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Abstract—Hyperspectral imagery (HSI) classification is one of
the fundamental applications in remote sensing domain, which
aims at predicting the labels of unlabeled pixels in an image with
a classifier trained on a certain amount of labeled pixels. However,
due to the expensive cost on manual labeling, only limited labeled
pixels can be obtained in real applications, which is prone to result
in the training of classifier to be overfitting. To address this prob-
lem, we present an intraclass similarity structure representation-
based HSI classification method. First, according to the intraclass
spectrum similarity of pixels, we establish a mixed labels-based
annotation model. Given some randomly selected unlabeled pixels,
we employ the proposed annotation model to assign each pixel a
mixed label from the top-two possible classes, and then augment the
original training set with those labeled pixels. On the augmented
training set, we train a deep convolutional neural network-based
classification model. With several individual rounds of the annota-
tion and classifier training procedures, we obtain several indepen-
dent classification models and predict the final labels as their fusion
results with a voting strategy. Experimental results demonstrate the
effectiveness of the proposed method in terms of HSI classification
with few training samples.

Index Terms—Classifier fusion, few samples learning,
hyperspectral imagery classification, intra-class similarity
structure representation.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) is a digital image that
records the reflectivity of natural scene under differ-

ent spectral irradiation frequency with high spectral resolution
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[1], [2]. Unlike color or grayscale images, HSI usually contains
hundreds or even thousands of bands, and each pixel records
the spectrum curve of the corresponding object. Since the spec-
trum is varied with different substance, it can be exploited
to distinguish the substances in the imaging scene [3]. Thus,
HSI has been widely used in lots of fields including mineral
mining [4], environmental detection [5], and military defense
[6], etc.

As one of the fundamental applications in remote sensing
domain [7], [8], HSI classification aims to train the classifier
with small amount of labeled pixels, and then predict the la-
bels of unlabeled pixels, with which the distribution of differ-
ent land covers in HSI can be obtained [8], [9]. At present,
a large number of HSI classification methods [8] have been
proposed successively. Based on the structure of features, the
existing HSI classification methods can be divided into shallow
feature-based method and deep neural network based one. In
the shallow feature-based method, feature extraction is inde-
pendent with the classifier design. The features can be the
spectral information themselves [8], [9], or acquired from the
spectral information via unsupervised learning methods such as
band selection [10], [11], feature transformation [12], dictionary
learning [2], [13], and image decomposition [14]. Then based
on the obtained features, commonly used classifiers such as
support vector machine (SVM) [9], nearest neighbor classifier
(NNC) [15], and logistic regression classifier (LRC) [16] are
then used to predict the labels. The deep neural network-based
method is different from the shallow feature-based method
which divides feature extraction and classifier learning into two
independent modules in that it implicitly embeds these two
modules into a unified framework using network structure [17].
Due to the powerful representation ability as well as jointly
optimizing feature extraction and classifier for training, deep
neural network-based method can learn more discriminative
features and classifiers when the number of labeled training
samples are sufficient, with which the accuracy of the classifi-
cation task [18], [19], can be significantly improved. Thus, deep
neural network-based HSI classification method has become a
hot topic to date [20]. However, in the practical application,
the assumption of providing sufficient training samples is al-
ways infeasible, i.e., only few labeled training samples can
be obtained. As a result, the method based on deep neural
network is prone to be overfitting when giving only few labeled
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training data, and the classification accuracy thus decreases
greatly.

To address this problem, we propose an intraclass similarity
structure representation-based HSI classification method with
few labeled pixels (i.e., samples) in this article. First, a mixed
labels-based annotation model is established based on the in-
traclass spectrum similarity of pixels. Given some randomly
selected unlabeled pixels, we employ the proposed annotation
model to assign each pixel a mixed label from the top-two
possible classes, and then augment the original training set with
those labeled pixels. On the augmented training set, we then
train a deep convolutional neural network-based classification
model. With several individual rounds of the annotation and
classifier training procedures, we can obtain several independent
classification models and predict the final labels as their fusion
results with a voting strategy. The experimental results on dif-
ferent datasets demonstrate that the proposed method can obtain
higher classification accuracy compared with the competing HSI
classification methods given small amount of training samples.

In general, the main contributions of this article are summa-
rized as follows.

1) A novel mixed labels-based annotation model is proposed
based on the intraclass spectrum similarity of pixels, with
which more samples with soft labels can be obtained from
the unlabeled data resulting in the augmentation of training
dataset.

2) A classifier fusion model is proposed by fusing multiple
convolutional neural networks trained separately on sev-
eral individual rounds of augmented datasets, with which
the diversity and complementary characteristic of labeled
samples among different augmented training datasets are
exploited better for HSI classification.

3) With the mixed labels-based annotation model and clas-
sifier fusion, the proposed HSI classification method can
effectively reduce the overfitting problem and obtain better
HSI classification results when exploiting together with
deep neural networks.

II. RELATED WORK

For shallow feature-based method, a commonly used strat-
egy is to manually design the shallow features for each pixel,
and then train the linear or nonlinear classifier with labeled
samples. For example, Demir [8] and Melgani [9] used the
original spectral curve to represent each pixel directly, and
then trained a relevance vector machine (RVM) classifier or
SVM classifier based on the spectra. In order to eliminate the
redundant information in the spectra and thus obtain more dis-
criminative representations, Yuan et al. [10] proposed a spectral
band selection model based on the multigraph determinantal
point process. The proposed method used the graph model to
mine the structure between bands, from which the redundant
information was eliminated and the optimal subset of bands was
obtained. Wang et al. [11] eliminated the redundant information
in the spectra via band clustering strategy, and proposed an
optimal clustering optimization framework. Different from the
band selection methods mentioned above, Bruce et al. [12]
proposed a binary discrete wavelet transform method to map

high-dimensional spectral data into low-dimensional feature
space for classification. However, discrete wavelet transform
uses fixed basis functions to represent the spectra, which can not
adaptively mine the specific structural relationships among the
data. To address this problem, Chen et al. [2] learned redundant
spectral dictionaries from HSI based on the sparse representation
framework [2], with which the original continuous spectra are
represented by sparse feature vectors. Then based on the sparse
representation model, the reconstruction error of the pixel is
exploited to construct the classification model. Zhang et al. [13]
further introduced the spatial nonlocal similarity of pixels into
the sparse representation model, thus a classification model with
stronger discriminability can be obtained. In recent studies, Li
et al. [21] proposed a structure-aware collaborative representa-
tion method with Tikhonov regularization for HSI classification.
Zhang et al. [22] proposed a discriminative marginalized least
square regression method for HSI classification. These methods
address HSI classification from novel and effective perspective,
and result in better classification results [21], [22]. Although the
above methods promote the development of HSI classification
research, they have limitations on classification problems espe-
cially in complex classification tasks due to the shallow structure
feature as well as the feature needs to be modeled with stronger
professional background knowledge.

Instead, deep neural network-based method can learn a deep
yet complex representation model automatically from the la-
beled training data, with which the feature expression ability can
be significantly improved [23]–[28]. More importantly, feature
extraction and classifier are naturally integrated into the deep
neural network framework, which avoids human interventions
and thus fully exploits the characteristic of HSI. For example,
Chen et al. [20] constructed a deep convolutional network for
HSI classification by cascading multiple convolutional layers
and pooling layers. The constructed deep model significantly im-
proved the classification accuracy of HSI by extracting deep and
nonlinear features of the spectrum of each pixel. Zhao et al. [23]
proposed a HSI classification model based on spatial–spectral
features. First, a local discriminant embedding model is pro-
posed to map high-dimensional spectrum into low-dimensional
feature, and a deep convolutional network is used to extract
the spatial features of the image. Then, these two kinds of
features are combined to train the classifier. Although the exist-
ing deep neural network-based methods significantly improve
the classification accuracy, the prerequisite of obtaining such
a performance is that sufficient labeled training samples are
provided. However, labeling HSI is tedious, expensive, and only
can be accomplished by experts. As a result, only few labeled
samples are accompanied with a HSI. In this case, majority
of deep neural networks are prone to be overfitting [29], i.e.,
the classification accuracy drops significantly. In this article, we
mainly focus on how to mine the internal structural information
of HSI to solve the problem when deep neural network meets
few labeled training samples. Specifically, we emphasize on how
to utilize few labeled data to boost the performance of existing
deep learning-based method. First, a new mixed labels-based
annotation model is proposed based on the intraclass spectrum
similarity of pixels, with which more samples with soft la-
bels can be obtained from the unlabeled data resulting in the
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augmentation of training dataset. Then, a classifier fusion model
is proposed by fusing multiple convolutional neural networks
trained separately on several individual rounds of augmented
datasets, with which the diversity and complementary charac-
teristic of labeled samples among different augmented training
datasets are exploited better for HSI classification.

III. PROPOSED METHOD

In this section, we will introduce the proposed method in
details. The proposed mixed labels-based annotation model is
described in Section III-A. The constructed deep convolutional
network is presented in Section III-B, and the multiclassifier
fusion strategy is described in Section III-C.

A. Mixed Labels-Based Annotation Model

Denote a d dimensional spectrum in the HSI as xi ∈ Rd×1,
and its class label as yi ∈ {1, 2, . . . , L}. HSI classification task
aims to classify the spectra vectorsS = {x1,x2, . . . ,xn} intoL
categories. In general, HSI classification task is composed of the
following two steps. 1) Train a classifier with the labeled training
dataset T = {(xi,yi)}mi=1; 2) predict the labels {yi}ni=m+1 of
other unlabeled samples U = {xi}ni=m+1 based on the learned
classifier. For lots of classifiers including deep neural network
based one, the prerequisite of obtaining a good classification
result is that plenty of labeled training samples are provided, i.e.,
the number ofm is large. However, in practical applications, only
few labeled training samples can be obtained, namely,m is small
andm � n. In this case, those classifiers are prone to be overfit-
ting and the generalization ability of those classifiers is degen-
erated, i.e., the prediction ability of the classifier drops greatly.

To address this problem, we propose a new mixed labels-
based annotation model, which uses the existing training data
T to further label some unlabeled pixels in U , with which the
number of labeled training pixels can be augmented and the
overfitting problem can be reduced. The specific ideas are given
as follows. Since the spectra curve in HSI reflect the unique
physical characteristics of objects in the scene, the spectra from
the same object are likely to be similar. On the contrary, pixels
with similar spectra are likely to be chosen from the same object,
i.e., have the same class label [30]. Thus, by mining the spectrum
similarity among different pixels in T and U , we can transfer
the labels in T to the spectra similar pixels in U .

Following this idea, we construct spectrum similarity model
first. Suppose there are k samples {xi

j}kj=1 whose spectra are
similar to xi, each xi

j thus can be approximated by xi together
with a certain (zero mean) gaussian white noise due to the
spectrum similarity [31], [32]. Thus, xi can be reconstructed
by a linear combination of all spectral similar samples xi

j as

xi =

k∑

j=1

wjx
i
j , s.t., wj ≥ 0,

k∑

j=1

wj = 1. (1)

wj denotes the weight using the jth similar sample to reconstruct
xi. To make the weights with physical meanings, the weight wj

is required to be nonnegative and the summation of all weights
from different similar samples equals to 1 [31], [32], as shown
in (1). In order to guarantee the samples closer to xi have higher

influence on reconstructing xi (i.e., have a larger weight), we
use the following weighting equation shown as

wj =
exp

(
− 1

σ

∣∣∣∣xi − xi
j

∣∣∣∣2
2

)

∑
j exp

(
− 1

σ

∣∣∣∣xi − xi
j

∣∣∣∣2
2

) (2)

where σ is a predefined scalar.
Based on the spectrum similarity model, we then construct

mixed labels-based annotation model to label the samples in
U . Since samples with similar spectrum are prone to be from
the same label with high probability, we select the nearest k
samples {xi

j}kj=1 from the training dataset T for each sample
in U . Suppose the label of xi

j is yi
j , the label of xi (namely, yi)

can be predicted by the following mixed labels based-annotation
model

yi =

k∑

j=1

wjy
i
j . (3)

It is worth noting that all the labels of yi
j in (3) use the one-hot

representation, and thus the generated label of yi, according to
(3), is a soft label.

According to above description, it can be seen that the pro-
posed mixed labels-based annotation model is based on the
premise that samples with similar spectra are from the same
label. However, in reality, the premise might be slightly different.
That is, in practice, more similar the spectra, higher probability
of above premise is true. To make the proposed model can
function well in reality, (2) is further refined with the following
two steps.

1) Step 1: For each class, one sample whose spectrum closet
to that of xi is chosen from T based on the Euclidean distance.
By assembling the chosen samples from all L classes into a set,
we obtain an alternative set N = {x̂i

j}Lj=1 in which x̂i
j indicates

the sample whose spectrum closest to that of xi in the jth class
of training set.

2) Step 2: Top two samples whose spectra closest to that of
xi are chosen from N , which composes {xi

j}k=2
j=1 and exploits

to predict the label of xi according to (3).
With above proposed annotation model, we then randomly

select l unlabeled samples from U = {xi}ni=m+1 and predict
their labels. Then, we add these data into the original training
dataset T , from which we obtain the augmented training dataset
R = {(xi,yi)}m+l

i=1 .

B. Deep Convolutional Network-Based Classification Model

Given the augmented training dataset R, we then design a
specific classifier model. Since deep convolutional network can
learn powerful features, it is adopted to construct the classifica-
tion model in this article [17], [18].

Specifically, three convolutional layers together with a fully
connected layer are used to map the input spectrum into complex
nonlinear feature space. Each convolutional layer consists of
three consecutive submodules including a convolution submod-
ule, a nonlinear activation function submodule, and a batch
normalization submodule [33]. In this article, rectified linear
unit [34] is adopted as a nonlinear activation function module.
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Batch normalization submodule normalizes the input data of
any value into a real-number data ranging from 0 to 1. In
the constructed structure, the convolutional layer focuses on
extracting the local information within the spectrum, while the
fully connected layer introduces the global information of the
spectrum curve into the features. Given the generated features,
we further introduce a classifier layer, which outputs the proba-
bility of each class. The classifier layer contains two cascading
submodules including the fully connected submodule and an
activation function submodule. The fully connected submodule
is equivalent to a linear classifier, and the softmax activation
function submodule is used to ensure that the output of the
classifier meets the probability requirement, i.e., each element
in the output is nonnegative and the summation of all elements
in the output equals to one.

Assuming that the proposed deep convolutional network-
based classification model can be expressed as fθ, the classifica-
tion model can be trained by solving the following optimization
problem

min
θ

m+l∑

i=1

Loss (fθ (xi) ,yi). (4)

θ represents the parameters to be estimated in the network and
Loss represents the cross entropy loss function [35]. Similar as
the commonly used deep learning method, equation (4) can also
be solved by back propagation algorithm [36].

C. Classifier Fusion Model

With the proposed mixed labels-based annotation model, the
training dataset can be augmented by predicting the labels of l
unlabeled samples chosen randomly from U . It is easy to see
that the samples randomly chosen are always complemented
with different sampling (i.e., different samples exist among dif-
ferent sampling). Considering such complementary property, we
propose to fuse multiple convolutional neural networks trained
separately on several individual rounds of augmented datasets to
further boost the classification results. That is, we first perform
the sampling r times independently and train r independent
classifiers, respectively, and then obtain the labels for the test
data by fusing the results from all r classifiers.

Specifically, suppose the trained r classifiers are denoted as
f
(1)
θ , f

(2)
θ , . . . , f

(r)
θ , we obtain the class label yi of the test

sample xi by the following three steps, in which we utilize c as
an index to represent a possible class label among {1, 2, . . . , L}.

1) Step 1: Initialize the scores of L classes as p1 = p2 =
· · · = pL = 0, where pc denotes the score from cth class.

2) Step 2: Update the scores based on the predicted results
from each classifier. For example, if the pixel xi is predicted
from the cth class via a classifier, only the score belonging to the
of cth class (i.e., pc) will be updated by pc = pc + 1. The scores
stop updating until all r classifiers are used for prediction the
label of xi.

3) Step 3: Predict the label of the test sample xi based on
the obtained scores as

yi = arg max
c

pc. (5)

Fig. 1. Representative band images of the adopted three HSI datasets.
(a) Indian Pines. (b) Pavia University. (c) Salinas.

IV. EXPERIMENTS RESULTS AND ANALYSIS

In this section, we conduct different experiments on three
HSI classification datasets to demonstrate the effectiveness of
the proposed method.

A. Datasets

Three benchmark HSI datasets including Indian Pines dataset,
Pavia University dataset, and Salinas dataset are adopted for
experiments.

Indian Pines dataset contains 16 categories, which are
collected by airborne visible/infrared imaging spectrometer
(AVIRIS) from northwestern Indiana. It captures 220 differ-
ent spectral bands ranging from 0.38 μm to 2.5 μm, and has
145× 145pixels. The Indian Pines dataset has 16 classes, but the
number of pixels varied dramatically between classes. To ensure
the relative balance of pixel numbers from different classes,
we adopt the strategy lots of HSI classification adopt on this
dataset [37], [38], i.e., we choose nine classes which have more
data than the remaining 7 classes for experiments.

Pavia University dataset contains nine land covers and 610×
340 pixels, which is acquired by reflective optics system imaging
spectrometer (ROSIS) from Pavia University, Italy. It captures
115 spectral bands ranging from 0.43 μm to 0.86 μm. In the
experiment, we remove 12 water-absorption bands from the data
and preserve the remaining 103 bands for experiments.

Salinas dataset is acquired by AVIRIS from California, which
includes 16 classes, 224 bands, and 512× 217 pixels. Similar
as that does in Pavia University dataset, 20 water-absorption
bands are removed and the remaining 204 bands are preserved
for experiments.

The illustrations of the adopted datasets can be seen from
Fig. 1. In addition, the name and the numbers of pixels per
adopted class on above three datasets are summarized in Table I.

B. Comparison Methods

In order to verify the proposed method, we compare the
proposed method with four different comparison methods in-
cluding spectra-based SVM [9], spatio–spectra Laplacian sup-
port vector machine (SSL-SVM) [39], deep convolutional neural
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TABLE I
NAME AND PIXEL NUMBERS PER ADOPTED CLASS ON THREE DATASETS

networks (DCNN) [20], and mixture annotation-based deep con-
volutional neural networks (MA-DCNN). Among them, spectra-
based SVM method and SSL-SVM are few-sample oriented
classification methods, which have been testified to function well
when given only few training samples. For spectra-based SVM
method, it uses the spectrum as the feature of each pixel and
trains the SVM classifier. SSL-SVM method is a semisupervised
classification method, which has similarities with the proposed
mixed labels-based annotation model since it also incorporates
the unlabeled samples in the training stage. It first mines the spa-
tial similarity among pixels, then construct a manifold structure
regularizer to constrain the training process of SVM classifier,
with which robust HSI classification results can be obtained.
DCNN is a deep convolutional neural network-based HSI clas-
sification method, which is adopted to testify the effectiveness
of the deep learning-based method when confronting with few
samples. For a fair comparison, we adopt the same structure as
the classification model described in Section IV-B for DCNN.
MA-DCNN is a variant of the proposed method. The only
difference between the proposed method and MA-DCNN is that
MA-DCNN uses one augmented training dataset to train the
classifier without classifier fusion. For simplification, we term
the proposed method as Ours in this article.

C. Evaluation Criterion

In order to compare the performance of different methods
objectively, we use three different measures including overall
accuracy (OA) [9], average accuracy (AA) [9], and Kappa
coefficient [40] in the experiments. For these measures, their
values range from 0 to 1, and higher value represent higher
classification performance.

D. Setting

In the following experiments, to simulate the case only few
labeled pixels are provided for training, we randomly select 20
labeled pixels per class for training and the remaining pixels for
test. With the training data, we first train all methods, and then
calculate three evaluation measures (i.e., OA, AA, and Kappa) on
test data for each method. In order to reduce the randomness of

TABLE II
CLASSIFICATION RESULTS OF DIFFERENT METHODS

ON INDIAN PINES DATASET (%)

The best results are in bold.
The Numbers in Parentheses are Standard Variances (%).

pixels sampling on classification, we randomly sample the train-
ing pixels ten times independently, with which ten independently
classifiers are trained for each method. We then calculate the
average measures on test data obtained from those ten classifiers,
which is recorded as the final classification results.

The proposed method was implemented by Tensorflow [41].
During the training stage, Adam [42] optimizer was used to
train the network, among which the initial learning rate, batch
size, and the total epoch were set as 0.001, 100, and 50 000,
respectively. DCNN, MA-DCNN, and Ours are adopted the
same one-dimentional convolutional neural network architec-
ture, which includes four convolutional layers. For the proposed
mixed labels-based annotation model, parameters σ and l were
set as 0.01 and 20, respectively. We set the sampling times r
and the number of nearest sample k as 5 and 2 in this article,
respectively.

E. Experiments Results

With the same experimental settings, the classification ex-
periments are conducted for different methods on three hy-
perspectral datasets, and the results are summarized in Ta-
bles II to IV. In these tables, AA, OA, Kappa coefficients, as
well as the classification accuracy of each class are provided.
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TABLE III
CLASSIFICATION RESULTS OF DIFFERENT METHODS

ON PAVIA UNIVERSITY DATASET (%)

The Numbers in Parentheses are Standard Variances (%).

TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON SALINAS DATASET (%)

The Numbers in Parentheses are Standard Variances (%).

Specifically, Table II shows the results of different methods
on Indian Pines dataset. It can be seen that the advantage of
DCNN-based method over SVM is not obvious for classifi-
cation when few labeled samples (i.e., 20 per class) are pro-
vided. For example, compared with SVM, OA of DCNN is
only improved by 2.4%. The reason is that DCNN is prone
to be overfitting when few training samples are provided,
which will influence the performance of the deep structured
network. On the contrary, the proposed method has better
performance, though it adopts the same network structure of
DCNN. For example, the proposed method improves OA about
7% over SVM. We attribute the improvement to the proposed
mixed labels-based annotation model and the classifier fusion
strategy, which is beneficial to reduce the overfitting problem.

SSL-SVM is a semisupervised classification method. It ex-
ploits the unlabeled samples in its training stage, which has
similarities with the proposed method and thus has better perfor-
mance over SVM. Even though, we can find that the proposed
method has better performance over SSL-SVM in the measures

of AA, OA, and Kappa coefficients. For example, the OA mea-
sure is improved by 3% for the proposed method over SSL-SVM.

Table III gives the classification results of different methods
on Paiva University dataset. We can find that the classifica-
tion accuracy of DCNN is even lower than that of the SVM.
For example, the OA of DCNN is lower than that of SVM
by 2.8%. This phenomenon indicates that DCNN has a more
serious overfitting problem for Pavia University dataset. With
the same network structure, the proposed method improves the
classification results clearly. For example, the proposed method
improves kappa coefficient by 5.7%, compared with DCNN,
which demonstrates the proposed method can effectively reduce
the overfitting problem of deep neural network meets when given
only few samples.

Table IV shows the classification results of different methods
on Salinas dataset. It can be found that the proposed method
achieves the highest classification accuracy among all the meth-
ods, similar as the results obtained from Indian Pines dataset
and Pavia University dataset. For example, the Kappa coefficient
of the proposed method is improved by 2.4%, compared with
DCNN, which demonstrates the overfitting problem of the deep
neural network can be reduced with the proposed method. In
addition, we report the standard variance of OA, AA, and Kappa
coefficient on these three datasets in Tables II–IV, from which
we can see that the proposed method is more stable than other
competing methods. To further illustrate the classification re-
sults, the classification maps are given in Figs. 2–4. It can be seen
that, compared with other methods, the classification map of the
proposed method is closer to the ground truth in most cases,
which further validates the effectiveness of the proposed method.

F. Ablation Study

Since both the proposed mixed labels-based annotation model
and the fusion strategy contribute to the improvement of HSI
classification over DCNN, we verify how those two parts influ-
ence the classification results independently in this subsection.
In addition, the classification performance varied with parame-
ters l as well as the numbers of training samples are also testified
in this subsection.

1) Validity of the Model: In order to verify the effectiveness
of the two different parts (i.e., mixed labels-based annotation
model and the fusion strategy) on reducing the overfitting prob-
lem DCNN meets, the following experiments are designed and
implemented on three HSI datasets. Specifically, we compare
the proposed method with DCNN and MA-DCNN on three
datasets. Those three methods share the same network structure.
It is noticeable that DCNN and MA-DCNN can be regarded as
special cases of the proposed method in this article. Specifically,
DCNN does not use the mixed labels-based annotation model
and the classifier fusion strategy. MA-DCNN only adopts mixed
labels-based annotation model but without using the classifier
fusion strategy. Table V gives the classification results of those
methods. Compared with DCNN, MA-DCNN can steadily im-
prove the performance, while the proposed method can improve
the performance even more. Therefore, the improvement of
MA-DCNN over DCNN in terms of HSI classification indicates



WEI et al.: INTRA CLASS SIMILARITY STRUCTURE REPRESENTATION-BASED HYPERSPECTRAL IMAGERY CLASSIFICATION 1051

Fig. 2. Classification maps of different methods on Indian Pines dataset. (a) SVM. (b) SSL-SVM. (c) DCNN. (d) MA-DCNN. (e) Ours. (f) Ground Truth.

Fig. 3. Classification maps of different methods on Pavia University dataset. (a) SVM. (b) SSL-SVM. (c) DCNN. (d) MA-DCNN. (e) Ours. (f) Ground Truth.

that the proposed mixed labels-based annotation model can sta-
bly reduce the overfitting phenomenon. By comparing the results
of the proposed method and MA-DCNN, it can be seen that the
classifier fusion strategy can also boost the HSI classification
performance. From above experiments, we can see that both the
mixed labels-based annotation model and the fusion strategy can
helpful to address overfitting problem.

2) Effect of Parameter l: l is the parameter related with
the number of samples to be labeled via mixed labels-based
annotation model. We testify the classification results varied
with different l (i.e., l is chosen as 0, 10, 20, 30, and 50,
respectively) on Indian Pines dataset, and the results are given
in Table VI. It is worth noting that when l = 0, our proposed
method directly degenerates into the original DCNN. From the
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TABLE V
EFFECTIVENESS OF MIXTURE ANNOTATION MODEL AND CLASSIFIER FUSION MODEL ON DIFFERENT DATASETS (%)

Fig. 4. Classification maps of different methods on Salinas dataset. (a) SVM.
(b) SSL-SVM. (c) DCNN. (d) MA-DCNN. (e) Ours. (f) Ground Truth.

TABLE VI
CLASSIFICATION RESULTS WITH DIFFERENT l ON INDIAN PINES DATASET (%)

table we can see that, the classification performance of the
proposed method first increases then decreases with the increase
of l. When l = 20, the proposed method has best classification
performance. The reason is analysed as follows. When l is small,
the number of augmented samples is limited, which influences
the classification performance. When l exceeds a certain value,
the number of mistaken labeled samples increases, which leads
to the degradation of classification performance.

3) Effect of Sampling Times r: r is the sampling times related
with the number of classifiers used for fusion. We testify the

TABLE VII
CLASSIFICATION RESULTS ON INDIAN PINES WITH DIFFERENT SAMPLING

TIMES r

TABLE VIII
CLASSIFICATION RESULTS ON INDIAN PINES DATASET WITH DIFFERENT

NUMBER OF NEAREST SAMPLES k

classification results when r is set as 3, 5, 7, respectively, and
summarize the experimental results in Table VII, from which
we can see that the classification performance of the proposed
method improves when r increases. Due to the randomly sam-
pling, the obtained datasets from different sampling comple-
ment, and thus the classification results can be improved when
using more classifiers trained on these datasets. Nevertheless,
the training cost increases with r and thus we set the sampling
times r as 5 in all experiments in this article.

4) Effect of the Number of Nearest Neighbors k: k is the
number of nearest neighbors. In above experiments, we fix
k = 2. In this experiment, we compare the classification results
when k is set as 1, 2, and 3, respectively, and summarize the
experimental results in Table VIII. When k varies from 2 to 3,
higher probability pixels from different classes are prone to be
introduced for training, which thus degrades the performance
of the proposed HSI classification method. It is noticeable
that when k = 1, the proposed mixed labels-based annotation
model degenerates to nearest neighbor method, i.e., we assign
test sample a label of the most similar samples in the training
dataset. However, utilizing only one pixel (i.e., k = 1) is easily
influenced by the noise, which results in the degeneration of the
classification performance, compared with the method we utilize
k = 2 and k = 3 for labeling. In addition, the predicted label is
a hard label when k = 1. In contrast, the predicted label is a
soft label when k = 2 or k = 3, which indicates the mixed label
annotation method is beneficial for HSI classification within the
proposed method.

5) Effect of the Number of Training Samples: In the above-
mentioned experiments, the number of labeled training samples
in each class is fixed as 20. In this section, we test the perfor-
mance of the proposed method and its most direct comparison,
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TABLE IX
EFFECTIVENESS OF THE PROPOSED METHOD AND DCNN WITH DIFFERENT

NUMBER OF TRAINING SAMPLES ON INDIAN PINES DATASET (%)

i.e., DCNN, with different number of training samples. Specif-
ically, we set the number of training samples for each class as
1, 5, 10, 20, and 50. Table IX shows the classification results of
the proposed method and DCNN. It can be seen from the table
that, with different number of training samples, the proposed
method can reduce the overfitting problem and thus improve the
classification accuracy.

V. CONCLUSION

To address the overfitting problem deep neural network con-
fronts when providing few training samples, an intraclass sim-
ilarity structure representation-based HSI classification method
has been proposed in this article. First, according to the intraclass
spectrum similarity of pixels, we establish a mixed labels-based
annotation model. Given some randomly selected unlabeled
pixels, we employ the proposed annotation model to assign
them mixed labels from the top-two possible classes, and then
augment the original training set with those labeled pixels. On
the augmented training set, we train a deep convolutional neu-
ral network-based classification model. With several individual
rounds of the annotation and classifier training procedures, we
can obtain several independent classification models and predict
the final labels as their fusion results with a voting strategy. Ex-
perimental results show that the proposed method can effectively
deal with the problem few training samples encounters and thus
obtain higher classification accuracy.
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