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ABSTRACT Nowadays more and more IoT devices, including a large number of IoT servers, have been
deployed on the Internet. The security of IoT servers has always been a challenge. In this paper, a new model
named addressless IoT server is proposed, which allows people to use the large IPv6 address space to protect
IoT server security. The server is allocated an IPv6 prefix instead of an address.When the authenticated client
initiates communication, it uses an encryption mechanism to generate a specific destination address under
the prefix. The server verifies the destination address when receiving the packet, and discards the packet if
the verification fails. In this way, the model can prevent attackers from perceiving the server and launching
scans or attacks, while remains compatible with the current Internet. The prototype is implemented and an
extensive set of experiments are conducted in this paper. The results demonstrate that the model can better
protect server security.

INDEX TERMS IPv6, IPv6 address space, Internet of Things, network security, prefix delegation.

I. INTRODUCTION
Starting from the birth of the Internet, the TCP/IP protocol
has gradually become the most important infrastructure of the
Internet, and the IPv4 protocol has been widely used after
decades of development. However, the IPv4 addresses are
being exhausted nowadays since it did not expect the huge
number of devices on the Internet when the IPv4 protocol was
designed.

To address this problem, the IPv6 protocol specification
(RFC 1883 [1]) was proposed by the InternetWorking Group.
Now the latest IPv6 protocol is RFC 8200 [2] proposed
in 2017. The most significant difference between IPv6 and
IPv4 is that IPv6 uses a 128-bit address instead of the 32-
bit address of IPv4, which provides a much larger address
space for Internet devices. Besides, IPv6 also brings changes
in mechanisms, such as using ND [3] instead of ARP on the
access layer, adding a flow label [2] field in the IPv6 header,
prohibiting intermediate router fragments, etc.

Now, IPv6 is becoming widely deployed for commercial
purposes. As of Jan 2020, about 25% of global information
resources support IPv6 (including web pages, Email, etc.),
about 57% of global DNS authoritative servers support IPv6,
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and about 28% of users are using IPv6 to visit their target
websites.1

Nowadays one of the most significant hotspots for
IPv6 applications is Internet of Things (IoT) [4]. With the
rapid development of IPv6 and 5G, IoT is increasingly chang-
ing people’s life. According to Statista’s forecast, by 2025,
more than 75 billion IoT devices will be in use worldwide.2

It is easy to observe that with the further development of the
Internet, cloud computing, and the larger-scale deployment of
the IoT, the number of IP addresses continue to increase, lead-
ing to a high-speed development of IPv6. However, IPv6 is
still a developing technology with many open issues to be
resolved. Specifically, the security of the IPv6 network for
IoT remains a critical challenge.

Despite that for IoT, security is always one of the most con-
cerned issues for network applications. Attacks have caused
tremendous harm in the past decades and will continue to
launch attacks to clients and servers, paralyzing devices,
stealing information, or gaining benefits. For public Internet
servers, service providers can deploy complicated security
policies to prevent service suspension, secret theft, and infor-
mation leakage caused by network attacks. However, for
IoT servers, it poses more challenges to security because

1https://www.vyncke.org/ipv6status/
2https://www.statista.com/statistics/471264/iot-number-of-connected-

devices-worldwide
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they need to provide uninterrupted and guaranteed Internet
services to specific users. Therefore, protecting IoT server
security is a very important topic.

In many network attacks, the IP address is used as the
device identifier at network-layer to launch attacks. In IPv4,
addresses are insufficient to protect the server using address
space. However, in IPv6, the server can use a larger address
space to hide the real addresses which provide services.
For example, in IPv4, scanning a device by IP address is
very easy. Scanning the entire IPv4 address space costs only
45 minutes using Zmap [5], whereas scanning the entire
IPv6 address space is still impossible for now. This means
that the large address space of IPv6 is conducive to server
security. Although the progress of researches on IPv6 scan-
ning in recent years makes it easier to scan the IPv6 servers,
the IPv6’s huge address space still has great potential to
protect the server security.

The existing network security model usually encrypts the
flow in the application layer or transport layer to protect
security. IPsec [6] and the protocols based on it conduct
encryption at the network layer, however, the entire packet
payload is encrypted. Introducing encryption into the address
is still a novel idea. It can further take advantage of IPv6’s
vast address space and introduces less additional load to the
network traffic than encrypting the entire payload. Previous
studies have suggested that IPv6 address space can be used
to protect the security, but no specific model has ever been
proposed. Using the IPv6 address suffix to hold the encryp-
tion information is an innovative idea, in accordance with the
mainstream development trend of the IPv6 network model.

In this paper, a new model named addressless IoT server
is proposed, which introduces encryption into IPv6 addresses
in the network layer to enhance server security. The model is
based on the Prefix Delegation and allocates an IPv6 prefix
instead of an IPv6 address to a server. Then all addresses
under the prefix will be listened on. Encryption based ver-
ification is used to enable different authenticated users to
connect to different IPv6 addresses under the prefix. The
server discards all data packets from unauthenticated users,
to ensure that the server only responds to trusted data packets,
reducing security risks faced by the server.

The rest of this paper will be organized as follows: Related
work is introduced in Section II, and the design of address-
less IoT servers is introduced in Section III; In Section IV,
the security analysis on the model is proposed, and in
Section V, the other design considerations and discussions
of the addressless IoT server are introduced; The prototype
implementation and the experiments based on our prototype
are introduced in Section VI, and in Section VII, some future
work is introduced. Section VIII is dedicated to the conclu-
sion.

II. RELATED WORK
In this section, related work is introduced in the following
three aspects: IoT security, IPv6 address security, and Prefix
Delegation Model.

A. IoT SECURITY
IoT security is a complex topic. A large part of work is
focused on how to modify the existing network security
models in IoT scenarios in which network and computing
resources are limited. Hwang [7] introduces some of the
requirements of IoT security, including providing end-to-end
security, providing security at different levels, easy to under-
stand and configure, and considering resource constraints.

Previous researches are mainly focused on proposing
lightweight network models and transmission protocols to
reduce the resource consumption in the data transmission.
6LowPAN [8] proposed in 2007 is a wireless personal area
network protocol, which is a short-range, low bit rate, low
power, and low-cost protocol. Ghada Glissa et al. introduce
6LowPsec [9], which uses encryption under the MAC secu-
rity sublayer by hardware to provide an end-to-end security
solution. Raza et al. [10] propose an extension of 6LowPAN,
which supports IPsec [6] in 6LowPAN to ensure the security
of the network-layer. Oliveira et al. [11] propose a network
access security framework that can be used to control the
nodes which have access to the network to enhance the secu-
rity for 6LowPAN.

The work based on the 6LowPAN protocol is mainly
focused on the data link layer and the network layer. At the
transport layer and application layer, IETF proposed the
CoAP protocol [12] to reduce the transmission burden of the
application layer by replacing TCP with lightweight UDP.
On this basis, Shahid Raza et al. introduce Lithe [13], an inte-
gration of DTLS [14] and CoAP [12], with which the authors
propose a novel DTLS header compression scheme to reduce
the energy consumption by using 6LowPAN standard.

With the development of IoT, Fog networking [15] is pro-
posed to integrate the computing resources of the IoT network
better. In Fog computing, how to enhance the security in the
low-resources edge devices is a big problem. Venckauskas
et al. introduce SSATP [16], a lightweight protocol used as
a secure transport for CoAP instead of UDP and DTLS for
communications between Edge nodes and Fog nodes. Venck-
auskas et al. also introduce LSSP [17], a lightweight secure
streaming protocol for the fog computing, which modifies
UDP packets to embed authentication data into streaming
data. Ghafoor et al. introduce XKFS [18], a lightweight
scheme that allows refreshing the key without inter-node
message transmission in WSNs, and Anand et al. introduce
TARE [19], a scheme for lightweight and secure group com-
munication, reducing the overhead and performance load in
key management.

The works above are mainly focused on introducing amore
lightweight network solution under the framework of the
Internet of Things, which consumes fewer resources than the
security protocols used in the traditional Internet. This paper
creates a newmethod in a different aspect where encryption is
introduced into the IPv6 address, and proposes a new model
to ensure the security of the server in IoT scenarios. This
is a new model which is different from the existing Internet
encryptionmechanisms, and can be used in various scenarios.
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B. IPv6 ADDRESS SECURITY
The security problems brought by the IPv6 address space can
be traced back to the early IPv6 protocols. There are several
methods for IPv6 address allocation, including IPv6 Stateless
Address Autoconfiguration (SLAAC) [20], DHCPv6 [21],
and manual configuration. In RFC 4291 [22], IETF divides
an IPv6 address into two parts, a 64-bit prefix and a 64-bit
interface identification (IID). In SLAAC, the IID is calcu-
lated by the MAC address of the device through the EUI-
64 algorithm [20]. EUI-64 is a reversible transformation,
which means that anyone can calculate the MAC address
through the IPv6 address of the user, thereby obtaining the
device information of the user. This exacerbates the security
and privacy problems.

Some approaches have been proposed to solve this prob-
lem. One of the most important methods is to generate
semantically opaque IID with SLAAC [23] or DHCPv6 [24],
[25]. SLAAC uses temporary addresses that consist of a
fixed prefix and a periodical IID generated by the previous
IID via the MD5 hash algorithm [26]. However, it brings
difficulties to network management and may be faced with
certain threatens in some circumstances [27]. Some other
methods are introduced in RFC 7707 [28] and RFC 7721 [29],
such as reducing the predictability of addresses or changing
the address if necessary. RFC 7707 [28] concludes some
IPv6 scanning tools and hitlist generation methods.

Just like those mentioned in RFC 7707 [28], IPv6 scanning
is an important issue in IPv6 address security research. Zmap
[5] greatly improves the scanning efficiency of IPv4, mak-
ing it possible to scan the entire IPv4 address space within
one hour. Similar to Zmap, Zmapv6 [30] is introduced in
IPv6 scanning. However, IPv6 has a very large address space,
so scanning the entire IPv6 address space is rather diffi-
cult. Some recent IPv6 scanning algorithms are based on
the comprehensive description of IPv6 address space. A lot
of works have been proposed to tell us how people use the
IPv6 address in the past few years. Plonka and Berger [31]
describe the temporal and spatial characteristics of active
IPv6 addresses, and Li et al. [32] show us the prefix distri-
bution of IPv6 Internet.

There are two types of IPv6 scanning methods, one is to
collect the active addresses on the Internet, and the other
is to generate the hitlists by learning and predicting algo-
rithms. Fiebig et al. [33] use DNS data to collect active
IPv6 addresses, while DNSSEC reverse zone is used by
Borgolte et al. [34] and reverse DNS information is used
by Fiebig et al. [35]. Beverly et al. [36] collect router
addresses by some algorithms, such as random detection,
and Rohrer et al. [37] accomplish some other similar work.
Gasser et al. [38] summarize these methods and give a large
hitlist set.

Another category of scanning method is to gener-
ate the hitlists by learning and predicting algorithms.
Foremski et al. [39] first give a prediction method based on
the Bayesian method, and Ullrich et al. [40] introduce a
pattern-based scanning approach. Zuo et al. [41] try to do

some prediction on association rule learning. Another impor-
tant work is done by Murdock et al. [42], they generate
a hitlist by some active seeds. Liu et al. [43] introduce
6Tree, a method on hierarchical clustering on the active
IPv6 addresses prediction. These works make IPv6 scanning
no more an impossible task, however, there is still a lot of
work to do on this topic. Meanwhile, some other works are
proposed to improve privacy and security on the IPv6 net-
work. Fukuda and Heidemann [44] try to detect IPv6 scan-
ning and evaluate relevant severity. Plonka and Berger
[45] introduce a new method to increase the anonymity of
IPv6 addresses.

Besides, there are some studies to protect user secu-
rity and privacy using the huge address space of IPv6.
Aljosha et al. [46] use an address hopping algorithm to
change the address of the IoT server by a pre-communicated
address generation algorithm to enhance the security of
the IoT server and reduce the risk of being scanned.
Dunlop et al. [47] introduce an idea that repeatedly rotating
the addresses of both the sender and receiver to maintain user
privacy and protect against targeted network attacks.

C. PREFIX DELEGATION MODEL
In IPv4, there is no prefix delegation. IPv4 addresses are
configured by DHCP or static configuration. IPv6 allows to
delegate a prefix to a device for some networking reasons.
This device can allocate the addresses under the prefix to
other devices after being allocated the prefix. DHCP-PD [24],
[48] is a typical example. It allows the DHCP server to assign
a prefix to a DHCP client, and the DHCP client can act as a
DHCP server to assign the addresses under the prefix to other
hosts in the subnet.

Besides DHCP-PD, researchers propose more work about
prefix delegation. RFC 8273 [49] proposes an approach to
allow a host to be configured a unique IPv6 prefix. This RFC
allows each client to be configured an IPv6 address with a
unique prefix to ensure that hosts cannot send packets to each
other except through the first-hop router. As a result, it can
provide isolation between the connected visitor devices in a
shared-access network. RFC 8273 [49] proposes the idea of
configuring the hosts with the addresses of different prefixes,
but it does not make full use of the huge address space under
the prefix.

III. DESIGN OF ADDRESSLESS IoT SERVER
In this section, the mechanism of addressless IoT Server is
introduced.

A. DESIGN PRINCIPLES
The model proposed in this paper is designed to ensure
server security through massive IPv6 address space. To reach
this goal, the model takes advantages of the following three
features:

1) Introduce encryption into IPv6 addresses, by which the
redundant space of the IPv6 address can be used.
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2) Eliminate the one-to-one correspondence between the
server and the IP address.

3) Use Prefix Delegation model to assign an IPv6 prefix
instead of an IPv6 address to each server, so that the
server can use a segment of IPv6 addresses.

In this way, the server can use all of the addresses under
the prefix, which means a huge amount of addresses can be
used to hide the address that provides service. It also means
that the server can use different addresses to provide services
to different users.

In the model, ‘‘addressless’’ means that the server doesn’t
have a fixed IPv6 address. It is configured with a prefix
instead. While it communicates with a client, it uses a tem-
porary address in a connection. This address is generated by
an encryption-based algorithm in an authenticated client. The
server cannot be perceived by unauthenticated devices. So,
‘‘addressless’’ here also refers to a state that is not visible to
the outside world.

B. SYSTEM DESIGN
As presented in Section I, the addressless server is a private
server that only provides services to authenticated Internet
clients. It should be noticed that the authenticated client is
just a common Internet client with an IPv6 address.

The topology of an addressless IoT server is shown
in Fig.1. The server is connected to the first-hop router. The
server and the router are both configured with non-public
IPv6 addresses, usually link-local addresses for network con-
figuration. The first-hop router allocates the prefix and con-
figures the relative route to the server, so that all the packets
whose destination addresses are under the prefix can reach the
server. Theoretically, the server can also be configured with
a non-global unicast address, such as a ULA [50] address.
For security reasons, this address should be invisible to the
outside network.

When a client gets authentication from the server, a pair
of encryption keys are generated and saved separately in
the server and the client. This authentication can be done
when initializing a newly purchased camera or configuring
a health bracelet, etc. This process is done before the first
communication. The key exchange process is not the focus
of this paper, so we assume that it is secure and trustworthy.

When the addressless server starts its work, it listens on all
the IPv6 addresses under the prefix. When an authenticated
client initiates communication with an addressless server,
the client uses its own IPv6 address as the source address
first, then generates an IPv6 suffix through the source address
and the encryption key. Then the client combines the server
prefix and the suffix to form an IPv6 address as the desti-
nation address. Finally, the client sends the packets to the
server.

The source address is described as SA, the encryption
process is described as function f , the prefix of the server is
described as prefix, and the prefix length is described as N ,

then the destination address DA is:

DA1:N = prefix (1)

DAN+1:128 = f (SA) (2)

The specific process of f is described in Section III.D.
When the server receives a data message, it uses the

decryption key saved in the server to verify whether the
packet is from an authenticated client. The server extracts
the source address and the destination address of the packet,
take the source address as plaintext, and the suffix of the
destination address as ciphertext to make the verification.
If the packet is legitimate, that is, the packet is from an
authenticated client, then the packet will be sent to the oper-
ating system or appropriate application. Otherwise, it will be
dropped.

The decryption process could be described as (3):

Result = g(SA,DAN+1:128)) (3)

In (3), Result is a bool value stands for the verification result.
True means the packet is from an authenticated user, and vice
versa. g() is the verification function.
There are two things to be noticed:
1) The client is just a common IPv6 client, configured an

IPv6 address, not a prefix.
2) The encryption-decryption process described above is

done once in a flow. That is, when the client initi-
ates a connection, it generates a destination address
by the algorithm. After a flow is established, there is
no need to generate a new destination address until
the connection is terminated. And at the same time,
the server makes the verification only during the con-
nection establishment. After the connection is estab-
lished, the server accepts the packets directly.

If a connection is terminated, and the client intends to
re-initiate a connection to the server, it calculates a new desti-
nation address. The server should conduct the verification for
the new connection as well. However, UDP and ICMP are not
connection-oriented protocols, but considering that UDP and
ICMP also have the concept of data flow, the verification at
the flow level is easy to perform as well. Determiningwhether
different UDP or ICMP packets are in the same flow has been
well implemented in the operating system or network devices,
such as Linux or Cisco NetFlow [51], so we do not discuss it
here.

It is important that when the connection terminates,
the destination addresses generated by the same client in
the next connection should be different. Otherwise, a client
always uses the same destination address to initiate com-
munication with the server. A man-in-the-middle can eas-
ily learn the ‘‘source address-destination address pair’’ to
launch replay attacks. This will harm the security. Therefore,
we should consider adding time-varying parameters in the
encryption process.

How to select the time-varying factor will be dis-
cussed III.E.
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FIGURE 1. Topology of addressless IoT server. The server is connected to the first-hop router, through which connected to internet.

In the discussion above, the encryption is conducted at the
flow level. However, encryption at the packet level is also
feasible. In this case, each packet generated by the authen-
ticated client has a different destination address, and each
packet received by the server will be verified. This brings
some additional security features, which will be discussed in
Section IV. However, it increases the resource consumption of
the server, and brings bigger challenges in the case of network
jitter or retransmissions. As a result, encryption at the flow
level is a better choice.

From the above discussion, it can be seen that our model
takes advantage of the redundancy of the IPv6 address space.
We allocate a prefix to a server, free up the address space
of IPv6 suffix, and let it carry the authentication information
to conduct the verification at the server-side. In our model,
the source address and the prefix of the destination address
are used in routing. We attach the verification information
in the suffix space of the destination address to provide
additional security attributes. In the previous network com-
munication model, the authentication is generally performed
at the transmission or application layer, such as HTTPs [52].
In our model, we conduct verification in the network layer.
Authentication and encryption at the upper layer is fully
compatible with our model, we can use it with our model at
the same time to further enhance the security.

C. PREFIX LENGTH CONSIDERATION
The length of the prefix is affected by the requirement of rout-
ing. Generally, the prefix used for routing is no longer than
/64, because a traditional IPv6 address includes a /64 prefix
and a /64 interface identifier (IID) as suggested in RFC 4291
[22] and related RFCs. The prefix is used for routing and the
IID is used for identifying interfaces on a link. Therefore,
a /64 prefix is a good choice. However, this is not mandatory.
If the subnet has a short prefix, and there are few servers in

the subnet, to allocate a /56 prefix or even a /48 prefix is rea-
sonable. And in some special scenarios, for example, a family
is assigned a /64 prefix, but there are several IoT servers that
need to be allocated a prefix. In this case, a /68 prefix or a
/72 prefix is reasonable as well.

The length of the suffix is affected by the requirement
of verification. The suffix space is essentially the cipher-
text space of the authentication information. A longer suffix
length means there is more space to increase the encryption
security level. As a result, we need to guarantee that the suffix
length is not too short. An extreme example is that if the
prefix is /120, an attacker can traverse it within 256 tries.
It is obviously very insecure. If an attacker can easily find the
solution through brute force traversal, then encryption will be
meaningless at all.

It is assumed that the encryption is good enough, then the
suffix space includes 2N states,N is the suffix length. Consid-
ering that the attacker can only launch the attack through the
Internet environment, the efficiency will be less than that of
scanning the address space using Zmap [5]. We use Zmap’s
scanning efficiency (232 addresses in 45 minutes at most) for
estimation, the total traversal time for the suffix space is T
hours as (4)

T =
3 ∗ 2N−32

4
(4)

Therefore, to ensure security, we recommend a suffix at
least 48-bit long. Traversing all addresses under the prefix
will take 5.6 years, which is almost impossible in real network
attacks.

In summary, the length of the prefix and suffix should be
obtained by comprehensively considering the requirements
of routing and verification. A /64 or /56 prefix is a general
choice. In the rest of this paper, we assume a /64 prefix unless
we note specifically.
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D. ENCRYPTION PROCESS
The encryption described in our paper is essentially a digital
signature. The message is signed by the client and verified by
the server. As (1) and (2), the plaintext is a 128-bit source
address, and the ciphertext is a 64-bit (or another length)
destination address suffix. It should be noticed that since the
mechanism is actually a signature-verification process, not
a typical encryption-decryption process, we do not need our
encryption process f () to be reversible.

The encryption algorithm (function f mentioned in
Section III.B) executed by the client is as follows:

H_SA = Hash(SA) (5)

P_SA = 8(H_SA, salt) (6)

DA65−128 = e(P_SA, key) (7)

DA = strcat(prefix,DA65−128) (8)

In (5), (6), (7), (8), SA is the source address, DA is the
destination address generated by the algorithm, H_SA, P_SA
are the intermediate results.

The verification algorithm (function g mentioned in
Section III.B) executed by the server is as follows:

H_SA = Hash(SA) (9)

P_SA = e−1(DA65−128, key) (10)

Result = 9(P_SA,H_SA, salt) (11)

In (5) and (9), Hash() is a hash function. This function
is used to convert a 128-bit source address into a 64-bit
sequence uniformly distributed in space. FunctionHash() can
be arbitrary selected here, for example, md5 [26], SHA-128
[53], etc. If the sequence generated by the hash function
exceeds 64 bits, we intercept 64 bits from the result. This
can ensure thatH_SA is evenly distributed and lacks patterns.
We use md5 in our prototype.
salt in (6) and (11) is the time-varying factor. Function

8() is used to add time variability to prevent replay attacks.
Here the salt is a 64-bit value that changes in different flows.
Function8() can be arbitrary selected as well, such as XOR(),
which is used in our prototype. And in (11), 9() is a verifica-
tion function, it is determined by 8().
Function e() is the encryption function, and e−1() is the

decryption function. key is the encryption key of e()
Fig.2. shows the encryption process briefly, and Fig.3.

shows the verification process briefly.
In our model, e() could be symmetric encryption or asym-

metric encryption. We discuss them separately.
There are many mainstream symmetric encryption algo-

rithms, such as DES [54], AES [55], 3DES [54], etc. In our
model, the ciphertext is the suffix of the destination address,
which means the ciphertext should have the same length as
the suffix length. As a result, DES or 3DES is very suitable
for ourmodel. (If the suffix length is not 64-bit, the encryption
algorithm should be modified.) 3DES has higher security, but
it costs more resources. As can be seen in the security analysis
in Section IV.F, DES is already sufficiently secure, so in our
prototype, we use DES as the function e().

FIGURE 2. Encryption process on the client side.

FIGURE 3. Verification process on the server side.

Besides DES, there are some very simple symmetric
encryption algorithms, such as XOR(). In other encryption
scenarios, people do not use these because they have low
security levels, and can be easily cracked. In our model, this
risk is related to the selection of salt. So if the generation of
the salt is chosen good enough, we use XOR() as the function
e() may not bring additional security risk. The analysis of this
is introduced in Section IV.F.

Symmetric encryption can be applied in most situations.
However, the encryption key and the decryption key of the
symmetric encryption algorithm are the same. If the user
is worried that the key transmission process may cause the
risk of key leakage, or the authenticated client thinks that
the IoT server is untrusted because it may leak the key,
symmetric encryption is no more an appropriate choice here.
In this case, we use an asymmetric encryption algorithm as
function e(). The authenticated client saves the private key
for signature, and the addressless IoT server saves the public
key for verification.

Asymmetric encryption algorithms also have mature
designs and implementations. RSA [56] (based on the prime
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TABLE 1. Key length, Ciphertext length and security level of encryption
algorithms.

factorization problem), DSA [57] (based on the discrete
logarithm problem), ECC [58](based on the elliptic curve
problem) can all be used here. These algorithms have advan-
tages and disadvantages. RSA has a relatively fast verifica-
tion speed. ECC can generate shorter ciphertexts with the
same security level. The specific choice is determined by the
demand of users.

The security level of these algorithms is described
in Table 1 [59]:

The security level means the times required for brute force
cracking. The security level of 64 means 264 attempts are
needed for cracking. In general, a security level below 64 is
considered unsafe. FromTable 1, it can be seen that to achieve
a sufficient security level, a 64-bit ciphertext is much shorter
than needed if we use asymmetric algorithms. No algorithm
can guarantee the security of asymmetric encryption when
the ciphertext is only 64-bit. In this case, if the public key is
obtained by an attacker, it is quite easy to crack the corre-
sponding private key, resulting in the failure of asymmetric
encryption. To solve this problem, several solutions are pro-
posed in Section III.F.

E. ADDING THE TIME-VARYING FACTOR
The generation of the time-varying factor (salt) is discussed in
this subsection. This makes the replay attack no more effec-
tive, and makes the generated address no more predictable.

There are two types of salt generationmethods: stateful and
stateless.

1) STATEFUL FACTOR
Stateful means that the authenticated client and the server
save a state-space at the same time, and hop from one state to
another through a predetermined algorithm.

Here the state held by the client and the server can be
arbitrary. For example, a cyclic sequence is a simple and
feasible solution. The time-varying factor, which is defined
as salt in the previous discussion, can be denoted as s(x), x is
a sequence of integers from 1 to N . Every time a new com-
munication is initiated, x = x+1. If x is larger than N , we set
x = 1. For example, we can set s(x) = x, N = 100, then the
sequence will be 1,2,3,. . . ,99,100,1,2,3,. . . . Any function s()
is OK, such as a codebook, or a hash function. In this way, for
the same source address, the generated destination addresses
have cycles of N . When N is large, it can be ensured that this
cycle is difficult to be found by attackers.

Another method is to hash the previous state. The initial
state is assumed as s0, then the first factor should be s1 =
H (s0). Although here H () could be any function, a hash
function is recommended to keep the result unpredictable.
Here the nth factor will be sn = Hn(s0) = H (H (. . . (H (s0))).
It is the result of a hash chain. This method is widely used on
the Internet. For example, the temporary addresses in SLAAC
Privacy Extension [60] are calculated using this algorithm.

In the stateful factor case, the client and the server need to
negotiate the algorithm and the related parameters in advance.
This can be done in the key exchange process.

To prevent the status sequences of the client and the server
being out of sync, the factor hops only when the connection is
terminated. As a result, when using this method, it should be
avoided that the client uses multiple flows to visit the server at
the same time. Otherwise, a more elegant hopping algorithm
should be designed to avoid the sequence being out of sync.

The stateful factor case is described in Fig.4.

2) STATELESS FACTOR
A stateless factor means that the server and the client do
not save any state. Only public information is used in the
factor generation. The public information should be simple
and verifiable, meanwhile hard to falsify. System timestamp
is a perfect option that satisfies all the requirements above.
So we use timestamps as our salt here.

Intuitively, the timestamp can be used as the salt directly.
In this case, (6) will be:

P_SA = XOR(timestamp,H_SA) (12)

Then (11) in the server verification process will be:

Result = (Time− XOR(P_SA,H_SA))

∈ (−threshold, threshold)?True : False (13)

In (13), the encrypted timestamp is calculated, and then
compared with the local system time. If the difference is
within a credible range, such as 1 or 2 seconds, then we
consider the message legitimate. The attacker cannot obtain
the encryption key, so even if he knows the server uses the
timestamp as the ‘‘salt’’, he still cannot falsify the mes-
sage or launch attacks.

However, using timestamp directly is not good enough.
Assuming that the attacker knows the hash function in (5)
(This is of large possibility because the hash function is usu-
ally public), the attacker can intercept the packet, and calcu-
lateH_SA from the source address. Assume that the granular-
ity of the timestamp is 1 ms, the attacker can obtain 1000 pos-
sible P_SAs by enumerating all the timestamps in the past
1 second, and then forms 1000 possible plaintext-ciphertext
pairs of function e(). One of them is true. Then the attacker
can get the key by cracking. If e() is good enough (such as
DES/3DES), the cracking will take too long (The attacker
must crack 1000 plaintext-ciphertext pairs to get 1000 pos-
sible keys, which takes at least several years if DES is used
as e()), however, it can be better.
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FIGURE 4. The stateful time-varying factor case. The client and the server save the same state sequence. When a connection is terminated, the salt hops
to the next state. When a man-in-the-middle intercepts the packet and launches replay attacks, the destination address is already expired, making the
attacks fail.

The algorithm used for generating the factor by the times-
tamp is as follows:

Salt = (SystemTime− T0)/X (14)

This method is similar to the one-time key generation
algorithm described in RFC 6238 [61]. T0 and X are two
parameters saved by both the client and the server. T0 is the
initial value and X is the step size, which is confidential.
Using this, it can be guaranteed that the salt cannot be guessed
by the attacker.

The client’s salting process can be described by as the
following equations:

Salt = (TimeStamp− T0)/X (15)

P_SA = XOR(Salt,H_SA) (16)

The TimeStamp in (15) is the system time when this func-
tion is executed. T0 and X are the same as (14).

The server’s verification process can be described as the
following equations

P_SA = e−1(DA65−128)) (17)

Salt = XOR(P_SA,H_SA) (18)

Ts = Salt ∗ X + T0 (19)

Result = (SystemTime− Ts) ∈

(−threshold, threshold)?True : False (20)

Here, H_SA is the result of (9), T0, X and Threshold are
the same as (14).

There are several considerations of this approach.

The first is the choice of the time threshold. The threshold
cannot be too small. The time difference between Ts and
SystemTime includes transmission delay, processing delay,
and system time difference between the client and the
server. So the threshold should be at least higher than the
transmission delay, processing delay, and the additional cost
caused by network condition. At the same time, the threshold
should not be too big, otherwise, the risk of being attacked
will increase. In our prototype, a threshold of 5 seconds is
used. We think a threshold of 2 seconds to 5 seconds is
appropriate.

We should consider the system time difference between the
client and the server as well. Therefore, this approach also
imposes a certain requirement on the system time accuracy
of the client and the server. Fortunately, this requirement is
not hard to satisfy. The system time synchronization is easily
done in the current Internet environment.

In the implementation of our prototype, the stateless factor
approach is used. However, the stateful factor can protect the
server as well, especially in some cases such as when the
system time synchronization is hard to be done.

The process can be described as Fig.5. briefly.

F. ENHANCING THE SECURITY LEVEL OF ASYMMETRIC
ENCRYPTION
As described in Section III.D, in order to guarantee the
security level of asymmetric encryption, a longer ciphertext
is needed. For example, if RSA is used as the encryption
algorithm, the length of the key is better to be no shorter than
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FIGURE 5. The encryption-verification process of stateless salt case. The left side is the encryption process at the client-side and the right side is the
verification process at the server-side.

1024 bits, which means the ciphertext will be 1024 bits as
well. Even if we use an elliptic curve algorithm, it would be
better to have a ciphertext longer than 192 bits to ensure the
security level. Otherwise, if the attacker obtains the public
key, it will be easy to crack the private key. This is far
beyond the length of the IPv6 address suffix. In this part,
two approaches are proposed to solve this problem: the non-
network-layer approach and the network-layer approach.

1) NON-NETWORK-LAYER APPROACH
Themain idea of the non-network-layer approach is to use the
payload space to provide more bits for the ciphertext. That is,
part of the ciphertext which cannot be held in the suffix can be
saved in the message payload. When the server receives the
message, it makes the verification by the destination suffix
and the additional information from the message payload.

The information is added to the payload of the first packet
in order to ensure that the server does not reply to any
unauthenticated message. For TCP datagrams, we use the
payload of the first Syn packet, and for UDP datagrams,
we add a packet before the first UDP packet to hold this
information. When the server receives the message, it makes
the verification. If the message is authenticated, the server
accepts the following packets in the flow, otherwise, it drops
the message.

Fig.6 shows the mechanism of the non-network-layer
approach.

2) NETWORK-LAYER APPROACH
The main idea of the network-layer approach is to use multi-
ple quintuples to provide more bits for ciphertext. For exam-
ple, one connection can only offer 64 bits for ciphertext,
then 10 connections can offer 640 bits, which is sufficient to
provide enough security level for ECC or DSA algorithms.

FIGURE 6. Mechanism of the non-network-layer approach. In TCP
scenario, the additional ciphertext is held in the payload of the Syn
packet, and in UDP scenario, the ciphertext is held in a new packet.

When a client initiates communication, it can sendmultiple
data flows with different destination address suffixes instead
of one flow. The number of flows is determined by the secu-
rity requirement. Each data flow has the same source address,
the same destination address prefix, and different destination
address suffixes. When the server receives the data message,
it combines the destination address suffixes of the multiple
data flows into a single ciphertext for verification.

To combine the ciphertext correctly, the last 4 bits are
used as the sequence number field. At this time, the effective
ciphertext length for each flow will become N-4 bits. (N is
the suffix length).

When the server receives the data message, it needs to
wait for all the messages to be received before establishing
the communication. For example, the client can send 1 TCP
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FIGURE 7. An example of the network-layer approach. The ciphertext is
held in multiple destination addresses. The server combines these
suffixes to form the ciphertext.

Syn packet and 9 auxiliary UDP packets, and the server
receives them, reassembles the ciphertext, and conducts the
verification. Then it replies Syn+ACK message to the client
to establish the TCP connection.

The network-layer approach solves this problem purely
in the network layer without bringing cross-layer problems.
It introduces additional security benefits by establishing com-
munication through multiple flows instead of one. How-
ever, it introduces performance problems. Communication is
established only when multiple flows are all received. Packet
loss in any flow may result in the failure of the communi-
cation establishment, which means that there will be more
performance loss when the network condition is not desirable.

These approaches mentioned in this subsection are only
used to solve the problem of insufficient ciphertext space
in the asymmetric encryption scenario. Unless the client is
concerned about key leakage on the server-side, a symmet-
ric encryption solution is recommended, which can provide
sufficient security at a lower cost.

Fig.7 shows an example of the network-layer approach.

G. MATCHING THE KEY OF DIFFERENT USERS
When an IoT server serves multiple authenticated users,
the server will hold multiple keys. In this subsection, we dis-
cuss how to match the key used by the specific user when
receiving a data message.

The most intuitive method is to traverse the keys. The
server selects one key to make the verification. If the veri-
fication fails, the server makes another attempt using the next
key until the verification succeeds or all the keys are tried.
If the number of users is small and the encryption algorithm
is not complicated, the additional time cost for verification is
not large.

To improve the efficiency of the above method, the Most
Recently Used algorithm can be used. Using this, the server
makes the verification with the most recently used key first.
There are many specific implementations of this algorithm,

for example, the server maintains a queue of keys, and each
time a key is used, it is relocated to the first position in the
queue. When a data packet arrives, it is verified sequentially
according to the order in the queue. This algorithm is similar
to the LRU algorithm [62] which is used to improve the
efficiency of memory replacement in the operating system.
This depends on an assumption: some users access the server
more frequently, and some users rarely access the server. This
is usually true. In this case, changing the order of the keys
for verification can increase the verification efficiency and
reduce the matching time.

There is a problem with matching keys one by one. If the
server is under a DDoS attack, such as Syn-Flood, each data
packet needs to match all keys before it is discarded. This
may weaken our advantages in preventing DDoS attacks to
some degree. So thismethod is suitable onlywhen the number
of clients is small. However, for an IoT server, generally the
number of users is not big.

Another idea is to design an independent ID to each user
device when generating and distributing the encryption keys.
When the client sends the data message, the ID is also embed-
ded in the address information and sent to the server.We intro-
duce two ways using this idea:

1) The port space can be used for user identification. For
security and functionality reasons, we avoid the widely
used ports and the low ports. The port space of TCP
and UDP is 16 bits. Except for the low ports and the
widely used ports, there are still more than 50,000 ports
available. This is enough for most IoT devices.

2) Part of the suffix can be used to hold the user’s ID.
For most IoT servers, there are not too many users,
so a small part of the address space, such as 8-bit
is sufficient. This can provide space for 256 authen-
ticated clients, and the rest space is enough for
encryption.

If the second method is used, the destination address should
be

DA = stract(prefix,R(ID+ e(P_SA, key)) (21)

R() is a reversible function (it is better credential to prevent
the attacker from using metadata analysis to get the patterns
of the user id). The server uses R−1 to get the suffix, extract
the user ID, and check whether there is a key corresponding
to the user ID. If the server finds the key, then it decrypts the
message using the corresponding key. Otherwise, the mes-
sage is discarded by the server.

The above algorithms can also be combined to provide
services to a large number of users. In this case, each client
is assigned a non-unique user ID. When the client initiates
connections, it uses part of the destination address suffix
space and/or the port space to transmit the user ID, and if
there are multiple keys corresponding to one user ID, then the
server matches the key one by one or using a Most Recently
Used algorithm. This can help the server to serve a large
number of clients.

VOLUME 8, 2020 90303



R. Liu et al.: Addressless: Enhancing IoT Server Security Using IPv6

FIGURE 8. Mechanism with DNS. The client sends the DNS request and
gets the resolution result first, and then calculates the destination
address.

H. DOMAIN NAME SYSTEM
Sometimes users do not want the client to access the IoT
server directly through the IP address. In this case, we intro-
duce the domain name system to the addressless server.

Our design is fully compatible with the existing DNS sys-
tem. Unlike traditional servers, our server uses an IPv6 prefix
instead of an IPv6 address. The domain name is pointed to
an address under the prefix, for example, an all-zeros suffix
address, such as 2001:da8:c597:2426::. This address does
not provide services. When an authenticated client initiates
communication to the server, it gets this address using DNS
and extracts the prefix. Then it generates the suffix using the
algorithm described previously. When the network condition
of the server changes, it can modify the address. Our model
can be more flexible using this method.

DNS can also be used when it is necessary to change the
prefix length in some scenarios. The end 8-bit of the address
is used to hold the value of the prefix length. Because the
length of the prefix is smaller than 128, it takes 7 bits at most.
This will not affect the prefix. After the client gets the DNS
response, it extracts the prefix and the prefix length, then
generates the packets using this information.

It should be noticed that the client cannot get the prefix
length using the address with an all-zero suffix. An address
like 2001:da8:c597:2426:0000:0000:0000:0000 may have
a prefix as 2001:da8:c597:2426::/64, or a prefix as
2001:da8:c597:2426::/65. The prefix length cannot be deter-
mined by the number of zeros.

WithDNS, the server can provide shorter or longer prefixes
as needed, making the mechanism more flexible.

Fig.8. shows the addressless server access process using
DNS.

IV. SECURITY ANALYSIS
In this section, the security features of the addressless server
model are analyzed.

A. NETWORK SCANNING
Address scanning is always an effective way to locate the
server and launch attacks. Because of the difference between

FIGURE 9. There are more than one legitimate destination addresses in
the stateless salt case. Address 1,2,3 and 4 are all considered legitimate.

the address space of IPv4 and IPv6, it is impossible to scan
the whole IPv6 address space although it takes only about
45 minutes to scan the entire IPv4 address space. However,
as described in Section II, there are already some approaches
in IPv6 scanning.

IPv6 scanning from the Internet can be simply divided into
two types:

1) Scan by the collected IPv6 address records
2) Generate a hitlist using machine learning algorithms.

In the first approach, the scanner first collects the
IPv6 addresses from the Internet or LAN records, such as
web access records, traffic monitoring records, routing infor-
mation records, DNS information, andDNSSEC information,
etc. In the second approach, the scanner uses some real
IPv6 addresses as the seeds, generating hitlists of target
IPv6 addresses by pattern recognition algorithms.

As described in Section III, the brute force scans cannot
pose any threat to addressless server. The time it takes to
scan the entire IPv6 address space under an IPv6 prefix
(unless the prefix is too long) by brute force is too long to
harm our model. However, in section III.E, an approach is
proposed to add a stateless time-varying factor in our model.
In this approach, there will be a legitimate time window, all
timestamps in the time window will be considered legal. As a
result, there will be more than one legal address among the
2N addresses (Here N is the suffix length). It is assumed that
there are P legal addresses within the threshold. (For example,
if the threshold in (20) is 1.5 seconds, and the step size in (15)
is 1.5 ms, then there will be 1000 destination addresses that
can pass the verification.) In this case, the hit probability of a

single scan will be
P

2N
.

Fig.9. shows that in the stateless salt case, there are more
than one legal destination addresses corresponding to the
same source address. In Fig.9, address 1 to address 4 are all
legal, because there is more than one legal salt in the time
window.

Furthermore, if there are Q authenticated users’ keys in
the server at the same time, and the matching algorithm
described in Section III.G is conducting the verification one
by one or hiding the user ID in the destination address suffix,
the hit probability of a single scan will be (Considering that

90304 VOLUME 8, 2020



R. Liu et al.: Addressless: Enhancing IoT Server Security Using IPv6

the legal address is changing all the time, each scan can be
regarded independent)

Pro =
P ∗ Q
2N

(22)

The expected time T of the scanning will be (assume the
efficiency of the scan is the same with Zmap in IPv4) (in
hours)

T =
3 ∗ 2N−32

4 ∗ P ∗ Q
(23)

To prevent the server from being scanned, T should be long
enough, for example, it can be more than 1 year. As a result,
P, Q, N should satisfy the following equation: (Note that if
the client and the server use ports to transmit user ID, then Q
should not include this part of data.)

N − log2PQ ≥ 46 (24)

Scanning by the collected IPv6 addresses is obviously inef-
fective to the addressless server. A message will be replied
only when the source address and the destination address
pass the verification. Otherwise, no packets will be responded
to. Obviously, the collected IPv6 addresses cannot pass the
verification, making this kind of scanning ineffective.

Scanning by generating a hitlist using a machine learning
algorithm is also ineffective to the addressless IoT server. The
essence of this method is to learn the patterns existing in
the addresses by data analysis. In Section IV.G, the big data
characteristics of our generated addresses are analyzed. It can
be seen that the addresses generated by our algorithm are
random enough. The attacker cannot use this approach to
launch attacks.

In addition, another type of scan is initiated from the
subnet. The attacker collects the addresses through the ND
information, then launches scans or attacks. This is ineffective
to the addressless IoT server as well. Other devices in the
subnet cannot obtain an IPv6 address of the server except the
link-local address, however, the link-local address does not
respond to any application, and attacks cannot be launched
through it.

In summary, for an addressless IoT server, it cannot be
detected by any scanning method. The outside devices cannot
discover the server through any active scanning, let alone
launching an attack by scanning.

B. DoS ATTACK
DoS attacks include many types. The most popular types
are TCP Syn-Flood, UDP Flood, etc. Some attacks have no
damage in the IPv6 network environment, and some have
nothing to do with our model, such as smurf attacks. We do
not discuss them in this subsection.

Syn-Flood is no longer harmful to addressless servers.
In our model, all syn packets received will be verified accord-
ing to the source and destination address, and the unau-
thenticated ones will be dropped immediately. In this case,
no Syn+ACK message will be sent, and the server will not

allocate any storage or CPU time to wait for the subsequent
ACK messages. Therefore, Syn-Flood will not cause any
harm to the server.

UDP Flood does not cause any harm for the same reason.
Any unauthenticated UDP packets will be dropped immedi-
ately, the application will not allocate any resources to wait
for subsequent data packets. As a result, UDP Flood will not
cause the server to be overloaded.

However, restricted by hardware conditions, our mitigation
of DoS attacks is also limited. Our model is powerless against
attacks such as bandwidth exhaustion.

C. APPLICATION VULNERABILITY ATTACK
Many network attacks are aimed at application-layer vulner-
abilities. For example, in a SQL injection attack, an attacker
injects malicious code into a SQL request to launch the attack.

Our model can prevent this from happening. Through the
encryption mechanism, the server only responds to authenti-
cated clients. The attacks aimed at application vulnerabilities
are prevented at the network-layer, the corresponding attack
packets will not be sent to the application or operating system,
so they will not cause security problems.

However, this is based on the premise that the authen-
ticated users will not launch malicious attacks. Our model
cannot prevent an authenticated user from launching such
attacks. Therefore, the service provider should prevent mali-
cious clients from obtaining authorization. Besides, it is
also possible to hijack the client and launch attacks on the
server. To prevent this from happening, the client needs more
security protection methods, such as the addressless client
model which will be discussed in another paper of ours.

D. REPLAY ATTACK
As described in Section III.E, the time-varying factor is added
to the algorithm to make the addresses generated each time
different from other addresses. Using this, the server can be
prevented from replay attacks.

However, if a man-in-the-middle intercepts a packet, he
can launch a replay attack within a time threshold. To prevent
this from happening, if the server receives a new flowwith the
same address that has been usedwithin a time threshold, it can
regard this packet unauthenticated and drop it, although this
kind of attack can hardly be successfully launched because
the time window is too small. However, this method requires
that the client would not initiate multiple flows within a time
granularity described as X in (15) and (19) in Section III.E,
so that the salt in different flows can be different.

E. CONNECTION MONITORING AND SESSION HIJACK
Our model cannot prevent malicious middleman from obtain-
ing the quintuples that are being used by monitoring the
connection. Although the man-in-the-middle cannot initiate
a scan or a replay attack through this quintuple, he can
attack or hijack the connection. For example, a man-in-the-
middle may forge a malicious packet with the same quintuple

VOLUME 8, 2020 90305



R. Liu et al.: Addressless: Enhancing IoT Server Security Using IPv6

to launch a session hijack or an attack on the connection such
as reset the connection using TCP RESET packet.

Our model cannot prevent this directly. Since our verifi-
cation is performed on a flow, when a connection has been
established, we will no longer conduct the verification on
the following packets. However, encryption at the application
layer, such as TLS [63], DTLS [14], HTTPs [52], etc. can
encrypt the payload of the packets and prevent the connection
attacks and the session hijacks. It can protect user privacy as
well. These methods are performed at the application layer,
which is fully compatible with our model which is performed
at the network layer.

In addition, in Section III.B, encryption at the packet level
is discussed. This causes each packet to have a different
destination address, and the verification is performed to every
packet. This can prevent the attack on connections and session
hijack as well. However, these attacks can be easily prevented
by using TLS/DTLS without introducing other problems
brought by the verification on each packet, so we think there
is no need to use packet-level encryption and verification.

As a result, our model can prevent the server from being
monitored and launched connection attacks by combing with
application-level encryption such as TLS [63].

F. KEY CRACKING
The security of symmetric encryption depends on the
algorithm. Usually, the attacker can intercept the plaintext-
ciphertext pairs to guess the key. In our model, it is meaning-
less to intercept a message, because we add a time-variant salt
in the encryption process, which ensures that the man-in-the-
middle cannot obtain the plaintext of the function e() from
the source address directly. The man-in-the-middle can only
obtain the source address and the destination address, and it
is impossible to infer the key from this information.

Obtaining multiple plaintext-ciphertext pairs will make
cracking easier. However, in our scenario, this is obviously
impossible. Different flows will carry different destination
addresses even if these flows are sent by the same device.
This prevents the middleman from testing the key obviously.
Therefore, although many people think that DES encryption
is not safe enough in the current Internet, however, in our
scenario, DES is enough to protect the security of the IoT
server.

In extreme cases, even if we use the simplest symmet-
ric encryption algorithm, such as XOR(), it is hard for the
attacker to crack the key. The plaintext we use in encryption
is hashed and salted, the salt we use is confidential (in the
stateless case, the parameter T0 and x is confidential), and
the ciphertext distribution is random enough (we will discuss
it in Section IV.G), so even we use the simplest encryption
algorithm, it is hard for the attacker to crack the key. This will
reduce the load of the device, but from the perspective of mul-
tiple protection, we prefer to use popular encryption methods
such as DES, unless the computing resource is limited.

In some cases, we use asymmetric algorithm instead of the
symmetric algorithm in the encryption. This may due to the

concern that the server can leak keys, or there is no need
to keep the server-side key secret (such as using the PKI
system [64] to distribute user public keys to provide large-
scale services, which will be discussed in future papers). For
asymmetric encryption algorithms, the cracking method is
to calculate the private key by the public key. To prevent
this, a long enough private key is required, resulting in the
private key length and the ciphertext length much higher than
symmetric encryption, and the time cost in encryption and
decryption much bigger. How to ensure the security level of
asymmetric encryption is discussed in Section III.F.

G. TRAFFIC METADATA ANALYSIS
Attackers can obtain the pattern of addresses by big data
analysis on the traffic. This can reduce the scanning space
and increase the possibility of attacking or key cracking. This
is a threat to server security. To fight against it, we make the
suffixes generated by our algorithm more unpredictable and
evenly distributed. With the help of this method, the traffic
data analysis can be less harmful.

Simulations are made to generate the suffixes by our algo-
rithm to demonstrate it. In the simulation, we generate mul-
tiple addresses to analyze the big data characteristics. The
simulations are made in three aspects, and the results are
shown in Fig.10.

1) Group A: In Group A, 1000 addresses are generated
at different time using the same source address. The
distribution of the suffixes is shown in Fig.10.(a). This
demonstrates that the addresses generated by the same
device at different times are sufficiently random.

2) Group B: In Group B, 1000 different active addresses
under the same /64 prefix are collected in the cam-
pus network of Tsinghua University as the source
addresses, and we generate 1000 destination suffixes
using these source addresses. The result is shown
in Fig.10.(b). The red points stand for the input
addresses, while the blue points stand for the gener-
ated suffixes. It can be seen from the result that the
64-96 bits of the source addresses are all around 0,
and the 97-128 bits are concentrated as well, while the
generated suffixes have good random characteristics.
The result demonstrates that the addresses generated
by different devices in the same subnet are sufficiently
random.

3) Group C: In Group C, 100k real unique IPv6 network
addresses in the campus network of Tsinghua Univer-
sity are collected as source addresses, and 100k des-
tination suffixes are generated using these. Fig.10.(c)
shows 1000 source address-destination address pairs.
The red points are the collected source addresses while
the blue ones are the generated suffixes. The result
demonstrates that the collected IPv6 addresses have
more obvious patterns than the generated ones. The
generated suffixes are random enough.
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FIGURE 10. The distribution of the generated suffixes. (a) is the result of Group A, (b) is the result of Group B, (c) is the result of Group C. In (b) and (c),
the red points are the source addresses and the blue points are the generated addresses. It can be seen that the addresses generated by our algorithm
are random and evenly distributed.

TABLE 2. KS-test result of generated suffixes.

We can also use entropy to describe the randomness of
addresses more exactly. The entropy here is calculated for
each nybble3 to evaluate the randomness of the address [38]–
[41]. That is, if character ci occurs Ni times in the k-th nybble
(assume there are N samples totally), the entropy of the k-th
nybble is

ek = −
1
4

16∑
i=1

Ni
N
log(

Ni
N
) (25)

Fig.11 shows the results. Similar to Fig.10, Fig.11 (a) is
the entropy of 1000 addresses generated by the same device
at different times. Fig.11 (b) shows the entropy of 1000 dif-
ferent addresses generated by different devices in the same
subnet. The red line stands for the entropy of the 1000 source
addresses’ suffixes, while the blue line stands for the entropy
of the generated suffixes. Fig.11 (c) shows the entropy
of 100k suffixes generated by 100k different devices. The red
line stands for the addresses in real traffic while the blue line
stands for the generated suffixes. It can be seen that regardless
of the randomness of the source addresses, the nybbles in the
suffixes generated by our algorithm are random enough.

Furthermore, KS-test is used to test whether the generated
addresses follow a uniform distribution. The result is shown
as table 2.

From Table 2, it can be seen that the p-value of the gener-
ated suffixes in GroupA, B, and C are greater than 0.05, while
the p-value of the suffixes of the source addresses are less than
0.05. This demonstrates that our generated suffixes follow the

3A nybble is 4-bit. It is a character in hex.

uniform distribution, while the suffixes of the source address
do not.

The results above show that the addresses generated by our
algorithm are random enough and evenly distributed, which
means the addresses are unpredictable. As a result, the traffic
data analysis can be less harmful.

H. ND RELATED ATTACK
At the access layer, ND (Neighbor Discovery) [3] attacks
should be considered as well. Although the ND protocol
solves the ARP-related security problems in IPv4, it intro-
duces new security problems in IPv6, such as RA spoofing,
malicious redirection, cache overflow, and so on. We can
divide the ND-related attacks into three types: spoofing
attacks (RA spoofing, malicious redirection, etc.), cache
exhaustion attack, and DAD attack [65], [66].

Our model can defend against part of spoofing attacks.
Some ND packets have no effect on the server after the prefix
is assigned and the route is configured. In this case, this kind
of spoofing attacks cannot harm the server. However, if our
model uses DHCP-PD to delegate the prefix, there may still
be configuration errors caused by RA spoofing attacks in
the delegation process, making the server not being able to
communicate with the outside devices correctly. Therefore,
our model cannot prevent all types of spoofing attacks.

The cache exhaustion attacks will be less harmful to our
model. In our model, a server is allocated a prefix instead of
an address. So false NS and NA messages will be considered
invalid because they claim that the server has an address,
not a prefix. Therefore, traditional cache exhaustion will
not harm the addressless IoT server. However, there may be
new types of cache exhaustion. For example, an attacker can
maliciously apply for /64 prefixes to exhaust the routing table
cache or prefix resources.

DAD DoS attacks [67] cannot pose a threat to our model.
DAD is used to prevent two devices from being configured
with the same IPv6 address. However, in our model, there is
only one device under a prefix, DAD messages are no longer
needed. Therefore, the DAD DoS attack will no longer be
harmful.
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FIGURE 11. The entropy of the generated suffixes. (a) is the result of Group A, (b) is the result of Group B, (c) is the result of Group C. In (b) and (c),
the red line is the entropy of source addresses and the blue line is the entropy of generated addresses. It can be seen that the addresses generated by our
algorithm are sufficiently random.

However, ND attacks to the link-local address may still be
effective because link-local addresses are used in our model.
In this case, although our model can alleviate the harm of
the ND attacks on non-link-local addresses, it is still a better
choice to deploy ND-related security policies in the subnet,
such as SEND [68], [69], RA-guard [70], [71], etc.

V. OTHER DESIGN CONSIDERATIONS AND DISCUSSIONS
In this section, other features of our model are discussed.

A. TRANSPARENT APPLICATION SUPPORT
There is no application-layer modification in our model. All
changes are made at the network-layer, so theoretically, most
applications can be transparently supported.

However, there may be some applications that require the
client to initiate multiple connections to the server at the same
time. In our model, the connections may have different desti-
nation addresses. In most cases, this will not affect the appli-
cations. It is difficult to imagine that there are applications
whose background logic depends on whether the destination
addresses in different flows are consistent. However, there
are diverse applications running on the Internet, it is difficult
to ensure that all applications meet this requirement. As a
result, our model may not support the applications whose
logic depends on the consistency of the destination addresses
in different flows.

Besides, although it is usually not necessary to respond
to ICMP messages in the non-subnet scope for IoT servers,
sometimes users also need the server to reply to ICMP ping
messages. There are two solutions to allow the server to reply
ICMP ping packets:

One is that the server only replies to the ICMP messages
sent by authenticated clients. The other ICMP ping packets
will not be replied. In this case, only the authenticated clients
can find the server, which guarantees the server’s impercep-
tible feature. This can be done by the encryption algorithm
described in Section III. In our prototype, this approach is
implemented.

The other solution is to select an address under the prefix,
and use it as an ICMP beacon. This address only replies

to ICMP packets, and discards all other messages. It brings
management benefits. However, this may destroy the server’s
imperceptible feature.

B. COMPARISON WITH OTHER IoT SECURITY SOLUTIONS
In this subsection, the differences of our model compared
with other related work about IoT security are discussed.

1) Compared with other solutions, our model has differ-
ent application scenarios. Other security solutions are
focused on specific scenarios, for example, 6LowPsec
[9] is based on 6LowPAN [8], which is a solution of
wireless personal area networks; SSATP [16] is a solu-
tion in the communication between the Edge nodes and
Fog nodes in Fog computing. In our model, encryption
is conducted inside the IPv6 address itself. It can be
used in any Internet scenario that allows IPv6 Prefix
Delegation. Considering that the current DHCPv6 sup-
ports Prefix Delegation Model, supporting PD does not
cause difficulties in deployment. As a result, our model
can be widely used in industrial IoT, home IoT, and
other scenarios.

2) Our model works on a different layer with the other
solutions. Our model is a network layer solution and
can work without modifying the access network envi-
ronment. It is compatible with other security models
that support IPv6. Other models usually work on other
layers. For instance, 6LowPsec [9] works on the data
link layer and the sublayer. TLS, DTLS and related
protocols such as SSATP [16] and LSSP [17] work
at transport layer and application layer. As a result,
our model is independent of these solutions and com-
patible with the protocols at the other layer, such as
SSATP or LSSP.

3) Our model is also different from other secure protocols
at the network layer, such as IPsec [6]. IPsec encrypts
the whole payload while our algorithm encrypts the
address, so our model is also compatible with IPsec.
Encrypting only the address is more lightweight than
encrypting the entire payload. Furthermore, in some
scenarios, it is required to check the payload. In this
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case, only our model can be used because the payload
is not encrypted.

4) The other solutions, for example, 6LowPsec [9], etc.
are usually based on some IoT architectures. They pro-
pose lighter secure protocols than traditional Internet
protocols. Our work is directly based on IPv6, it is still a
novel model on the modern Internet. It does not overlap
with traditional security solutions.

Our model can comprehensively deal with most of net-
work security issues. Because our model only introduces
additional operations during connection establishment, and
the encrypted content is only carried in the IP address suffix,
it will introduce very small overhead. It is a model suitable
for most IoT scenarios.

C. COMPATIBILITY, SIMPLICITY, AND EVOLVABILITY
Compatibility with existing networks is very important. For
a new model working on the Internet, compatibility with
existing Internet must be guaranteed, otherwise large-scale
deployment will face great difficulties. As mentioned above,
our model can be used smoothly in the existing Internet
without any modification on the network environment. The
clients and servers can be used anywhere on the Internet with-
out the cooperation of routers, ISPs, DNS service providers,
etc. The only requirement is to allocate a prefix to the
server. As a result, our model has a very low deployment
cost.

A good mechanism should be simple enough and easy to
use, otherwise it will bring obstacles to large-scale deploy-
ment in the complicated modern Internet environment. At the
same time, a sufficiently simple mechanism also has good
stability. A complex mechanism is more likely to be lim-
ited by boundary conditions. It can be seen that the idea of
addressless IoT server is very simple. The model has a clear
idea, and it is easy to understand. This simplicity ensures that
the mechanism is easy to apply, and will not cause obstacles
in deployment.

Our model eliminates the one-to-one correspondence
between server and IP address, and uses the IPv6’s huge
address space and encryption algorithms to ensure that only
authenticated clients can visit the server. Similar encryption
has never been performed before. We apply it at the network-
layer to better complement the existing network security
model. This provides a rich evolution space for subsequent
expansion. Researchers can propose more algorithms based
on this model.

D. IPv6 ADDRESS SPACE CONSIDERATION
IPv6 is designed to provide more address space to alleviate
the insufficiency of IPv4 address space. However, in our
model, we assign a prefix to each IoT server. Will the
IPv6 addresses be insufficient if a prefix is allocated instead
of an address to a server? This worry is unnecessary. There
are 8.6 billion /36 global unicast prefixes, which means that
everyone in the world can be allocated a /36 prefix. What’s

more, there are 268 million /64 prefixes under a /36 prefix,
which means that the current IPv6 address space is sufficient
to allocate 268 million /64 global unicast prefixes for every-
one. Even if a /56 prefix is allocated to each server, the current
IPv6 address space can offer everyone 1 million /56 prefixes.
Therefore, we think IPv6 addresses in the world are sufficient
in our model.

E. IPv4 CONSIDERATION
Although our mechanism is highly dependent on the large
address space provided by IPv6, our mechanism itself is
not IPv6-specific. Theoretically, our model can also work in
IPv4. An IPv4 server can be assigned a segment of addresses
and listen on all these addresses. Authenticated clients can
generate the destination address suffix using the algorithm
described in Section III.

However, this does not make sense. There are two reasons:

1) IPv4 address space is too small, and the IPv4 addresses
are scarce. It is too wasteful to assign a segment of
addresses to an IPv4 server.

2) The security level of the encryption cannot be guaran-
teed with a too-short ciphertext. The ciphertext space
can be easily traversed, resulting in the model not being
able to provide enough security protection.

Therefore, our model is only suitable for IPv6.

F. CONSIDERATIONS ABOUT NON-IoT SERVER
As our previous discussion, ourmodel can be used not only on
the IoT servers. Any private server that provides non-public
services can use our model to enhance security. However,
IoT servers usually provide services to a limited number of
clients, and they are usually deployed in different network
environments. At the same time, IoT servers are usually not
well protected like the public servers. As a result, our model
is very suitable for IoT servers. Of course, some non-IoT
servers, such as private cloud servers, can also use our model
to protect security.

G. LIMITATION OF ADDRESSLESS IoT SERVER
The Addressless IoT Server model has the following limita-
tions:

1) Our model is designed based on IPv6, so our
model may not be compatible with some data
link layer or physical layer protocols in which
the IPv6 addresses are compressed. Neither is our
model compatible with protocols that do not support
IPv6.

2) Our solution trusts authenticated devices. If an authen-
ticated device launches a malicious attack, such
as DoS attack, fragment attack, or SQL injection,
it may harm the device. Therefore, it is neces-
sary to ensure that the authentication is carefully
conducted.

3) Our solution believes that the key exchange process is
credible. However, this may be a challenge.
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VI. IMPLEMENTATION AND EXPERIMENT
In this Section, our implementation of addressless IoT server
and the experiments based on our prototype are introduced.

A. PROTOTYPE IMPLEMENTATION
Our prototype is implemented based on Linux. DHCP-PD
is used for prefix delegation, and the NetFilter Linux kernel
module is modified to implement our mechanism. In our
prototype, the following features are implemented:

1) The server is assigned a prefix and listen on all the
addresses under it.

2) The authenticated client and the server save the key
pair. The client uses the algorithm described in this
paper to generate a destination address in commu-
nication, and the server performs verification by the
addresses.

3) Both symmetric encryption (DES) and asymmetric
encryption (RSA with a 1024-bit key, ECC with a 192-
bit key) in the algorithm.

4) To protect the server from replay attacks, a stateless
factor is used as the salt.

The algorithm implemented in the prototype is described as
follows. In the case of symmetric encryption, the algorithm
on the client-side is Algorithm 1, while the algorithm on the
server-side is Algorithm 2:

Algorithm 1Client-Side Algorithm in Prototype (Symmetric
Encryption Case)
Input: SourceAddress,Key,Prefix,T0,X
Output: DestinationAddress
1: H_SA = md5(SourceAddress)[0:64]
2: T_current = time.currenttime()
3: Salt = (T_current − T0) / X
4: P_SA = XOR(Salt, H_SA)
5: Suffix = DES(P_SA,Key)
6: DestinationAddress = strcat(Prefix, Suffix)
7: return DestinationAddress

In the case of asymmetric encryption, the algorithm on the
client-side is Algorithm 3, while the algorithm on the server-
side is Algorithm 4:

In the algorithms described above, SourceAddress is the
address of the client. is the source address of the communi-
cation quintuple, while DestinationAddress is the destination
address of the quintuple. Key is the encryption key, T0, X , and
Threshold are parameters to generate the salt.
If other encryption algorithms are used here, it is only

necessary to replace the DES() in Algorithm 1,2 or RSA()
in Algorithms 3,4 with other encryption algorithms, such as
ECC.

B. EXPERIMENT ENVIRONMENT
Our experiment is built on a /48 subnet under 2001:da8::/32,
China Education and Research Network. DHCP-PD is used

Algorithm2 Server-SideAlgorithm in Prototype (Symmetric
Encryption Case)
Input: SourceAddress,DestinationAddress,Key,T0,X,
T_threshold
Output: True/False
1: H_SA = md5(SourceAddress)[0:64]
2: Suffix = DestinationAddress[64:128]
3: for key in keys(): do
4: P_SA = DES−1(Suffix, Key)
5: T_current = time.currenttime()
6: Salt = XOR(H_SA, P_SA)
7: T_send = Salt*X + T0
8: T_delta = T_current - T_send
9: if T_delta < T_threshold and T_delta >

−1*T_threshold then
10: return True
11: end if
12: end for
13: return False

Algorithm 3 Client-Side Algorithm in Prototype (Asymmet-
ric Encryption Case)
Input: SourceAddress,PrivateKey,Prefix,T0,X
Output: DestinationAddress,Payload

1: H_SA = md5(SourceAddress)[0:64]
2: T_current = time.currenttime()
3: Salt = (T_current − T0) / X
4: P_SA = XOR(Salt, H_SA)
5: CipherText = RSA(P_SA,PrivateKey)
6: Suffix = CipherText[0:64]
7: DestinationAddress = strcat(Prefix, Suffix)
8: Payload = CipherText[64:]
9: return DestinationAddress

Algorithm 4 Server-Side Algorithm in Prototype (Asymmet-
ric Encryption Case)
Input: SourceAddress,DestinationAddress,Payload,
PublicKey,T0,X,T_threshold
Output: True/False
1: H_SA = md5(SourceAddress)[0:64]
2: Suffix = DestinationAddress[64:128]
3: CipherText = strcat(Suffix,Payload)
4: for key in keys(): do
5: P_SA = RSA−1(Suffix, PublicKey)
6: T_current = time.currenttime()
7: Salt = XOR(H_SA, P_SA)
8: T_send = Salt*X + T0
9: T_delta = T_current - T_send

10: if T_delta < T_threshold and T_delta >

−1*T_threshold then
11: return True
12: end if
13: end for
14: return False
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FIGURE 12. The experiment network topology, in which two Pis are configured as authenticated clients, one is configured as unauthenticated client, one
is configured as Addressless server, and the other is configured as traditional server as control group.

FIGURE 13. Results of the RTT experiment on the first packet in the flow. (a) is the result of RSA, (b) is the result of ECC, and (c) is the result of DES. The
figure is plotted in boxplot.

for prefix delegation in our experiment subnet. Kea is used for
the DHCP server, which is configured in DHCP-PD mode.

Raspberry Pis are used as experiment devices. Our experi-
ment is based on Linux, specifically, on the Raspbian OS that
comes with the Raspberry Pi. This OS is based on Debian.

Experiment topology is briefly described as Fig.12.
Two authenticated clients and one unauthenticated client

are deployed in the experiment subnet. An IPv6 addressless
server is configured with a /64 prefix in the same subnet.
A traditional server is also deployed in the subnet as the
control group.

C. EXPERIMENT ON SECURITY
Experiments on security are firstly conducted. ICMP ping,
SSH (based on TCP port 22), and HTTP (based on TCP port
80) are used as the application-layer protocols to access the
server. The results show that the authenticated client can visit
the server smoothly, while the unauthenticated client cannot
access the server, and it cannot get any response either. This
shows that the server cannot be perceived by unauthorized
devices.

To test the security of the server, an unauthenticated client
is used as an attacker. It uses scanning tools to scan the
server. A 100-hour brute-force scan to the server is per-
formed. The result shows that the scan does not hit any
address.

Then, 1 million addresses under the /64 prefix are gener-
ated using Entropy/IP [39] and 6gen [38]. They are used as the
hitlists to scan the server. The scan does not hit any address
as well.

We collect ND information from other devices in the sub-
net, and conduct scans based on the ND information. The
result shows that we cannot obtain the addresses which can be
accessed. Attacks cannot be initialed in this way. Therefore,
our model can prevent the server from being scanned by
existing IPv6 scanning approaches.

D. EXPERIMENT ON PERFORMANCE
In this subsection, our experiments on performance are intro-
duced. Experiments on RTT are conducted firstly because
the encryption process affects the delay most. Besides RTT,
experiments on bandwidth are conducted as well.
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FIGURE 14. Result of the RTT experiment on the subsequent packets in
the flow. It can be seen that there is no difference among different groups.

To minimize the impact of network conditions, our experi-
ments are performed in the subnet described in Fig.12. Three
Raspberry Pis are configured in the subnet, including an
addressless server, an authenticated client, and a traditional
server for comparison. ICMP ping is used to test RTT. The
experiments are performed in four groups, the first one uses
RSA for encryption, the second one uses ECC for encryption,
the third one uses DES for encryption, and the last one does
not use any encryption. The tests are repeated 10 times at
different times independently in a day. Considering that our
model only has an extra delay when establishing the connec-
tion, so only the first packet of the flow is used to measure
the RTT. The results are shown in Fig.13.(a), Fig.13(b) and
Fig.13(c).

The RTTs of the packets which are not the first packet of
the connection are also tested. The result is shown in Fig.14.
It can be seen that when the connection is established, there
is no RTT difference among different groups.

Fig.13. and Fig.14. show that the additional overhead of
DES is less than 1ms. In most network environments, it is
much smaller than network delay. It does not affect network
performance. The 1024-bit RSA brings more than 100ms
extra delay, and the 192-bit ECC brings more than 20ms
extra delay. This will affect the RTT in the connection estab-
lishment, but it has no effect on the subsequent messages.
As a result, in a real network, this does not have a significant
impact on user experience.

Considering that the RTT includes the overhead of client-
side encryption and the server-side verification, the experi-
ments for the encryption process and decryption process are
then conducted. The experiments are repeated 10 times as
well. The results are shown in Fig.15. Fig.15.(a) shows the
encryption time of DES, RSA, and ECC, while Fig.15.(b)
shows the verification time.

Although the overhead of RSA is large, the server-side
processing time is only about 2ms, which is relatively small.
This means that the server can handle multiple requests from
different clients. ECC has a smaller encryption time, but it has

a larger decryption time. However, DES has a smaller pro-
cessing overhead. When it is unnecessary to use asymmetric
encryption, DES is more appropriate.

The experiment on bandwidth is conducted in the same
experimental environment. Here Iperf is used to measure
bandwidth. The result is shown in Fig.16.

It can be seen that in our model, there is no difference in
bandwidth nomatter in the DES, RSA, ECC, or no encryption
case.

E. THREATS-TO-VALIDITY OF THE EXPERIMENTS
The experiment results show that our model does not affect
the RTT of the subsequent messages in a flow and the band-
width. This is consistent with the analysis. This result does
not change due to changes in the network environment and
hardware platform.

The RTT of the first packet will be affected by the model.
The additional RTT is affected by the CPU, network card, and
the algorithm implementation. Special hardware module can
be designed to conduct the encryption if necessary, which can
greatly reduce the processing time and resource consumption
in the verification. The network condition does not affect the
additional time of the connection establishment. However,
when the network condition is poor, the additional time of
our model will be less obvious to the users. At the same time,
the network environment, the hardware, and the software will
not affect the security features of our model.

From the perspective of the threats to external validity,
the experiment results are applicable to other Internet envi-
ronments. Our model is built under an independent subnet
on the Internet, the server is implemented based on Debian-
based Linux OS, the algorithm is implemented in C, which
are the mainstream hardware and software platforms on the
Internet. As a result, the experiment results are generally
applicable to IoT servers and private Internet servers.

VII. FUTURE WORK
The proposed Addressless IoT server is a new model that is
different from the traditional IPv6 servers. While this model
can better protect server security, there are also other potential
applications that can be supported via it in the future.

Firstly, the encryption algorithm can be further improved.
For example, we can further devise and implement encryp-
tion algorithms that consume fewer resources while ensuring
security at the same level. The model can also be modified
to be applied in specific IPv6 scenarios, such as 6LowPAN
network.

Lastly, the mechanism in this paper is designed for private
Internet servers. However, it can also be applied to public
servers providing services to unspecified users. Furthermore,
the idea that allocating a prefix to a device and allowing the
device to use all the addresses under the prefix can not only
work for servers but also clients. Somework has been done on
these ideas. These results will be presented in the subsequent
papers.

90312 VOLUME 8, 2020



R. Liu et al.: Addressless: Enhancing IoT Server Security Using IPv6

FIGURE 15. The encryption time and the verification time of different encryption algorithms. (a) is the result of the encryption time, and (b) is the result
of the verification time.

FIGURE 16. Result of the bandwidth experiment. It can be seen that there
is no difference among different groups.

VIII. CONCLUSION
In this paper, a new IoT server model named addressless
server is introduced. The model uses the prefix delegation
mechanism, which allocates an IPv6 prefix instead of an
IPv6 address to each server. The server listens on all address-
eses under the prefix. Only authenticated clients are able to
generate legitimate destination addresses using encryption,
and the server verifies the data flow using the destination
address.

The model uses the large IPv6 address space to hide
the addresses in use. The server no longer uses a fixed
IPv6 address. In this way, the one-to-one correspondence
between the server and the IP address is eliminated, which
makes it difficult for an attacker to find the correct address to
launch attacks, so that the server can be protected from being
scanned or attacked. Using these features, server security
is guaranteed. The model is compatible with other network
security protocols including IPsec, TLS, DTLS, and other IoT

security solutions such as SSATP. Themodel has a wide range
of application scenarios and can be widely used in various
environments, such as the home IoT, etc.

A prototype of the addressless IoT server model is imple-
mented, and simulations and experiments are conducted
based on the prototype. The simulation and experiment
results demonstrate that the addresses generated by the algo-
rithm can be used in verification, making the legal packets
correctly responded while the unauthenticated devices are not
being able to perceive the server. The generated addresses
are random enough with a uniform distribution, which can
be prevented from big data analysis. The results also show
that the model has good performance features. It only brings
a negligible additional delay during the connection establish-
ment, and it has no effect on the delay of the subsequent data
packets and the bandwidth.
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