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The brain is capable of producing coordinated fast changing neural dynamics across multiple brain regions in
order to adapt to rapidly changing environments. However, it is non-trivial to identify multiregion dynamics at
fast sub-second time-scales in electrophysiological data. We propose a method that, with no knowledge of any
task timings, can simultaneously identify and describe fast transientmultiregion dynamics in terms of their tem-
poral, spectral and spatial properties. The approachmodels brain activity using a discrete set of sequential states,
with each state distinguished by its ownmultiregion spectral properties. This can identify potentially very short-
lived visits to a brain state, at the same time as inferring the state's properties, by pooling over many repeated
visits to that state. We show how this can be used to compute state-specific measures such as power spectra
and coherence. We demonstrate that this can be used to identify short-lived transient brain states with distinct
power and functional connectivity (e.g., coherence) properties in an MEG data set collected during a volitional
motor task.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

The brain is able to coordinate neural oscillations across multiple
brain areas in both rest and task (Buzsaki and Draguhn, 2004),
(Mantini et al., 2007), (Fries, 2005), (Schnitzler and Gross, 2005). How-
ever, the manner in which these neural interactions arise in the brain is
not fully understood. Typically, in electrophysiological data these oscil-
latory interactions are characterised using their multiregion spectral
properties, e.g., the power content or the extent of phase locking (e.g.,
coherence) over different cortical regions (Lachaux et al., 1999). How-
ever, since the brain must be able to rapidly reorganise neural oscilla-
tions in response to the environment, there is a need to be able to
identify how thesemultiregion spectral properties vary over time at po-
tentially very fast (sub-second) time-scales.

Many existing methods for investigating time-varying patterns of
spectral properties or functional connectivity use sliding time windows
(Wendling et al., 2009), (Allen et al., 2014). Slidingwindow approaches
pre-specify the temporal resolution of the changing patterns, and make
inefficient use of the data when the same patterns occur recurrently at
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other points of time. The exception to this is when data can be pooled
over epochs of a repeated task; however, this necessitates an assump-
tion of stationarity over trials. These approaches also require a choice
of the width of the time-window. Short windows can lead to noisy esti-
mations, whereas long ones can miss the quickest changes.

In this paper, we provide a unified framework for characterising
oscillatory dynamics in termsof their time-varying spatial andmultiregion
spectral properties without the knowledge of any task timings. The
primary contribution of the method is that it operates simultaneously on
the frequency, time and space dimensions, thus allowing for a unique de-
scription of transient spectral properties including power spectra and con-
nectivity measures such as coherence. Importantly, it can identify when
multiregion spectral patterns repeat at different points in time, and
thereby pool over them to provide a better estimation of those patterns.

Although it is broadly applicable to any electrophysiological data
modality, we focus here onmagnetoencephalography (MEG), of partic-
ular interest for research on human connectivity for its fine-grain tem-
poral resolution, wide-brain coverage and non-invasive nature. To this
end, we also devise a way to deal with the sign ambiguity inherent to
source reconstruction in MEG, which can jeopardise multisession/sub-
ject analyses if left unaddressed.

The method combines two well-known models: the multivariate
autoregressive (MAR) (Penny and Roberts, 2002)model and the Hidden
Markov model (HMM) (Juang and Rabiner, 1985). The MAR model
characterises the behaviour of time series by linear historical interactions
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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between the observed time series from different brain regions. MARs
are able to characterise the frequency structure of the data, and bymak-
ing themodel multivariate, are able to capture interactions (e.g., coher-
ence) between multiple brain regions. The HMM is a mathematical
formalism that describes a time series as a sequence of states, where
each state has its own model of the observed data (i.e., the observation
model). Here, the observation model we use corresponds to a MAR
model, and, hence, each state is related to a different set of multiregion
autoregression coefficients describing the neural oscillations. In what
follows, we will refer to the HMM with MAR observation model as the
HMM–MAR.

Although the spectral contents of the states can be obtained directly
from the (parametric)MARmodel, we propose a non-parametricmeth-
od based on the multitaper (Thomson, 1982) to obtain the states' spec-
tral information given the state time courses. The motivations of the
non-parametric approach are threefold. Firstly, the multitaper is
known to provide a reliable estimation, often superior to the parametric
approaches. Secondly, the MAR order, which is not needed for the non-
parametric estimation, strongly affects the estimation of the spectral in-
formation. Finally, MAR orders that produce sensible state discrimina-
tion for the HMM–MAR do not necessarily match the MAR orders that
are optimum for spectral estimation. We will show below that, even
when the state visits are short (around 100 ms or less), the proposed
statewise multitaper can provide reliable estimations of the entire
range of frequencies of interest, including the low frequencies.

We first showhow themodel works on synthetic data, for which the
ground-truth spectra are known. We then use the proposed model to
characterise the neural dynamics in theprimarymotor cortex (M1)dur-
ing a self-paced button press MEG experiment. We demonstrate that
the proposed approach is able to identify HMM states that are task de-
pendent despite training the HMMwith no knowledge of the task tim-
ings, and that it can produce sensible state-specific estimates of the
power spectral density (PSD), coherence and partial directed coherence
(PDC) (Sameshima and Baccala, 1999) that are significantly different
over states.

The method

We now describe the HMM–MAR, its Bayesian hierarchy and some
aspects of model selection and inference. We also provide details
about the non-parametric spectral estimation, and about two issues
that are central to source space MEG data analysis: sign ambiguity and
signal leakage. Fig. 1 illustrates the proposed workflow schematically;
each step is described below.

Definition of the states and their Markov dynamics

In this section,we describe the observationmodel and the state tran-
sitions. As mentioned above, the observation model corresponds to a
Fig. 1.Workflow of the
MARmodel, and the state transitions follow the (first-order)Markovian
assumption.

We first introduce some notation. Let yt ∈ ℝN be the multichannel
source signal and xt ∈ {1, …, K} the hidden state variable, with t =
1, …, T. Let A be the set of lags considered by the MAR model. We
now present the MAR model leaving A unspecified, and will get into
specifics about the choice of A in due course. Assuming Gaussian
noise and centred data, our observation model is

y0t xtj ¼ k � N
X
l∈A

y0t−lW
kð Þ
l ;Σ kð Þ

 !
; ð1Þ

whereWl
(k)

are N × N dimensional matrices representing the k-th state
autoregression coefficient matrices for lag l and the variance is given by
some random noise distribution. We denote W(k) = [W1

(k)
; …; WP

(k)
].

We shall also refer to the expectation of P(xt = k|Y) as γtk, and γt =
(γt1, …, γtK).

The noise covariance matrix Σ(k) can be chosen to be diagonal or a
full matrix. In the former case, we assume the zero-lag correlations to
be zero. In the latter case, the noise is correlated across channels,
which implies that the estimation of the autoregression coefficients
has to be done for all channels at the same time (see Appendix B). An-
other decision to be made is whether we set the noise distribution to
be equal for all states, so that Σ = Σ(k), for all k.

For the hidden state variables, we use Markov dynamics, meaning
that the probability P(xt= k) is conditionally independent of the history
of the state variable given xt − 1. Hence, we have

P xt ¼ k1 xt−1j ¼ k2ð Þ ¼ Θk1k2 ; P x1 ¼ kð Þ ¼ ηk; ð2Þ

where Θk1k2 and ηk are model paramerers that need to be inferred. The
model is graphically represented in Fig. 2.

Model complexity and model selection

In this section,we discuss the parametrisation of theMARmodel and
how to control its complexity. This is crucial, because, if theMARmodels
are too complex, the inference process (as a consequence of the
Bayesian principle of parsimony) will tend to drop most of the states
of the model by letting a few (or even one) dominant states to control
the entire time series. Albeit good in terms of the tradeoff between pre-
dictability and parsimony, this hinders the discovery of quasi-stationary
connectivity networks.

Firstly, driven by objective Bayesian principles, we use appropriate
automatic relevance determination (ARD) priors on the autoregression
coefficients. These ARD priors are Gaussian, and are imposed at two
levels: for each lag (regularising on the time–frequency dimension)
and for each pair of sources (regularising on the spatial dimension).
proposed method.



Fig. 2. Graphical representation of the HMM–MAR. The time series (background) is
partitioned into three states denoted by the blue, red and green slabs. Each state is
characterised by a different set of dynamics, determined by the linear historical interac-
tions between data points yt (small arrows).

83D. Vidaurre et al. / NeuroImage 126 (2016) 81–95
Secondly, we use incomplete MAR parametrisations. As indicated
before, A represents the set of lags (see Eq. (1)). We now define P as
the MAR maximum lag or order (i.e., all elements in A are lower than
P).We have observed that themost common parametrisation,A ¼ f1;2
;…; Pg, is not themost practical choice in this context. Due to the strong
oscillatory components of MEG data and, for typical sampling rates, its
high autocorrelation, it turns out that this configuration explains a
high percentage of the data variance even for quite moderate values of
P, and the explained variance keeps increasing asymptotically as we in-
crease P. Instead, we use an exponential lapse Q and offset P0, such that

A ¼ fP0 þ 1; P0 þ Q ; P0 þ Q2;…; Pg, where ⌊⌋ represents the floor oper-
ator. The exponential lapse allows us, with the samemodel complexity,
to concentrate more statistical power on the lags with more
autocovariance, i.e., on the lags that convey more information, without
disregarding the lowest frequencies. On the other hand, given the high
correlation between contiguous time points in MEG, choosing P0 N 0
greatly contributes to avoiding overfitting and the collapse of states. In
all our experiments, P0 = 1 allows us to have twice the number of
lags before saturating and produced a considerable improvement over
P0 = 0.

We also consider the possibility of clamping certain connections to a
certain fixed value so that they do not drive the state transitions. These
connections can be fixed either to zero or to a (maximum likelihood)
global value. This can be used to limit the complexity of the model,
which can be necessary for computational purposes and in cases
when the data are just too short, noisy or high-dimensional to permit
a reliable estimation of the full model. Even more importantly, it is use-
ful for investigating the transient dynamics of a particular set of connec-
tions. For example, we can force theHMMdynamics to be driven by just
the PSD by setting to zero the cross-channel connections, or we can
focus on coherence modulations by holding the diagonal elements of
the autoregression coefficient matricesWl

(k) to a fixed maximum likeli-
hood value.We demonstrate below how this can be used to gain insight
on real data. Appendix A gives some technical details about the formu-
lation and implementation of this feature.

We also need to determine the number of HMM states, K. The strat-
egy is tofix themaximumnumber, and then theBayesian inference pro-
cess can discard some of them if there is insufficient evidence to support
their presence in the data. For the other parameters (P andQ), we could
utilise the free energy (see Appendix B for derivations) or the cross-
validated likelihood.
The full Bayesian hierarchy

The observationmodel has been presented in Eq. (1), and the formu-
lation of the state dynamics is illustrated by Eq. (2). We now proceed to
detail the rest of the Bayesian hierarchy.

The noise of the signal is assumed to be Gaussian distributed with
zero mean. We start by describing the covariance matrix of the noise,
which can be assumed to be diagonal or a full matrix. Whenwe assume

a full covariance matrix, we model the precision matrix ΩðkÞ ¼ ΣðkÞ−1

with a Wishart distribution,

Ω kð Þ � W ι0;B0ð Þ: ð3Þ

If we constrain the covariancematrixΣðkÞ−1

to be diagonal, we have a
Gamma distribution for each element of the diagonal,

ω kð Þ
ii � G ι0; b0ð Þ: ð4Þ

With interpretability in mind, we set a specific structure of group
ARD priors on W(k). In particular, we expect each state to be
characterised by a certain set of connections and certain frequency pro-
file. Firstly, we use ARD precisions, σij

(k)
, to adaptively weight the pres-

ence of a specific connection between nodes (i, j) when in state k. The
restriction σ ij

(k)
= σ ji

(k)
can be optionally imposed, depending on

whether the focus is on direct or on undirected connections. Secondly,
we use ARD precisions αl

(k) to adaptively weight the presence of inter-
actions at a certain lag l for all nodes when in state k. The resulting
Gaussian distribution for each element of the coefficient matrices is

W kð Þ
li j

� N 0;σ kð Þ−1

i j α kð Þ−1

l

� �
; ð5Þ

with σij
(k)

and αl
(k)

being Gamma distributed

σ kð Þ
i j � G φ0; c0ð Þ; ð6Þ

α kð Þ
l � G ς0; d0ð Þ: ð7Þ

We denote σ(k) ∈ ℝNN = [σ11
(k)

, σ1N
(k)

; …; σN1
(k)

, …, σNN
(k)

] and α(k) =
(α1

(k), …, αP
(k)).

Note that there is an implicit definition of network under this struc-
ture of priors.More specifically, the formulation ofσ(k) encourages each
state to focus on a sub-set of connections, whereas α(k) controls the
spectral dynamics for all nodes simultaneously, so that all the nodes
within the network are encouraged to lie on the same frequencies.

Finally, the parameters that govern the state transitions are
modelled as

Θk� � Dir ν0ð Þ; η � Dir ζ0ð Þ; ð8Þ

where Θk ⋅ denotes the k-th row of Θ.
Eqs. (1), (2), (3), (4), (5), (6), (7), and (8) jointly define the Bayesian

hierarchy of the proposed HMM–MAR model. Appendix A discusses an
extension of themodel for holding some connections to a fixed value, as
introduced in the previous section.

Inference of the model parameters

The previous section completed the Bayesian hierarchy governing
the model's parameters. Unfortunately, there is not a closed-form,
analytical solution for the values of these parameters given the data.
On these grounds, we use variational Bayes, which assumes additional
factorisations in the space of parameters and needs all prior distribu-
tions to be conjugate (Bishop, 2006). Via an iterative algorithm acting
on one group of parameters at a time, variational Bayes inference
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minimises the so-called free energy (Rezek and Roberts, 2005). This
quantity is also useful for monitoring and model selection purposes.

The derivations are presented in Appendix B. Appendix C gives
details about the computation of the free energy. Appendix D provides
some insight about the initialisation of the model.

Obtaining the HMM state-specific spectral properties

Once the training has converged and we have estimated the state
time courses and the model parameters, there are two alternatives
when it comes to finding out the multiregion spectral properties of
each state: the parametric approach, which would use theMAR param-
eters learned during the training (see Appendix E for details), and the
non-parametric approach, which instead takes advantage of the in-
ferred HMM state time courses as temporal windows for estimating
the state-specific spectral properties.

In this work, we choose to use a non-parametric approach. In partic-
ular,we propose amodification of the non-parametricmultitapermeth-
od (Thomson, 1982) that works in the context of transient connectivity.
The multitaper has been widely reported in the literature to present
benefits in terms of accuracy and robustness (Mitra and Bokil, 2008).
It reduces the frequency leakage inherent to finite-length sampling of
the classical Fourier analysis bymultiplying the time series by a function
called taper, and then taking the Fourier transform. This is repeatedwith
different orthogonal tapers, producing a number of power spectra esti-
mations that are averaged later on. There are a number of possible
choices for the taper function. We choose here the Slepian functions, a
family of functions particularly appropriate for themultitaper. In our ex-
periments, R=7 tapers and a time–bandwidth product of 4 provides an
adequate frequency resolution (0.4 Hz). We refer the reader to (Mitra
and Bokil, 2008) for the impact of the choice of these parameters and
other technical considerations.

We now describe how to use the state time courses to get state-
specific spectral descriptions. The standard multitaper PSD estimate
for the entire time series would be given by |S(f)|2, where

S fð Þ ¼ 1ffiffiffi
R

p
XR
r¼1

XT
t¼1

δ rð Þ
t yte

−2πift;

with δt(r) being the value of the r-th taper at time point t.
Our estimation for state k, that we denominate statewise multitaper,

would instead be

S kð Þ fð Þ ¼ 1ffiffiffi
R

p
XR
r¼1

XT
t¼1

ρ kð Þ
t δ rð Þ

t yte
−2πift ;

with

ρ kð Þ
t ¼

ffiffiffiffiffiffiffiffi
γ kð Þ
t

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1
γ kð Þ
t =T

q

giving thusmore weight to those points in the signal that aremore rep-
resented by state k. The normalisation term in the definition of ρt(k) is set

such that, for every k,∑
t
ρðkÞ
t ρðkÞ

t ¼ T, thus preserving the total power for

each signal.
Finally, we can compute coherence directly using S(f) exactly as we

would do in the parametric case (Mitra and Bokil, 2008). To get the PDC
non-parametrically is however not as straightforward, given that the
PDC is defined in terms of the autoregression coefficients (Sameshima
and Baccala, 1999). Instead, we make use of the Wilson algorithm to
factorise the PSD produced by the multitaper into a unique minimum-
phase transfer function, from which the computation of PDC is direct
(Wilson, 1972), (Jachan et al., 2009). This is described in Appendix F.
Note that, as a consequence of the convolution theorem, the power
spectrum of the state courses can mix up with the statewise spectra of
the data. We have however observed that this is not much of a problem
at least in the MEG data used in this paper, because the spectrum of the
state time courses typically has most of the power lying in different fre-
quency regions than the frequencies of interest in the data. Since this
could be a issue in other applications of the HMM–MAR, we describe
an alternative approach in Appendix E that can be used when the fre-
quency content of the state time courses is strong enough to affect the
multitaper estimation in the frequencies of interest. Essentially, this cor-
responds to re-inferring the spectra parametrically using a final itera-
tion of the HMM–MAR, but using a complete, standard HMM–MAR
without any missing lags. Please see Appendix E for a description of
this parametric approach for power spectra estimation.

Sign ambiguity

Source-localisedMEG recordings suffer from an undesirable proper-
ty: the equivalent current dipole model used in many source recon-
struction techniques (e.g., beamforming) is unable to distinguish the
polarity of a dipolar source, given that a dipole with a particular orienta-
tionwill generate the samemagnetic field pattern at the sensor array as
one with the same orientation but opposite polarity. As such, the signs
of the estimated source–space time course are arbitrary across cortical
locations and across different recording sessions or subjects. As a result,
the covariance between a pair of time coursesmay be positive in certain
sessions, and negative in other sessions. This means that data from
different sessions subjects cannot be straightforwardly compared or
averaged at the group level. Whereas this does not present a problem
when we use the amplitude envelope of the signals (Baker et al.,
2014), this is a potential issue for MAR models, where we want to
work with raw time courses.

In this paper, we propose to adjust the sign of the brain area time
courses based on the assumption that the partial correlation between
each pair of brain areas (channels) has the same sign across trials. We
choose to use partial correlation instead of simple correlation because
this is a direct measure, i.e., there are no other channels interfering in
the “sign relation” between every pair of channels. Under this assump-
tion, the correct combination of signs will be the one maximising the
absolute sum of the partial correlations across all pairs of channels and
trials, as the magnitude of this sum is obviously highest when the
signs agree between trials. To find such combination of signs is an inte-
ger programming problem and, as such, its exact solution is NP-hard.

Here, we propose a heuristic searchprocedure thatworks as follows:
we first initialise the signs randomly, computing the (stationary) preci-
sion matrix for each trial; then, until convergence, we look for the sign
flipping that leads to the biggest increase of the absolute sum of partial
correlations. This simple procedure is repeated a number of times, using
multiple random starts to allowus to cover the search space sufficiently.
For a moderate number of channels, this procedure is computationally
efficient as it only implies the inversion of N × N matrices.

The signal leakage issue

Another well-known problem for connectivity estimation in source
space MEG data is the spurious leakage between sources. This is again
a consequence of the ill-posed nature of the source reconstruction in-
verse problem, which aims to estimate the source activity from the sen-
sor measurements (Schoffelen and Gross, 2009). To get around this
problem we can choose a connectivity measure that is insensitive to
zero-lag interactions, e.g., the imaginary part of coherency (Nolte
et al., 2004) or phase-lag index (Stam et al., 2007). Alternatively, we
can orthogonalise the time courses prior to estimating envelope correla-
tion (Brookes et al., 2011), (Hipp et al., 2012), (Colclough et al., 2015).
However, such approaches can be overconservative, as they remove
genuine zero-lag correlation and, indirectly, also lagged correlations.
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In the context of the HMM–MAR, we can take a different approach.
Importantly, spatial leakage is induced by stationary correlations be-
tween source reconstruction weights. By contrast, the HMM–MAR is
identifying states by virtue of how the time series change over time,
and hence the HMM state identification cannot be influenced by the
temporally stationary spatial leakage. However, since in the proposed
pipeline (Fig. 1) we re-estimate the within-state spectral properties
using themultitaper, the resulting state-specific functional connectivity
measures (e.g., coherence) may be contaminated by spatial leakage. On
these grounds, we only test for significance in spectral features (e.g., in
Fig. 6) by looking for significant differences from the global time-
averaged spectral features, thus subtracting out any spatial leakage
effects.

Simulations

We now present the performance of the approach on a relatively re-
alistic synthetic dataset. This example will allow us to show that we can
recover the slow frequency content using the proposed statewise
multitaper even when the average duration of the states is shorter
than the slowest wavelengths of interest.

We have usedN=2 channels and K=3 states, each of which have a
differentMARobservationmodelwith P=35uniformly-spaced lags, i.e.,
A ¼ f1;2;…;35g. No exponential lags were considered in this example
for simplicity. Diagonal (within channel)MAR coefficientswere generat-
ed to produce coloured or 1/fα noise using an iterative formula (Kasdin,
1995, Eq. 116). The three states were generated using α=.9, .7 and .5 re-
spectively. Discrete oscillations are added to each channel bymanipulat-
ing the roots of that channel's generating autoregressive parameters.
Oscillations of 6, 12 and 18 Hz were added to, respectively, states one,
two and three. Directional interactions on the off-diagonal of the MAR
model were added to states by computing the dot product of the param-
eter matrix W(k) with a N × N mixing matrix A. Whilst A is identity for
state one (indicating no directional interactions), it contains a non-zero
off diagonal term for states two and three,

A ¼

1 0
0 1

� �
if k ¼ 1;

1 0
:5 1

� �
if k ¼ 2;

1 :5
0 1

� �
if k ¼ 3;

8>>>>>><
>>>>>>:

creating opposite directional interactions between the two nodes in each
state. The spectral radius of the generatedW(k) was inspected to ensure
that the generating MAR model is stationary.

We have sampled 100 trials of 4 s with a sampling frequency of
200 Hz, for a total of T = 100 × 4 × 200 = 80000 time points. Noise is
white and independent for each channel. State lifetimes were drawn
from a Gamma distribution with shape and duration parameters
matched to the models fitted to the real data (Section Neural
dynamics investigations in the primary motor cortex) shape = 1.48
and rate = 0.03. This ensures that each state is active for a length of
time similar to what is typically observed. All three states occur with
equal probability for the first and last 1500 ms of each epoch, whilst
state 2 becomes more probable between 1500 and 2000 ms and state
3 becomes more probable between 2000 and 2500 ms, mimicking a
ficticious event after 2000 ms of the start of each epoch. Once the
state time courses are epoched around the event, these changes in prob-
ability will be expressed as an evoked change in the relative occupancy
of each state around the centre of the epoch.

Fig. 3A illustrates the estimated frequency information, including the
PSDwithin each channel and the coherence and PDCbetween the chan-
nels. These frequency metrics are estimated from both the generating
W(k) matrix and the statewise multitaper estimation using the estimat-
ed state time series. By comparing these measures we can evaluate the
extent to which the HMM–MAR inference and the statewisemultitaper
impact the spectral estimation. Qualitatively, the frequency estimations
capture all the peaks in the simulated data with reasonable accuracy,
though the PDC is noisier than the PSD or coherence estimations. Impor-
tantly, despite the relatively short state lifetimes, the estimation of the
spectral metrics is good for both the lowest frequency peaks and the
1/fα shape of the spectrum at very low frequencies.

Fig. 3B shows that the estimated fractional occupancy matches the
true fractional occupancy quite accurately around the event. Fig. 3C
shows in a segment of 10 s that, excepting for some of the faster transi-
tions, the continuous inferred state time courses are also similar to the
true state time courses.

Finally, Fig. 3D shows the free energy for K = 2, …, 5. As expected,
the K = 3 model is the best model (lowest free energy) according to
the free energy criterion.

The conclusions of this section are: (i) the statewise multitaper can
detect frequencies that are on the order of the duration of the state
visits, (ii) the approximate method for computing the PDC performs
well, though is moderately noisier than coherence (see Appendix F for
a description of the non-parametric PDC calculation).

Neural dynamics investigations in the primary motor cortex

In voluntary movement performing, the M1 neural population un-
dergoes a state of desynchronisation followed by a synchronisation pe-
riod. These are usually referred to as event-related desynchronisation
(ERD) and event-related synchronisation (ERS). In this section, we use
the HMM–MAR and statewise multitaper to provide an alternative rep-
resentation of the ERD/ERS in both time and frequency under a simple,
volitional fingertapping movement.

Data acquisition, preprocessing and HMM–MAR configuration

Ten right-handed volunteers (8 males and 2 females aged 25 ± 4
years)were asked to lie supine in theMEG system and execute a button
press with the index finger of their non-dominant (left) hand. We se-
lected eight of them on data quality grounds, rejecting two that, due
to poor signal-to-noise ratio, did not show visible differences in activity
in the button press. Subjects were instructed to repeat button presses
infrequently (approximately once every 30 s) for a total of 1200 s, and
not to count in the period between presses. Button presseswere record-
ed using a keypad. TheMEGdatawere acquired using a 275 channel CTF
whole-head system (MISL, Conquitlam, Canada) at a sampling rate of
600 Hz with a 150 Hz low pass anti-aliasing filter. Synthetic third
order gradiometer correction was applied to reduce external interfer-
ence. The data were converted to SPM8 and downsampled to 200 Hz.
Each recording was visually inspected to identify channels and/or pe-
riods of data containing obvious artefacts or with abnormally high var-
iance, which were discarded. Independent component analysis (ICA)
was used to remove components related to eye-blink and cardiac arte-
facts. Following artefact rejection the data were band-pass filtered be-
tween the 1 Hz and 48 Hz. The pre-processed data were projected
onto a regular 8-mm grid spanning the entire brain using a scalar
LCMV beamformer implemented in SPM8 (Van Veen et al., 1997),
(Woolrich et al., 2011).

For each subject region of interest (ROI) within the left and right
motor cortices were identified by localising the activity associated
with the beta rebound. This was achieved by averaging the amplitude
envelope of the data at each voxel in the 13–30 Hz band (computed
via the Hilbert transform) within a time window 1 to 3 s after each but-
ton press. These time-averaged amplitude measures were baseline
corrected by subtracting the average amplitude envelope within the
time window 10 to 5 s before each button press. Finally, the baseline-
corrected amplitude measures were averaged across all button press
events, yielding a scalar value at each voxel. Subject specific regions of
interest were defined as the maximum value of this statistic within



Fig. 3. Results for the simulated data scenario. A. Ground truth frequency information (solid) alongside the multitaper estimation using the HMM–MAR inferred state time courses (dot-
ted); note that the true red and green PDCs for channel 1 and the true blue and green PDCs for channel 2 are exactly zero. B. True (top) and estimated (bottom) average state responsi-
bilities, locked to the event (t = 0). C. True (top) and estimated (bottom) state time courses for some portion of the data. D. Free energy for K = 2, 3, 4, 5.
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the left and right hemispheres. Once these ROIs had been localised, time
courses for the right and left hemisphere ROIs were obtained, again via
the LCMV beamformer, within the wider 1–48 Hz band for use in the
subsequent HMM–MAR analysis.

The HMM–MARmodel was inferred using K=3 states and maximal
order P=200,which corresponds to 1 cycle of the lowest data frequency
(1 Hz). We used the free energy to choose the exponential lapse Q,
resulting in jAj ¼ 12 autoregressive lags. We chose P0 to be 1, and we
set Σ(k) to be a diagonal matrix (and state-dependent). The results were
relatively robust to reasonable variations of the chosen values, e.g., jAj
in between 10 and 16. For the reasons discussed in Section Model
complexity and model selection, P0 = 1 introduces a considerable im-
provement over P0=0,with higher values of P0 regarded as unnecessary.
The number of states, K, can also be chosen using the free energy. In this
case, therewere not any big differences in the free energy betweenK=3
and moderately higher values of K. We hence chose K = 3 for ease of
interpretation.

Task-dependent state occurrence

We first consider the state time courses inferred by the HMM. These
describe which state best represents the data at each point in time. Im-
portantly, the HMM–MAR inference was performed in all cases with no
knowledge of the task timings, i.e., in a completely unsupervised way.
We can then epoch and average the state time courses, time-locked to
the button-press. The resulting “fractional occupancy” reveals the pro-
portion of trials for which the HMM–MAR was in a particular state,
and we can examine these to see if the occurrence of states depends
upon the task.

Fig. 4A shows the result of this analysis with the HMM–MAR run in-
dividually on each subject. We denote the blue state as the ERD, the red
state as the ERS (for reasons that become clear when we look at the
spectral properties in the next section), and the green state can be con-
sidered “task irrelevant” baseline. These plots show that theHMM–MAR
can produce states that are task dependent, despite the HMM being in-
ferred with no knowledge of the task timings. Fig. 4A also reveals that
there is a fair amount of subject-to-subject variability in the fractional
occupancy time courses. For some subjects, for example, the ERD state
is barely perceptible. The ERS state, although prominent in all cases,
has a different shape for each subject. For the sake of comparison with
the group results, Fig. 4B has the same information, but is organised in
a different manner: the first three diagrams show, separated by states,
the fractional occupancy for all subjects altogether (mean being repre-
sented by a thicker line), and the fourth diagram displays the mean
state fractional occupancy averaged across subjects.

Fig. 4C shows the group result, for which the HMM–MARmodel was
estimated using the eight subjects simultaneously. The fractional occu-
pancy here represents the proportion of trials spent in a particular
state over all button presses and subjects. The results are not dramati-
cally distinct from the individual runs, but some differences are still



Fig. 4. Fractional occupancy of theHMM–MAR states, labelled as ERD (blue), ERS (red) and baseline (green) according to their spectral properties and time of occurrence. A. Subject-by-subject
individual runs, displayed by subject. B. Subject-by-subject individual runs, displayed by state. C. Group run (all subjects altogether), displayed by state. In B and C, the thick lines represent the
mean across subjects. The rightmost panels of B and C depict just these means. Examples of raw state time courses, along with state life-time statistics, are shown in Fig. 8B, C.
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apparent, themost relevant being that the ERD state is more sharply ac-
tivated around thebutton press and less activewhenwe are far from the
event.

HMM–MAR regularised T–F analysis

Recall that, for each state,we have both the state time course and the
state-specific spectral information obtained from the multitaper. Here
we show how these two pieces of information can be pooled to
construct HMM–MAR regularised time–frequency (T–F) representa-
tions. Fig. 5 shows this schematically: for eachmeasure (PSD, coherence
or PDC), a T–F plot is constructed as the sum over states of the outer
product between each state time course (on top) and its corresponding
measure values (on the right). For example, the PSD value for timepoint
t and frequency bin f would be computed as ∑k = 1

K PSDf
(k)γtk. All the

PSD, coherence and PDC T–F plots were corrected to baseline,
subtracting, for each frequency bin and subject, the mean value in be-
tween 5 s and 10s before the button press. Note that the statewise



Fig. 5. Schematic representation of the construction of time–frequency plots for PSD, coherence and PDC given the state time courses (on top of each panel) and the state frequency
information (on the right of each panel).
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PSD/Coherence/PDC curves in the rotated axes are not baseline
corrected, as correction is only performed within the corresponding
T–F plot. Therefore, the resulting T–F plots can be thought of as T–F anal-
yses regularised by the HMM–MAR inference.

Fig. 6B shows statistical testing on these HMM–MAR regularised T–F
representations, according to 2D cluster extent permutation testing
(Maris and Oostenveld, 2007), where we used a cluster threshold of 3
and a significance level of 0.05. Areas of statistical significance (either sig-
nificantly higher or lower than baseline) aremarkedwith black contours.
With regard to the PSD, we observe statistical significance in beta power
that extends to the lowest frequencies and to lowgamma, and a decrease
in power shortly after the event. In terms of coherence, we can see statis-
tically significant changes in beta (positive) and in gamma (negative) in
between 2 s and 4 s after the event. PDC finds positive changes in beta
that are statistical significant only for the contralateral-to-ipsilateral
direction.

For the sake of comparison, we also carried out a traditional T–F
analysis using a standard sliding window-based multitaper. Given that
this is using only a short period of time, these estimations are expected
to be noisier than the ones produced by the HMM–MAR regularised
method. Note also that PDC is missing. Because of the very high compu-
tational cost of the non-parametric PDC estimation (see Appendix F), its
estimation over a sliding window is precluded in practice. Our method,
by contrast, only needs K estimations of the PDC to produce a T–F PDC
picture. Fig. 7 shows sliding window T–F PSD and coherence for differ-
ent window sizes. For window sizes shorter than 1 s the estimations
are quite noisy. Also, regardless the size of the window, T–F coherence
turns out to be much noisier than the HMM–MAR regularised T–F co-
herence from Fig. 6B. Unlike the HMM–MAR regularised T–F estimation
shown in Fig. 6B, standard T–F analysis shown in Fig. 7 fails to find dif-
ferences in gamma coherence.

State-specific spectral properties

Aswell as using theHMM–MAR to produce regularised T–F analyses,
we can also examine the actual state-specific spectral information. This
can reveal, for example, if there are state-specific differences in PSD or
coherence.

Fig. 6A shows t-statistics comparing each state's spectral properties
with the mean of the other two states. We assess statistical significance
for each state, via two tests: one testing whether the value for the state
is higher than the mean of the other two states (top lines), and other
testing if it is lower (bottom lines). This is done according to cluster ex-
tent permutation testing (Maris and Oostenveld, 2007), with a cluster
threshold of 3 and significance level of 0.05.

Overall, Fig. 6A reveals a number of statistically significant state-
specific differences in PSD, coherence and PDC. In particular, the ERS
state has a higher power across the entire alpha and beta range for



A.

B.

frequency (Hz) frequency (Hz) frequency (Hz) frequency (Hz) frequency (Hz)

Fig. 6.A.HMM–MARstates' frequency information (with standard error) for each state,with lines on top reflecting, for every pair of states, statistical significance (significance level of 0.05)
of one state being higher than than the other; from top to bottom: ERD vs. ERS, ERS vs. baseline and ERD vs. baseline. B. Time–frequency representation of PSD, coherence and PDC, re-
constructed from the state time courses and the state frequency raw values, where blue and red indicate, respectively, values that are lower and higher than baseline. 2D cluster based
statistical significance (significance level of 0.05) is marked with black contours.

Fig. 7. Time–frequency plots of PSD and coherence from the windowmultitaper, with sliding window lengths of 0.25 s, 1 s and 1.5 s. 2D cluster based statistical significance (significance
level of 0.05) is marked with black contours.
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both ipsilateral and contralateral M1, with no strong differences be-
tween hemispheres with regard to statistical significance. Both the
ERS and the ERD states have significantly less power in low gamma
(from around 42 Hz) than baseline. There are also state-specific
differences in coherence. For example, the ERS state showsmore coher-
ence in beta (between 14 and 19 Hz), and less coherence in low gamma
(around 40 Hz). The ERD state, conversely, has more coherence in low
gamma (around 40 Hz), and less coherence in beta (20–28 Hz).

Comparisons of different HMM observation models

In this section we aim to understand which particular aspects of the
data are driving the state transitions by comparing three different ver-
sions of the HMM–MAR. We refer to HMM–Gaussian as the model
with Gaussian observations on the power (Hilbert envelope) of the sig-
nals (Baker et al., 2014), HMM–AR as themodel for which only the self-
autoregression coefficients (the diagonal elements ofWl

(k)) are allowed
to vary across states, and HMM–crossMAR as the model where the self
autoregression coefficients were set to remain fixed and the cross-
channel coefficients were solely responsible for driving the state transi-
tions. Whereas the HMM–AR is driven by the PSD, the HMM–crossMAR
would be driven by functional connectivity (e.g., coherence).

Fig. 8A displays the state fractional occupancy around the button
press for the different alternative parametrisations. Note that the
HMM–Gaussian fails to recover the dynamics around the button press,
although it can identify changes at the ERS time. Interestingly, the
HMM–AR estimation is effectively equal to the full HMM–MAR estima-
tion, suggesting that the autocorrelation (or PSD) has enough informa-
tion by itself to drive the state transitions meaningfully. Notably, the
HMM–crossMAR is also able to identify the ERS. This shows that chang-
es in functional connectivity alone are sufficient to identify fast transient
brain states that are task related. However, the HMM–crossMAR is un-
able to pick up the ERD satisfactorily.

We have also tested a uniformly-spaced lapse regime, instead of the
exponential lapse used all through the rest of the experiments. As with
the exponential lags, we use 12 lags. The HMM–MARwith a uniformly-
spaced lapse fails to identify the ERD state (which gets mixed up with
the baseline state) when we set it to cover the entire 1 Hz cycle (lapse
of 14 time points). If we set the lapse to be 1, the identification of the
lowest frequencies becomes harder, but (although less sharply) it still
can differentiate the ERD/ERS.

Fig. 8B shows examples of the state time courses, and Fig. 8C pre-
sents their mean state life times and occupancies. Note that the state
time courses are practically identical for the HMM–MAR and the
HMM–AR. The state time courses are sharper for the HMM–Gaussian,
in the sense that they take values mostly close to either zero or one,
whereas they are smoother and fuzzier for the HMM–crossMAR. State
life times are a bit longer for the HMM–MAR than for the HMM–Gauss-
ian, and they are the longest for the HMM–crossMAR.

Discussion

Summary of the contributions and related work

In this paper, we have proposed an approach for characterising pat-
terns of oscillatory activity that vary across time, frequency and cortical
location. Generally speaking, the delimitation of a particular pattern of
activity (or functional network) is not straightforward unless we fix
one of these dimensions, by assuming temporal stationarity or by
looking at the oscillatory power within a particular frequency band
(Baker et al., 2014), (Brookes et al., 2011). The HMM–MAR overcomes
this limitation by dealing with time, frequency and cortical location si-
multaneously. Once the HMM–MAR is estimated, we make use of a
weighted version of the multitaper to estimate a range of multiregion
spectral characteristics. This enables us to benefit from the advantages
of both parametric and non-parametric approaches. We show how
this can be used to create regularised time–frequency analyses of PSD,
coherence and PDC; as well as to identify fast transient states with
multiregion spectral properties that are task dependent.

The HMM–MAR is related to, and builds upon, other approaches. A
Bayesian approach of the stationary MAR model has been introduced
by Penny and Roberts (2002). Astolfi et al. (2008) have extended this
to produce temporally non-stationary MARmodels to obtain brain con-
nectivity patterns that, instead of sequentially switching between a set
of brain states, change smoothly over time. Baker et al. (2014) have pre-
viously used an HMM with a Gaussian observation model to discover
whole-cortex resting state networks from MEG, obtaining networks
that resemble those previously found with fMRI. MAR models have
also previously been used as observation models for HMMs in the con-
text of speech processing (Juang and Rabiner, 1985), for neural signal
analysis (Cassidy and Brown, 2002), and in the signal processing litera-
ture (Fox et al., 2011).

Findings on the M1 neural dynamics

We have shown that the HMM–MAR can reveal fast changing spec-
tral information in a volitional motor task.Whilst the purpose of the in-
clusion of the motor task is to allow us to qualitatively demonstrate the
new information that can be extracted using the proposed method, we
can briefly consider some of the implications of thefindings thatmay be
worthy of further investigation. For example, the model can detect the
ERD starting to build up around 2.5 s before the button press. Such an
early onset may be a consequence of a selection bias (Schurger et al.,
2012). With regard to the frequency information, it is generally accept-
ed that alpha/mu and beta are themost significant rhythms in voluntary
movement. Using the HMM–MAR, we show, consistent with some pre-
viouswork (Cheyne et al., 2008), that higher frequencies (in the gamma
band)might also be involved in themechanismsofmotor control. These
results are obviously limited by the fact that the data we have used for
our experiments only covers up to 48 Hz. Also, we show that there are
changes at the level of coherence and directed coherence between the
two hemispheres that were difficult, or not at all possible, to observe
using traditional sliding window time–frequency analysis techniques.

At any rate, it is not the objective of the present paper to perform a
thorough analysis of the neural dynamics of voluntarymovement. How-
ever, we note that the HMM–MAR has the capability to provide insights
into multiregion spectral patterns of response in task experiments in
general. For example, considering that some studies have shown that
the location of the beta ERS peak is different from the maximal alpha
ERD (Pfurtscheller et al., 1996), (Salmelin et al., 1995), (Jurkiewicz
et al., 2006), an interesting further line of research would be to assess
the spatial source of the different rhythms. A more comprehensive se-
lection of ROIs could provide further insights than the current use of
just left/right motor cortex.

Note that themodel is effectively estimated on a combination of task
and rest, the latter corresponding to long periods of baseline between
the short button press events. We observed that, although the ERD/
ERS states are dominant in the surroundings of the button press, they
are also occurring in the rest (baseline) periods of the experiment.
This is consistent with previous work on MEG data that revealed fast
switching between different brain states on 100 ms timescales within
the resting state (Baker et al., 2014). Here, we are observing a similar
phenomena, albeit limited in this case to the left/right motor cortex.
The structure of this baseline state switching is worth investigating as
it can be related to the hypothesis that the same states that are needed
for task are also visited at rest (Kenet et al., 2003), (Smith et al., 2009).

Limitations, future work and other applications

Since the HMM models the brain activity as switching between a
limited set of discrete states, it is interesting to consider what will hap-
pen in a task with continuously varying levels of task or stimulation



Fig. 8.A. State fractional occupancy around thebuttonpress for different variations of theHMM–MAR: theHMM–Gaussian run on theHilbert envelopes of the signal, anHMM–MARwhere
only the self-autoregression coefficientswere allowed to vary, anHMM–crossMARwhere only cross-channel coefficientswere allowed to vary, and theHMM–MARwith uniformly-spaced
lapses for Q= 1 and Q= 14. B. Examples of the state time courses for the HMM–Gaussian, HMM–MAR, HMM–AR and HMM–crossMAR. C. State life times and percentage of state occu-
pancy for the HMM–Gaussian, HMM–MAR, HMM–AR and HMM–crossMAR.
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(e.g., in a visual taskwhere a grating is presentedwith a variety of differ-
ent contrast levels). One strong possibility is that the different contrast
levelswould straightforwardly be capturedusing differences in the frac-
tional occupancy (i.e., the proportion of time that the brain visits a par-
ticular state). Indeed, this is what can be seen to happenwhen the brain
switches froma baseline state into the task state. However, it is also pos-
sible that, in certain situations, the response of the system to different
contrast levels could be better modelled by a modulation of a state's
“strength” (e.g., the power in that state) whilst the fractional occupancy
remains fixed. Exploring this alternative possibility would require a dif-
ferent HMM observation model, which allows for scaling (e.g., of the
PSDs that each state's MAR represents) and that varies at a slower
time-scale than the state-switching. For example, this could be achieved
using a hierarchical model augmented to the current framework.

EEG/MEG data have been shown to exhibit scale-free behaviour
(Van De Ville et al., 2010), (Gschwind et al., 2015), a feature that is
common in the neural system at multiple levels, both anatomical and
functional (Buzsaki and Mizuseki, 2014). Although the HMM paradigm
is efficient at capturing short-term dependencies, it does not explicitly
model long-term dependencies that are characteristic of scale-free sys-
tems because of the limitations of the first-order Markov assumption.
However, despite this, it is still very possible that the inferred HMM
state time course (as in EEG microstates) can still exhibit scale-free
properties. This is an area for future investigation.

Another considerationwith theproposedmethod is that, similarly to
what happens with ICA, matching states between runs that have been
done independently for different subjects can be non-trivial. In our ex-
periments, this is not a problem because all our results (with the excep-
tion of Fig. 4) come from group estimations on data concatenated over
subjects. In other cases, it might be preferable to have individual runs
due, for example, to computational reasons. One can then use a
prediction-based measure, where we give the same (random) inputs
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to all MAR models and then compare the predictions. Provided this is
done for a sufficiently high number of inputs, the prediction-based ap-
proach is a quite general and free of assumptions.

Finally, we recall that the proposed statewise multitaper estimation
conveys information from both the data time series and the state time
courses. Since our estimation derives from a point-wise multiplication
in the time-domain, which would relate to a convolution between the
spectrum of the time-series and the spectrum of the state time courses,
the estimated statewisemultitaper spectramight be distorted if the fre-
quency spectrum of the state time courses contains significant struc-
ture. This was not the case in neither our synthetic simulations nor
our study of the primarymotor cortex, but it could happen in other sce-
narios. By all means, it is recommendable to inspect the spectra of the
state time courses and, if this happens to be a problem, to use the para-
metric estimation, detailed in Appendix E.

Considering that simpler HMM-based models have already been
proven useful for unveiling resting-state networks in MEG (Baker
et al., 2014), a natural next step is to use the HMM–MAR to study
whole brain resting-state dynamics. An obvious problem here is the di-
mension of the data: if we aim to analyse a big number of neural sources
simultaneously, the number of parameters escalates rapidly and hin-
ders the estimation. To overcome this limitation, we can fix some of
the MAR parameters, as discussed above. For example, one possibility
is to let only the self-connections drive the state transitions, reducing
the number of parameters from K × PN2 to K × PN. In this case, each
state is reduced to a collection of unrelated autoregressive processes. Al-
ternatively, we might consider a dimensionality reduction more appro-
priate to transient dynamics than PCA, possibly by including the
estimation of the PCA weights into the HMM–MAR inference process.
Another different direction is to use these ideas to model fMRI data,
for which, ideally, we would incorporate the hemodynamic response
function into the model.

A further interestingpotential application of theHMM–MAR is about
prediction. The method could be used in the situation where we have
pre-specified the value of the hidden state for segments of the time se-
ries, so that this remained fixed all through the learning process. In a
typical application we would have labelled and unlabeled trials, the ob-
jective being to assign labels to the unlabelled ones. This can considered
a case of semi-supervised learning and is of potential interest, for in-
stance, in the field of brain–computer interfaces (Wolpaw et al.,
2002). To mention one possible example, we could use the proposed
technique to provide online prediction of epileptic fits based on the in-
formation of previous seizures. Building on previous knowledge, we
could specify the moments previous to the seizure as a given state so
that, at any moment, we would have an online estimation of the proba-
bility of being at risk.
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Appendix A. Holding connections to a fixed value

As discussed above, we can hold certain connections so that they do
not drive the state transitions. These connections can be fixed either to
zero or to a (maximum likelihood) global value. In this case, the model
from Eq. (1) becomes

y0t xtj ¼ k � N
X
l∈A

y0t−l G 0ð Þ �W 0ð Þ
l

� �
þ
X
l∈A

y0t−l G �W kð Þ
l

� �
;Σ kð Þ

 !
;

where ∙ denotes element-wise matrix product and W l
(0)

is the l-lag
global autoregressive coefficient matrix obtained, for instance,
using maximum likelihood (least squares estimation). We let G be
a N × N indicator matrix whose elements are 1 if the corresponding
connection is allowed to vary across states and 0 otherwise. Like-
wise, G(0) is another N × N matrix indicating which connections are
modelled globally.

This formulation allows us to fix some connections to maximum like-
lihood by setting Gij=0, Gij

(0)
= 1 and to zero by setting Gij=0, Gij

(0)
= 0.

Although we do not explore this alternative in this paper, it also permits
to discount the global trends before modelling transient connectivity by
setting Gij = 1, Gij

(0)
= 1.

To proceed with the inference, we first obtain the estimation Ŵl
(0)

using least squares and then we define new variables

r0t ¼ y0t−
X
l∈A

y0t−l G 0ð Þ � Ŵ 0ð Þ
l

� �
;

so that, all through the inference procedure, instead of the model in
Eq. (1), we use the following state model

r0t xtj ¼ k � N
X
l∈A

y0t−l G �W kð Þ
l

� �
; Σ kð Þ

 !
:

In Appendix B, we describe the variational Bayes inference
equations. For simplicity, inference is specified for the standard case
G = 1, G(0) = 0, where there is no need to define additional variables
r't. The extension to cover this generalisation of the model is
straightforward.

Appendix B. Variational Bayes inference

We use the variational approach for inferring the parameters of the
model (Bishop, 2006), alternating a (variational) E-step and M-step.
The variational E-step deals with the estimation of the hidden states
probabilities and the variational M-step estimates the model parame-
ters. Convergence is guaranteed for this kind of algorithms and can be
monitored by means of the free energy of the model. The computation
of the free energy is discussed in Appendix C.

We next show the variational updating equations for the special case
when there is one single batch or trial. The following equations can eas-
ily be adapted to the general case, when more than one time series are
fed to the algorithm.

We denote the entire source signal as Y ∈ ℝT × N and the vector of
states as x. Also, we define Y+ = [y'P + 1; …; y'T] ∈ ℝT − P × N, Yi

− =
[y ' P − i + 1;…; y ' T − i] ∈ ℝT − P × N and Y− = [Y1

− … YP
−] ∈ ℝT − P × NP.

We also denote Γ(k) = diag(γk).
We start outlining the M-step. For the observation model, we

approximate the posterior distribution of the parameters
P(W, Ω, σ, α|s, Y) by a variational distribution with the following
factorisation

F W ;Ω;σ;αð Þ ¼ F Wð ÞF Ω;σ;αð Þ: ð9Þ

Without further assumptions, a factorisation betweenΩ,σ andα follows
naturally.

F(Ω(k)) corresponds to a Wishart probability distribution

F Ω kð Þ
� �

¼ W B kð Þ; ι kð Þ
� �

;
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with ι(k) = ι0 + ∑t = P + 1
T γtk and B(k) = (E(k) 'Γ(k)E(k) + B0)−1. We

define the residuals EðkÞ ¼ Yþ−Y−μW ðkÞ , and μW ðkÞ is the expectation
of the autoregression coefficients. We denote the expectation of Ω(k)

as ΩðkÞ ¼ ιðkÞBðkÞ.

We define ~wðkÞ as the concatenation of the rows ofW(k) and ~w�ðkÞ as
the concatenation of the rows of the NP × N least-squares solution

Y−0Γ kð ÞY−
� �−1

Y−0Γ kð ÞYþ:

Let Φ(k) be a diagonal matrix defined as follows: we build vectors

ϕl
(k)

as the concatenations of the columns of the square matrices αðkÞ
lσðkÞ; we then constructΦ(k) as the diagonal matrix whose diagonal ele-

ments are the concatenation of vectors ϕl
(k)

. After some algebraic ma-

nipulations, we can identify FðwðkÞÞ as N2P-dimensional Gaussian
distribution

F w kð Þ
� �

¼ N μ ~w kð Þ ; S ~w kð Þ

� �
ð10Þ

with S ~wðkÞ ¼ ðΦðkÞ þ Y−0ΓðkÞY−⊗ΩðkÞÞ
−1

, μ ~wðkÞ ¼ S ~wðkÞ ðY−0
Y−⊗ΩðkÞÞ

~w�ðkÞ, where⊗ represents the Kronecker product. From this expression,

we can easily reconstruct FðW ðkÞÞ ¼ N ðW ðkÞ;μW ðkÞ ; SW ðkÞ Þ.
For σij

(k)
, and assuming symmetry σ ij

(k)
= σ ji

(k), we have a Gamma
distribution

F σ kð Þ
i j

� �
¼ G φ kð Þ

i j ; c
kð Þ
i j

� �
ð11Þ

with rate ~cðkÞi j ¼ 1
2∑

P
l¼1α

ðkÞ
l ðμ2

WðkÞ
li j

þ SW ðkÞ
li j

þ μ2
W ðkÞ

l ji

þ SWðkÞ
l ji

Þ þ c0 and shape

φij
(k)

= P if i ≠ j and φðkÞ
i j ¼ P

2 otherwise. The derivation is similar for

σij
(k)

≠ σji
(k)

.
For αl

(k)
, we have

F α kð Þ
l

� �
¼ G ς kð Þ

l ; d kð Þ
l

� �
ð12Þ

with rate ~d
ðkÞ
n ¼ 1

2∑
N
i; j¼1σ

ðkÞ
i j ðμ2

WðkÞ
li j

þ SW ðkÞ
li j

Þ þ d0 and shape ςðkÞ
i j ¼ N2

2 .

We are now in a position to specify themarginal expectation of y't as

E y0t½ � ¼
XK
k¼1

X
l∈A

γtky
0
t−lW

kð Þ
l : ð13Þ

Note that, because the state time courses are probabilistic, the
expectation is effectively a mixture of the K states, where the weights
are given by γtk.

The estimation of the HMM hidden state sequence probabilities
conforms the variational E-step of the algorithm. The regular forward–
backward recursions (Rabiner, 1989), adapted for the variational
approach, can be used for this matter. We need the conditional likeli-
hoods

logL kð Þ
t ¼ logP yt xtj ¼ k;W kð ÞΩ kð Þ

� �
¼ −0:5N log 2πð Þ−0:5 log B kð Þ

��� ���þ 0:5
XN
i¼1

ψ 0:5ι kð Þ−0:5iþ 0:5
� �

−0:5N log2þ −0:5diag E e kð Þ0
t ι kð ÞB kð Þ
� �

e kð Þ
t

h i� �

where ψ(⋅) is the digamma function.
The forward–backward equationsmake use of themessage variables

β f xtð Þ ¼ P y1;…; yt ; xtð Þ;βb xtð Þ ¼ P ytþ1;…; yT ; xt
� 	

:

The forward recursions can be calculated, for t = P + 1, …, T, as

β f xPþ1ð Þ ¼ ηL kð Þ
Pþ1; β f xtð Þ ¼ β f xt−1ð ÞΘ� �

� L kð Þ
t ;

where ∙ denotes the elementwise product and Θ ¼ E½Θ� . For the
backward recursions, for t = T − 1, …, P + 1, we have

βb xTð Þ ¼ 1β f xTð Þk k1
1K ; βb xtð Þ ¼ 1β f xtð Þk k1

βb xtþ1ð Þ � L kð Þ
tþ1

� �Θ0

where 1K is a vector with all elements equal to 1 and |v|1 is the sum of
the elements of the vector v.

So, at the E-step, we compute the forward messages, starting from
t = P + 1, and, then, we compute the backward messages from t = T
to P + 1, combining them to get

γt ¼
βb xtð Þ � β f xtð Þβb xtð Þ � β f xtð Þk k1

:

We also compute variables ξt ∈ ℝKK such that

ξt k1 k2 ¼ E P xt ¼ k1; xtþ1 ¼ k2 Yjð Þ½ � ¼ Θk1 k2 β f xt ¼ k1ð Þβb xtþ1 ¼ k2ð ÞL k2ð Þ
tþ1 :

The parameters of the variational Dirichlet distribution that governs
the state dynamics, FðΘk1 �Þ ¼ Dirðνk1 �Þand F(η)=Dir(ζ), are updated as

νk1k2 ¼
exp ψ ξk1k2

� �
−ψ ξ


 




1

� �� �
XK

k¼1
expψ ξk1k

� �
−ψ ξ


 




1

� �� � ;

where ξ ¼ ν0 þ∑T−1
t¼Pþ1ξt , and

ζk1 ¼
exp ψ γPþ1 k1

� �
−ψ γPþ1



 


1

� �� �
XK

k¼1
exp ψ γPþ1 k

� 	
−ψ γPþ1



 


1

� �� � :

Appendix C. Free energy computation

The free energy F is the cost function that variational inference aims
tominimise. F is typically used tomonitor the convergence of the algo-
rithm and for model comparison and selection. It can be derived as the
sum of the model average log-likelihood, the negative entropy and the
Kullback–Leibler divergence,

Expressions for all these quantities can be found for example in
Rezek and Roberts (2005), where the HMMwith Gaussian observations
(among others) is presented. Note that the HMM–MAR can be consid-
ered a generalisation of this simpler model. With regard to the compu-
tation of F , we need to consider that the predicted value is not just the
mean of a Gaussian distribution but the autoregressive prediction given
by Eq. (13). The total Kullback–Leibler divergence, as calculated in
Rezek and Roberts (2005), needs also to include the Kullback–Leibler
divergence between:

• The variational posterior distribution ofW(k) given in Eq. (10) and the
prior distribution given by Eq. (5) (Gaussian).

• The variational posterior distribution of σij
(k)

given in Eq. (11) and the
prior distribution given by Eq. (6) (Gamma).

• The variational posterior distribution of αl
(k)

given in Eq. (12) and the
prior distribution given by Eq. (7) (Gamma).
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Fig. 9. Average state time courses around the button press event, estimated from an
HMM–MAR run on a data set that was sampled from a MAR model. This MAR model is
such that can explain up to 99.99% of the original data variance.
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The expressions of the Kullback–Leibler divergence for the Gaussian
and Gamma distributions can also be found in Rezek and Roberts
(2005).

Appendix D. State course initialisation

The algorithm described above needs an initial estimation of γk. We
contemplate different choices for this. The first one (and the simplest) is
a mixture of Gaussian model (Bishop, 2006), which can be itself
initialised with a K-nearest neighbour algorithm. The second, that can
be considered an extension of the former, is a mixture of MAR models.
We find the solution for both of them using expectation–maximisation
(Dempster et al., 1977). The last choice is to run the entire HMM–MAR
variational inference procedure a number of times, using pure random
initialisation and a low number of variational iterations, so that we
would use the one with the lowest free energy as a starting point of
an inference run that we will eventually allow to converge. The last
strategy can be generalised to a pyramid of runs, where the runs at
each level start with the best of a subset of HMM–MAR models from
the immediately lower level (which would have been run for a shorter
time). We have not explored this last alternative.

The best option depends on the problem at hand and it is difficult to
provide a general recommendation. A reasonable possibility is to try all
different initialisations, choosing the one with the best free energy. In
the reported experiments, we have used the mixture of MAR models,
randomly initialised. Although we did not find big differences between
the initialisationmethods for our data,we are aware that other data sets
may be more sensitive to this choice.

Appendix E. Parametric frequency estimation

The autoregression coefficient matrices can be mapped to the
frequency domain for frequency f as

V kð Þ fð Þ ¼
XP
l¼1

W kð Þ
l e−i2πflT :

Let us denote V
ðkÞð f Þ ¼ I−V ðkÞð f Þ. Now, for each state k, given the

noise covariance matrix Σ(k) and the transfer matrix, HðkÞð f Þ ¼ V
ðkÞ

ð f Þ−1, we can readily estimate the PSD matrix as

S kð Þ fð Þ ¼ H kð Þ fð Þ Σ kð Þ−1

H kð Þ fð Þ: ð14Þ

Using S(k)(f), we can compute the coherence between channels i and
j as

Coh kð Þ
i j fð Þ ¼

S kð Þ
i j fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S kð Þ
ii fð ÞS kð Þ

j j fð Þ
q :

Finally, we can obtain the PDC from channel i to channel j as

PDC kð Þ
i j fð Þ ¼ Σ kð Þ−1

j j V
kð Þ
i j fð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

m¼1
Σ kð Þ−2

mm V
kð Þ
im fð Þ

��� ���2
r :

Note that, although these equations are valid per se when using
either an exponential lapse or an offset P0 N 0, theywill introduce differ-
ent levels of resolution at different frequencies and, potentially, miss
important information that could lead to misleading spectra. For exam-
ple, the exponential lapse will result in spectra with more resolution at
the lower frequencies than at the higher frequencies. Therefore, if the
model has been trained with a non-standard parametrisation, it is rec-
ommendable to obtain (once the segmentation is finished) a standard
MAR by completing the missing lags, and then use it for the estimation
of the frequency information.
Appendix F. Non-parametric PDC

Wecan use the (statewise)multitaper to obtain ready estimations of
PSD and coherence, butwe cannot obtain PDCdirectly because it explic-
itly needs the autoregression coefficients. We can however reformulate
the PDC in a non-parametric way as

PDC kð Þ
i j fð Þ ¼

J kð Þ
i j fð Þ
��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

m¼1
J kð Þ
im fð Þ
��� ���2

r

where J(f) = H(f)−1 (Jachan et al., 2009). Now, given the expression 5
to compute the PSD matrix, and having computed S(k)(f) via the
statewise multitaper from Eq. (14), we can apply the Wilson algorithm
on S(k)(f) to obtain a factorisation that approximatesH(f). TheWilson al-
gorithm was proposed in the applied mathematics literature as an iter-
ative Newton'smethod to compute an approximate but unique solution
of thematrix square root problem. On the downside, it can be computa-
tionally costly in high dimensions, which precludes its use within
window-based approaches.
Appendix G. Comparison with a stationary MARmodel

Considering the high amount of explained variance that a single
MAR can achieve on MEG data (in this case higher than 99% for a MAR
order of 8), one might question whether a single global MAR model is
by itself enough to describe the data sufficiently. Clearly a single MAR
cannot find transient patterns of activity. For example, a stationary
MAR model does not contain any information about the button press
event. As a straightforward demonstration of this,we estimate a station-
aryMARmodel from theMEG ROI time courses, complex enough to ex-
plain 99.99% of the variance. Then, we sample a data set from this MAR
model (with the same size as the original data set), and run the HMM–
MAR inference procedure to see if the inferred time courses reveal
something related to the event. As expected the inferred state time
courses are random processes with no relation to the event (see Fig. 9).
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