS-PLSR) > PLSR models established using full spectra from SDS
data (F-SDS-PLSR) > PLSR models established using full spectra from FDS data (F-FDS-PLSR) > SLR
models established using EWs by RS data (EWs-RS-SLR). However, models built with ANN and OLSR,
where the RPD values were less than 3, cause the models to be inaccurate. Finally, in comparison, the F-RS-
PLSR model exhibited the best performance of LCCtot estimation; with the number of principal components
(Pcs) = 5, this model provided high values of the R2 of calibration (C-R2) = 0.92 and the R2 of validation
(V-R2) = 0.96, small values of the RMSE of calibration (C-RMSE)=0.05 mg/g and the RMSE of
validation (V-RMSE) = 0.19 mg/g, and sufficient the RPD of calibration (C-RPD)=17.00 and the RPD of
validation (V-RPD)=3.63 values. Overall, the best modeling method was PLSR. Hence, the PLSR applica-
bility for assessing chlorophyll content in navel orange leaves was demonstrated.

INDEX TERMS Chlorophyll, hyperspectral data, navel oranges, partial least squares.

I. INTRODUCTION
Chlorophyll is the main photosynthetic pigment present in
green plants and plays an important role in controlling carbon
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exchange and plant productivity [1], [2]. The chlorophyll
content increases in young expanding leaves, reaches the
highest value at maturity, and then decreases significantly
during senescence [3], [4]. Therefore, the chlorophyll content
of plant leaves correlated with the nutritional status can theo-
retically be used as a marker of the growth status of plants.
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Measurements and estimates of chlorophyll content are
regarded as a meaningful indicator of plant health, including
nitrogen deficiency, water stress and certain diseases [2],
which can provide theoretical guidance for crop nutrient
diagnosis and field management.

The traditional wet-chemical method for measuring
chlorophyll is precise but costly, time-consuming and inap-
plicable to large-scale analysis. Hence, scientists have been
developing convenient and rapid methods for the measure-
ment of leaf chlorophyll utilizing its unique optical absorp-
tion feature. Extracting chlorophyll information from the
spectral features of plants has become a major means of
estimating chlorophyll contents because of its advantages
of being fast, nondestructive and large-scale [1], [5]–[8].
Numerous studies have been conducted using spectral data
to retrieve chlorophyll information as a function of time and
space in environments such as the ground or airborne and
spaceborne environments [9]–[16].

The nearly continuous spectral characteristics of vege-
tation can be obtained using hyperspectral remote sensing
in visible and near-infrared bands, which makes the quan-
titative analysis and detail extraction of vegetation possi-
ble [17], [18]. Several remote sensing techniques have been
proposed to estimate chlorophyll content at the leaf or canopy
level. Currently, chlorophyll retrieval methods can be sum-
marized into two main categories: the first category is that
of the leaf or canopy radiative transfer models such as
PROSPECT, LIBERTY, SAIL and PROSAIL, etc. [19]–[23].
These methods have been developed based on physical the-
ory, are highly accurate for predictive modeling and perform
well under different model hypotheses. The second cate-
gory is that of empirical approaches based on the absorp-
tion characteristics of pigments, and the relationship between
spectral features and biophysical and biochemical param-
eters are established. By comparing these two chlorophyll
retrieval methods, the radiation transfer models of the leaf or
canopy are so complex and so many inputs and parameters
required that it is difficult to obtain. However, these empirical
approaches are popularly used, because these kinds of meth-
ods are simple, have a lower computational cost and need
fewer parameters.

Several studies have shown that the band positions at
550 and 700 nm are the most effective bands for estimating
the chlorophyll content in leaves [7], [14], [24]. However,
the near infrared spectra are overwhelmed by the molecu-
lar overtone and combination bands. Therefore, it can be
difficult to assign specific features to some chemical com-
ponents of crops. Partial least squares regression (PLRS)
appears as a promising method for constructing predictive
models for chlorophyll content on the basis of the many
and highly correlated reflectance data in the NIR spec-
trum of leaf samples [25]. PLSR can be applied to reduce
collinear spectral variables to a few noncorrelated principal
components (Pcs) [26], thereby avoiding overfitting prob-
lems. Unlike PLSR, artificial neural networks (ANNs), which
are commonly used in remote sensing to predict vegetation

parameters and crop yields [27], [28], inevitably suffer
from overfitting problems. Moreover, the design param-
eters and implementation of ANNs require complex and
time-consuming processes, and their performance can be
weakened when low-dimensional datasets are used [29]. Sev-
eral studies have been undertaken to estimate the chlorophyll
contents of plants using PLSR. Hansen and Schjoerring [30]
reported the reflectance measurements of canopy biomass
and chlorophyll content in wheat crops using normalized
difference vegetation indices and PLSR. Wagner et al. [31]
reported the use of proximal Vis-NIR spectrometry to retrieve
substance concentrations in surface waters utilizing PLSR
modeling. Liu et al. [32] also obtained nondestructive detec-
tion of rape leaf chlorophyll levels based on Vis-NIR spec-
troscopy using PLSR. In addition, PLSR can be performed
on either raw spectral data or on their various derivatives. The
calculation of the first and second derivatives of spectral data
enhances resolution and removes background effects. Specif-
ically, first derivatives remove additive constant background
effects, while second derivatives remove baseline linear slope
variations and additive effects [33]. This way, the likely
improvement caused by the first and second derivatives on the
chlorophyll content prediction ability from the absorbance
NIR spectra could also be studied. Moreover, preceding the
PLSR analysis, exploratory principal component analyses
(PCA) on the raw, first and second derivative datasets were
performed to explore the extent of correlation and to obtain
guidance on the adequate number of independent uncorre-
lated variables to be used in the subsequent multivariate
calibration [34].

The main goal of this study was therefore 1) to use mul-
tivariate statistics, specifically, PLSR, to obtain a reliable
model to predict the total leaf chlorophyll content (LCCtot)
of Gannan navel orange leaves from their NIR spectra and
2) to then establish an accurate, real-time plant chloro-
phyll content evaluation system to achieve accurate fertil-
ization and nutritional status monitoring of fruit trees and
to provide technical support for navel orange tree yield
increase.

II. MATERIALS AND METHODS
A. STUDY AREA
Gannan (Gannan area (see Figure 1 for locations, latitude
114◦93′ and longitude 25◦83′), Jiangxi, China) is a hilly
mountainous area spanning 45.6 million acres. It has moun-
tain resources for planting navel oranges, of which 4.5million
acres are suitable for navel orange cultivation. The aver-
age annual precipitation and temperature of the region are
1606 mm and 18.8◦C, respectively. In addition, the precip-
itation shows a distinct seasonal pattern with 80% of rainfall
occurring from April through October. It is a typical sub-
tropical humid monsoon climate, with an early spring, a long
summer, a short autumn, a warmwinter, four distinct seasons,
abundant rainfall, sufficient sunshine, a long frost-free period,
a large temperature difference between day and night from
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FIGURE 1. Location of the Gannan area used in this study.

September to November, a hot rainy season, and extremely
beneficial conditions for navel orange planting.

At present, Gannan has become the largest planting area
for Navel oranges, the third annual production origin of navel
oranges in the world. Phenology dynamics of Gannan navel
orange growth are listed as follows: spring shoots grow from
February to April, summer shoots grow from May to June,
autumn shoots grow from August to September, budding
occurs in March, blooming occurs in April, the first physi-
ological fruit drop occurs fromMay to early June, the second
physiological fruit drop occurs in mid-June, leaf yellowing
occurs from July to early August, and fruit ripen in late
December. Gannan navel oranges have been listed as one of
the nationally superior agricultural products, which is pro-
tected by geographical indications andwon the honor of being
a "famous Chinese fruit".

B. PREPARATION OF LEAF SAMPLES
Leaves of Gannan navel orange plants were sampled for
this study. Field sampling was conducted in a navel orange
planting site stand located in the National Navel Orange
Engineering Research Center, Gannan Normal University,
Ganzhou, China. Ten navel orange trees were selected as
experimental samples. The average height of the trees was
1.5m, the crownwidthwas 1.5m, on average, and the spacing
was 4 m×3 m. The soil in the navel orange orchard was loose
organic red soil, which ensured good light conditions and
suitable growth temperatures throughout the year.

Navel orange leaves were collected on 23 June, 29 June,
3 July, and 4 July 2018, between 9:00 and 11:00 or 14:00 and
16:00. The leaves were stored in sealed plastic bags and
transported to the laboratory. A total of 8 leaves of each tree
(2 facing east, 2 facing west, 2 facing south and 2 facing
north) were collected, and healthy new and old leaves that
were uniform in size were collected from the middle of the
tree. The 80 samples were washed with clean water to clean
the dust and other contaminants on the surface. Then, they

were dried with clean, cotton cloth, put into fresh bags and
numbered.

C. HYPERSPECTRAL DATA ACQUISITION AND
PROCESSING
A field hyperspectral imaging system (GaiaField-V10E,
Sichuan Dualix Spectral ImageTechnology Company Ltd.,
Sichuan, China) was used to acquire reflectance spectra of the
leaf samples. The instrument was equipped with Specview
graphical operation software and data storage for the spec-
trometer. Imaging spectrograph (ImSpectorV10E) covered
the spectral range from 400 to 1000 nm with 176 wave-
bands (wavelength interval of 3.41 nm) or 360 wavebands
(wavelength interval of 1.67 nm). The distance between the
lens and the leaves was 10 cm. Before each measurement,
black and white tiles was used for calibration by recording
10 measurements of each tile. Three-point average spectral
reflectance was used as the spectral value of each navel
orange leaf sample. Spectral data were collected at wave-
length intervals of 1.67 nm and 3.41 nm and were labeled
as ‘‘Datasets_1.67’’ (60 samples) and ‘‘Datasets_3.41’’
(80 samples), respectively.

For Datasets_1.67 and Datasets_3.41, 45 and 59 sam-
ples were randomly selected as calibration samples, and
the remainder were implemented as validation samples. The
derivative of a spectrum can improve spectral resolution,
highlight the specificity of spectral features, enhance the abil-
ity to identify overlapping peaks and valleys in the spectrum,
and eliminate background noise. Due to the discreteness of
crop reflectance spectra, the first derivative of the spectra
was approximated by the difference method, as shown in
equation (1):

R′(λi) =
dR (λi)
dλi

=
R (λi+1)− R (λi−1)

21λ
(1)

The second derivative R′′ (λi) of the spectrum can be obtained
by calculating the first derivative of R′ (λi).

D. TOTAL LEAF CHLOROPHYLL CONTENT
MEASUREMENTS
In this study, the chlorophyll content of the leaf samples
was measured by spectrophotometry. Crushed fresh samples
weighing 0.1 g to 0.2 g were added to a small amount of
quartz sand, calcium carbonate powder and 2-3 ml 95%
ethanol. Then, they were ground into a uniform pulp, mixed
with 10ml ethanol and placed in the dark at room temperature
(25◦C) for 10 minutes. The volume was brought to 25 ml
with 95% ethanol, and the absorbance at 665 nm (A665)
and 649 nm (A649) was subsequently measured with a
V-5100 spectrophotometer. The chlorophyll content was cal-
culated according to the reference (Arnon, 1949), using the
correction equations (2) and (3):

Chla = (13.95A665-6.80A649)×
V

W× 1000
(2)

Chlb = (24.96A649-7.32A665)×
V

W× 1000
(3)
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where V is the volume of the extraction solution (ml) and W
is the weight of the leaf sample (g). The total leaf chlorophyll
content (LCCtot) is equal to Chl a + Chl b (mg/g).

E. MEASUREMENT MODELING METHODS
1) PARITIAL LEAST SQUARES REGRESSION (PLSR)
PLS, based on principal component analysis (PCA), was
first introduced by Wold et al. [35].. PLSR is the PLS
approach in its simplest form and is used to relate two
data matrices, namely, the input variables (X) and the
response variables (Y). PLSR could determine a linear rela-
tionship between X and Y by simultaneously decomposing
and screening data matrices with a few independent princi-
pal components (Pcs). These data matrices could be noisy,
collinear, and incomplete.

Y = α0 + α1S1λ + α2S2λ + . . .+ αnSnλ (4)

where αn is the regression coefficient obtained by the linear
regression of Snλ versus Yλ in a calibration iteration process
and Snλ is the score of the nth principal component at spectral
band λ.

2) ARTIFICIAL NEURAL NETWORKS (ANN)
In this study, artificial neural networks (ANN) were used.
The NN were made up of an input layer, a hidden layer
and an output layer. The number of nodes in the input layer
was determined by the spectral dimensions obtained by the
hyperspectral system. For the generation, training and imple-
mentation of the neural network in this experiment, we used
the back propagation NN (BP-NN) toolbox of MATLAB
software. For the sake of minimizing the mean square error
(MSE) between the output of the neural network and LCCtot,
the neural network was iteratively trained. In each BP-NN
iteration, the network weights (wi) and biases (bi) were
adjusted along with the gradient decrease of theMSE. To deal
with the iteration problem, a transformation T (activation
function) was introduced in equation (5), which can provide
an output value y for the network:

y = T (
n∑
i=1

wiXi + bi) (5)

In this experiment, the minimum MSE, minimum gradient,
andmaximumnumber of iterations (epochs) were set to 10−3,
10−6 and 2000, respectively. If any of the above conditions
were met, the training process of the artificial neural network
stopped.

3) ORDINARY LEAST SQUARES REGRESSION (OLSR)
The ordinary least squares (OLS) is a linear approxima-
tion that minimizes the sum of the squares of the distances
between the observation points and the estimated points. The
slope formula of OLS estimation is β̂1 = SXY /SXX . OLS is
more suitable for the cases in which one of the two variables
is a random variable:∑

(yi − β0 − β1xi)
2 (6)

4) STEPWISE LINEAR REGRESSION (SLR)
Stepwise linear regression (SLR) is a method of regressing
multiple factors prior to linear filtering to obtain retention
factors. The relevant variables that are filtered out by SLR
each time are the weakest. Finally, we observed the order of
the contributions that best explain the distribution needed to
get the required variables. Therefore, the linear relationship
between spectral indices and photosynthetic pigments was
modeled using a stepwise linear regression (SLR) method.

F. EVALUATION OF MODELS
The performance of a predictive model is usually evaluated
by several indices, including the root mean square error of
calibration (C-RMSE) and validation (V-RMSE), the deter-
mination coefficient of calibration (C-R2) and validation
(V-R2) and the residual predictive deviation of calibration
(C-RPD) and validation (V-RPD). A good model should
provide high values of V-R2 and RPD (>3), small values
of C-RMSE and V-RMSE, and a small variation between
C-RMSE and V-RMSE [3], [36]. R2, RMSE and RPD were
calculated as follows:

R2
=

∑n
i=1 (yi − y

′
i)
2∑n

i=1 (yi − y)2
(7)

RMSE =

√∑n
i (y
′
i − yi)

2

n
(8)

where n is the number of samples in the training or testing
set, yi is the reference value, y

′
i is the predicted value, and y

is the average value of all reference values.

RPD =
SD

RMSE
(9)

where SD is the standard deviation of the reference values of
the samples.

III. RESULTS AND DISCUSSION
A. SPECTRAL REFLECTANCE
The intensity of radiant flux for a given surface and a given
wavelength can be measured by a hyperspectral sensor, i.e., a
physical quantity in units of W/srm2. To be exact, the light
emitted and reflected by each surface unit of the object exists
in the form of a spectrum of hundreds of channels, and it is
captured by a sensor for obtaining a spectral response curve
(Figure 2(a)). The complex combination of the scattering
process and the overlapping absorption of moisture and bio-
chemical components in plant leaves forms the corresponding
spectrum [37], [38]. The peak at approximately 550 nm is
related to respiratory pigments [39]. The red edge usually
refers to the 660-770 nm region [40], which is caused by
the combined effects of strong chlorophyll absorption in the
red wavelengths and high reflectance in the NIR wavelengths
due to internal leaf scattering [41]. There is a small peak at
970 nm, which is related to the water content of the leaves and
corresponds to the O-H second overtone stretch [42]–[44].
To carry out an in-depth analysis of these characteristics,
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FIGURE 2. Spectral reflectance spectra with a wavelength interval of
1.67 nm: (a) Raw spectral data, (b) first derivative, and (c) second
derivative.

quantitative analysis of various parameters of crops using
spectral information is the goal of crop hyperspectral remote
sensing monitoring.

Regarding Datasets_1.67 and Datasets_3.41, each dataset
randomly selects one sample to represent the reflectance
spectra of each dataset. The spectral reflectance of samples
with wavelength intervals of 1.67 nm and 3.41 nm are shown
in Figures 2 and 3.

B. MEASURED LCCTOT OF GANNAN NAVEL
ORANGE LEAVES
Tables 1 and 2 show a summary of the statistical analysis of
the LCCtot of all samples in the calibration and validation sets.
The LCCtot exhibited evident variation in the calibration set,
ranging from 0.57 to 3.37 mg/g for Datasets_1.67 and from
0.57 to 4.92 mg/g for Datasets_3.41, which contributed to the
generation of robust calibration models.

C. ANALYSIS OF PLSR MODELING RESULTS
In this section, PLSR was used to generate a robust relation-
ship equation between the spectral reflectance and the LCCtot
of samples. Several prediction models of LCCtot were built
using PLSR for three spectral datasets (raw spectral data,
first derivative spectral data and second derivative spectral
data).

FIGURE 3. Spectral reflectance spectra with a wavelength interval of
3.41 nm: (a) Raw spectral data, (b) first derivative, and (c) second
derivative.

TABLE 1. CHL A, CHL B, and LCCtot values of leaves for Datasets_1.67.

TABLE 2. CHL A, CHL B, and LCCtot values of leaves for Datasets_3.41.

1) MODELING WITH RAW SPECTRA
Table 3 shows the performance indices of the LCCtot predic-
tive model established based on PLSR by using raw spectral
data (RS-PLSR). As shown in Table 3, with the same Pcs,
Datasets_1.67 exhibits overall better performance of LCCtot
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TABLE 3. The performance indices of the RS-PLSR models.

FIGURE 4. (a) Relations between V-R2, V-RMSE and Pcs of RS-PLSR
model; (b) linear regression plot of the RS-PLSR model.

estimation than Datasets_3.41. Therefore, in the next part
of this paper, the retrieval performance of the LCCtot for
Datasets_1.67, with a wavelength interval of 1.67 nm, will
be focused on.

With the same datasets, when the number of Pcs is in the
range of 1 to 5, the values of V-R2 and V-RPD increase with
the larger Pcs, and when the number of Pcs is in the range
of 5 to 10, the values of V-R2 and V-RPD decrease with
increasing Pc. It should be noted that the trend of V-RMSE is
opposite to that of V-R2 and V-RPD. The relations between
V-R2, V-RMSE and Pcs are presented in Figure 4(a). When
Pcs = 5, the predictive model of LCCtot for Datasets_1.67
exhibits the best performance, C-R2

=0.92, V-R2
= 0.96,

C-RMSE = 0.05 mg/g, V-RMSE = 0.19 mg/g C-RPD =
17.00 and V-RPD= 3.63. However, there is evident variation
between C-RMSE (0.05 mg/g) and V-RMSE (0.19 mg/g) and
between C-RPD (17.00) and V-RPD (3.63).

Linear regression plots of the RS-PLSR model for
Datasets_1.67 are presented in Figure 4(b) (Pcs = 5).
As shown in Figure 4(b), the plots of the calibration and
validation sets are scattered around the ideal 1:1 line, and
the results indicate that the LCCtot in Gannan navel orange
leaves can be accurately estimated by the RS-PLSR model.

TABLE 4. The performance indices of the FDS-PLSR AND SDS-PLSR
models.

2) MODELING WITH FIRST DERIVATIVE AND SECOND
DERIVATIVE SPECTRA
For Datasets_1.67, Table 4 shows the performance indices
of the LCCtot predictive model established based on PLSR
by using first derivative spectra (FDS-PLSR) and second
derivative spectra (SDS-PLSR).

As shown in Table 4, for the FDS-PLSRmodel, the value of
V-R2 and V-RPD with a small number of Pcs (1-4) are higher
than those with a large number of Pcs (5-10). For example,
when the number of Pcs= 1, the value of V-R2 is 0.92, which
is much higher than that obtained from the RS-PLSR model
(0.30); whereas, when the number of Pcs = 10, the value of
V-R2 is only 0.79, which is lower than that of the RS-PLSR
model (0.90). The relations between V-R2, V-RMSE and
the number of Pcs of the FDS-PLSR model are presented
in Figure 5(a). In comparison with the RS-PLSR model,
these results indicate that the FDS-PLSR model exhibits
better performances of LCCtot estimation when the number
of Pcs is small. It should be noted that when the number of
Pcs = 2, the FDS-PLSR model exhibits the best perfor-
mance, C-R2

= 0.93, V-R2
= 0.94, C-EMSE = 0.22 mg/g,

V-RMSE = 0.21 mg/g, C-RPD = 3.86 and V-RPD =
3.29; moreover, there is small variation between C-RMSE
(0.22 mg/g) and V-RMSE (0.21 mg/g) and between C-RPD
(3.86) and V-RPD (3.29).

For the SDS-PLSR model, the values of V-R2 and V-RPD
are higher than 0.92 and 2.23 for all numbers of Pcs. The
relations between V-R2, V-RMSE and the number of Pcs of
the SDS-PLSR model are shown in Figure 5(b). The results
show that the performances of the SDS-PLSR model are
better for all numbers of Pcs, in general. With Pcs = 2, the
SDS-PLSR model shows the best performance, C-R2

=0.95,
V-R2

= 0.94, C-RMSE=0.19 mg/g, V-RMSE = 0.22 mg/g,
C-RPD = 4.47 and V-RPD = 3.14. there is small variation
between C-RMSE (0.19 mg/g) and V-RMSE (0.22 mg/g);
however, the variation between C-RPD (4.47) and V-RPD
(3.14) is evident.
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FIGURE 5. Relations between V-R2, V-RMSE and Pcs: (a) FDS-PLSR model,
(b) SDS-PLSR model.

FIGURE 6. Linear regression plots: (a) FDS-PLSR model, (b) SDS-PLSR
model.

Linear regression plots of the FDS-PLSR and SDS-PLSR
model are presented in Figure 6 (Pcs = 2). As shown in
Figure 6, the plots of the calibration and validation sets are
closely scattered around the ideal 1:1 line.

D. ANALYSIS OF ANN MODELING RESULTS
The ANN model was built using the calibration set and then
used to invert the quantitative relationships between spectral
reflectance and LCCtot in navel orange leaves. Table 5 shows
the summarized validation criteria computed for the calibra-
tion and validation datasets used in the ANN models. The
results of Table 5 show that ANNs were able to learn and
describe the nonlinear relationships between the full spectral
data (RS data, FDS data and SDS data) and LCCtot.

TABLE 5. The performance indices of the ANN models.

FIGURE 7. Linear relationship between the predicted LCCtot content
(RS-ANN) and measured LCCtot content.

When SDS data were treated as the inputs, the validated
accuracy of the ANN model is as poor as the calibration
accuracy shown by V-R2

= −0.37, which indicates that
SDS data is not good for ANN modeling in this case.
However, excellent correspondence was observed between
the validation datasets using RS data and FDS data in the
ANN model, which both have V-R2 values greater than
0.80, whether in Dataset-1.67 or Dataset-3.41. In addition,
it can be seen from the table that the effect when modeling
with RS data is still better than when modeling with FDS
data. In particular, the RMSEs of the ANN model with
RS data in Datasets_1.67 were 0.17 mg/g (C-RMSE) and
0.71 mg/g (V-RMSE), which were below the 0.30 mg/g
(C-RMSE) and 0.83 mg/g (V-RMSE) in Datasets_3.41.
In comparison, it can be concluded that RS data
(Datasets_1.67) is the most valid and effective of the spectral
data tested among several ANN models. Figure 7 shows
the regression relation between the predicted LCCtot content
based on the RS-ANN (Datasets_1.67) model and the mea-
sured LCCtot concentration.

E. SELECTION OF EFFECTIVE WAVELENGTHS FOR SLR
AND OLSR MODELING
The choice of effective wavelengths (EWs) is critical for
reducing redundant information in hyperspectral data, and
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TABLE 6. EWs based on RC curves.

TABLE 7. The performance indices of the OLSR and SLR models.

it also helps to optimize the design of multispectral imag-
ing systems [45]. Generally, EWs are typically located
at the peaks of regression coefficient (RC) curves [3].
Based on the RC curves shown in Figure 8 and the
EWs obtained from the RC curve are shown in Table 6.
Fourteen (7 obtained from Datasets_1.67, 7 obtained
from Datasets_3.41), 38 (20 obtained from Datasets_1.67,
18 obtained from Datasets_3.41) and 50 (27 obtained from
Datasets_1.67, 23 obtained from Datasets_3.41) wavebands
were selected from the RS data, FDS data and SDS data,
respectively, as the EWs for LCCtot prediction of navel orange
leaves.

As shown in Table 7, several prediction models of LCCtot
are built on OLSR and SLR using EWs (Datasets_1.67 and
Datasets_3.41). For LCCtot prediction, the results of
Datasets_1.67 were better than those of the Datasets_3.41.

Modeling with OLSR, FDS data (Dataset_1.67) produces
the best results (C-R2

= 0.90, V-R2
= 0.89,C-RMSE =

0.25,V-RMSE = 0.30, C-RPD = 3.40 and V-RPD = 2.30).
FDS data is better than RS data and SDS data in terms of R2,
RMSE and RPD.

The SLR models built by the RS data provided relatively
robust results (C-R2

= 0.90, V-R2
= 0.92, C-RMSE =

0.26,V-RMSE= 0.19, C-RPD= 3.27 and V-RPD= 3.63) for
predicting LCCtot compared with those provided by the other
models established by using FDS and SDS data, which might
have been affected by redundant information in the FDS
and SDS data. RPD values were over 3, indicating reliable
validation for analytical purposes. Therefore, in this case,
EWs-RS-SLR is the recommended model for determination
of LCCtot in navel orange leaves.

Linear regression plots of the FDS-OLSR and RS-PLSR
model are presented in Figure 9. As shown in Figure 9,
the plots of the calibration and validation sets are closely
scattered around the ideal 1:1 line. However, the scatter plot
of the FDS-OLSR model is more dispersed than that of the
RS-SLR model, illustrating that the modeling effect of the
RS-SLR model is better than that of the FDS-OLSR model.

F. COMPARATIVE ANALYSIS OF THE OPTIMAL MODELS
Comparison of the prediction results of LCCtot by using
different regression methods (PLSR, ANN, OLSR and SLR)
in both Datasets_1.67 and Datasets_3.41 using full and
EW data (RS data, FDS data, and SDS data) are shown
in Table 8. In this study, although different spectral data types
were used, better prediction results for LCCtot are based on
Datasets_1.67. In particular, the reflectance data showed that
the information extracted fromDatasets_1.67wasmore infor-
mative than that from Datasets_3.41. When modeling with
full spectra or selected EWs, the results of the F-PLSRmodel
were better than those of the EWs-OLSR and EWs-SLR
models, which might have been affected by there being
more information in the full spectra. In addition, the mod-
eling effect of the F-ANN model was worse than that of
the EWs-OLSR and EWs-SLR models. On the other hand,
this also reflects the superiority of the PLSR technique for
modeling hyperspectral data. In comparison, the results of the
PLSR models were better than those of the ANN, OLSR and
SLR models in predicting LCCtot in the validation set. At the
same time, in order to generate a reliable model, the value of
RPD should be greater than 3. The evaluation results showed
that the spectral data were compared with their accuracy
in predicting LCCtot in navel orange leaves by using RS-
PLSR, FDS-PLSR, SDS-PLSR RS-ANN, EWs-FDS-OLSR
and EWs-FDS-SLR models. The best prediction model for
LCCtot is the RS-PLSR model, with C-R2

= 0.92,V-R2
=

0.96, C-RMSE = 0.05, V-RMSE = 0.19, C-RPD = 17.00,
and V-RPD =3.63.

IV. DISCUSSION
In this article, the LCCtot of navel orange leaves was accu-
rately estimated based on PLSR, ANN, OLSR, and SLR
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FIGURE 8. RC curves use RS data (Datasets_1.67 produced (a), Datasets_3.41 produced (b)), FDS data (Datasets_1.67 produced (c),
Datasets_3.41 produced (d)) and SDS data (Datasets_1.67 produced (e), Datasets_3.41 produced (f)), respectively.

models using full spectral data, EWs from RS data, FDS
data and SDS data. The R2, RMSE and RPD were used to
evaluate the reliability and accuracy of the predicted LCCtot
values. Among the four regression methods, PLSR exhib-
ited the lowest RMSE values and relatively higher R2 and

RPD values compared with those of the other regression
methods. The results indicate (Table 8) that the F-RS-PLSR
model can be considered as an optimal, stable and reli-
able indicator for monitoring LCCtot in navel orange leaves.
The results from this study demonstrate that the statistical
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FIGURE 9. Linear regression plots: (a) FDS-OLSR model, (b) RS-PLSR
model.

TABLE 8. Optimal modeling for prediction of lcctot in leaf.

approach (PLSR) has strong potential for monitoring the
navel orange LCCtot status. This is consistent with the results
published by Cogliati et al. [15] and de Paz et al. [46]. How-
ever, the methods used in this study are based on specific
datasets, and the findings may have limitations in applica-
tions to other datasets or other crops. To develop an accu-
rate and robust model with high applicability and reliability,
we should confirm the results for a wide range of varieties,
growth stages and eco-sites in future work. A simulation
technique could be used to improve the results based on
composite spectral data, the spectra generated by the RTMs
(e.g., PROSPECT or SAIL model) [21], [47]. Physical mod-
els can provide a clear link between biophysical variables and
canopy spectral reflectance [48]. However, the disadvantage
in using a physical method is the unsuitable nature of model
inversion [49], showing that the inverse solution is not always
unique because different combinations of canopy indices may
generate almost identical spectra [50]. If the physical model
requires a successful inversion, it usually needs to specify
additional input variables, so using a physical model for
inversion becomes increasingly complicated [49]. Therefore,
from an application perspective, a statistical approach based

on remotely sensed data may be a rapid and easy method to
monitor chlorophyll status.

The question regarding whether there is full spectral or
selected EWs to use in order to estimate Gannan navel
orange leaf chlorophyll content has been answered in this
paper. A number of robust and consistent spectral data and
regression methods for LCCtot are proposed and could be
seen as priority indices to be tested in any follow up work.
For instance, the results of the F-PLSR model were better
than those of the EWs-OLSR and EWs-SLR models. Further
research is recommended regarding whether the chlorophyll
content can be retrieval using the image information in the
hyperspectral data of the leaf. At the same time, we should
also antinoise hyperspectral images, which is very important
for extracting information from hyperspectral images.

V. CONCLUSION
In this study, four prediction methods (PLSR, ANN, OLSR
and SLR) of LCCtot for Gannan navel orange leaves using
hyperspectral data (RS data, FDS data and SDS data) in
the region of 400-1000 nm were evaluated. After obtaining
the hyperspectral data, the RCs curves were used to select
EWs. Full spectral data were used as model input vectors for
PLSR and ANN, and EWs were used as model input vectors
for OLSR and SLR. There were two kinds of spectral data,
Datasets_1.67 and Datasets_3.41. The main conclusions are
the following:

Although different spectral data types were used, better
prediction results for LCCtot were based on Datasets_1.67 for
LCCtot prediction. When modeling with full spectra or EWs,
the results of the F-PLSR model were better than those of the
EWs-OLSR and EWs-SLRmodels. In addition, the modeling
effect of F-ANN was worse than that of the EWs-OLSR and
EWs-SLR models. On the other hand, this also reflects the
superiority of PLSR for modeling hyperspectral data. More-
over, since the RPD value of the ANN model is less than 3,
the model established by the ANN is unreliable. In compari-
son, the F-RS-PLSR model exhibited the best performances
of LCCtot estimation; with the number of Pcs=5, it provides
high values for C-R2 (0.92) and V-R2(0.96), small values
for C-RMSE(0.05 mg/g) and V-RMSE (0.19 mg/g), and the
C-RPD(17.00) and V-RPD (3.63) values exceed 3. In conclu-
sion, using PLSR obtains a reliable method to predict LCCtot
in Gannan navel orange leaves from their NIR spectra.
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