
Exploring New Opportunities to Defeat Low-Rate
DDoS Attack in Container-Based Cloud

Environment
Zhi Li , Hai Jin , Fellow, IEEE, Deqing Zou , and Bin Yuan ,Member, IEEE

Abstract—DDoS attacks are rampant in cloud environments and continually evolve into more sophisticated and intelligent modalities,

such as low-rate DDoS attacks. But meanwhile, the cloud environment is also developing in constant. Now container technology and

microservice architecture are widely applied in cloud environment and compose container-based cloud environment. Comparing with

traditional cloud environments, the container-based cloud environment is more lightweight in virtualization and more flexible in scaling

service. Naturally, a question that arises is whether these new features of container-based cloud environment will bring new

possibilities to defeat DDoS attacks. In this paper, we establish a mathematical model based on queueing theory to analyze the

strengths and weaknesses of the container-based cloud environment in defeating low-rate DDoS attack. Based on this, we propose a

dynamic DDoS mitigation strategy, which can dynamically regulate the number of container instances serving for different users and

coordinate the resource allocation for these instances to maximize the quality of service. And extensive simulations and testbed-based

experiments demonstrate our strategy can make the limited system resources be utilized sufficiently to maintain the quality of service

acceptable and defeat DDoS attack effectively in the container-based cloud environment.

Index Terms—Container, microservice, DDoS attack, mitigation, cloud computing

Ç

1 INTRODUCTION

IN this paper, we attempt to explore new solutions to
overcome DDoS attacks in container-based cloud envi-

ronment. Nowadays, the overall number of DDoS
attacks is growing every year [1]. Not only that, with the
development of cloud environment, the DDoS attacks
also have lots of changes in scale, methods, and aims [2].
But in essence, the key issue of DDoS attack and defense
is still the resources competition [3], [4], [5]: the party
that can effectively control more resources (CPU, mem-
ory, and network bandwidth, etc.) is the winner of this
battle. At present, due to the lightweight features, con-
tainer-based cloud environment has been rapidly devel-
oped and widely applied. The combination of container
technology and microservice architecture makes the con-
tainer-based cloud environment more effective and agile
in resources usage. In this case, we will discuss the new
opportunities to mitiDDoS attacks in the container-based
cloud environment.

In traditional cloud environment with the monolithic
architecture, the web application is tightly coupled and
runs as an independent instance on the virtual machine

(VM) [6]. It means that if a component of the application
experiences the influence of DDoS attacks, the entire
instance must be scaled to overcome the DDoS attacks.
Doubtlessly, this kind of resources usage mode is coarse-
grained and could be a fatal issue to the individual cloud
customers who have limited resources to fight with DDoS
attacks. Also, to the other cloud customers who obtain
resources on-demand with “pay-as-you-go” business model
[7], it may sharply drive the progress of Economic Denial of
Sustainability (EDoS) attack [8], [9].

Comparing with VM, the container with lightweight vir-
tualization can use fewer resources to scale service instances
and achieve the same effect of DDoS attack mitigation as
VM-based cloud environments. Furthermore, different
from monolithic architecture, the microservice architecture
applied in container-based cloud environment also pro-
vides a flexible option to service scaling. In microservice
architecture, an application is split into a set of components,
and each of them run as an independent service called
microservice. The function in application will be performed
by a series of microservices forming a chain, and the chains
often share microservices. Once a microservice experiencing
the influence of DDoS attacks, its instances can be scaled
independently [10]. In practice, considering the economic
cost, the development teams will estimate the expected
growth scale of the microservice based on quantitative and
qualitative analysis, and reserve sufficient resources to sup-
port it scaling, which is called as Capacity Planning [11], [12].
According to the capacity planning, although the micro-
service has enough resources to cope with the spike in

� The authors are with the National Engineering Research Center for Big
Data Technology and System, Cluster and Grid Computing Lab, Services
Computing Technology and System Lab, Big Data Security Engineering
Research Center, Huazhong University of Science and Technology, Wuhan
430074, China. E-mail: {lizhi16, hjin, Deqingzou, yuanbin}@hust.edu.cn.

Manuscript received 4 Oct. 2018; revised 10 Sept. 2019; accepted 16 Sept.
2019. Date of publication 20 Sept. 2019; date of current version 10 Jan. 2020.
(Corresponding author: Hai Jin.)
Recommended for acceptance by F. Qin.
Digital Object Identifier no. 10.1109/TPDS.2019.2942591

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020 695

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9510-1888
https://orcid.org/0000-0002-9510-1888
https://orcid.org/0000-0002-9510-1888
https://orcid.org/0000-0002-9510-1888
https://orcid.org/0000-0002-9510-1888
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0002-5365-904X
https://orcid.org/0000-0002-5365-904X
https://orcid.org/0000-0002-5365-904X
https://orcid.org/0000-0002-5365-904X
https://orcid.org/0000-0002-5365-904X
mailto:

demand, it also means that each microservice only has lim-
ited resources to battle with DDoS attacks.

Fortunately, for flood-based DDoS attack, many intru-
sion detection mechanisms based on packets signature or
network behavior are constantly evolving [13], [14], [15],
[16], [17] and can also be applied to container-based cloud
environment. Nevertheless, some intelligent attackers could
launch the low-rate DDoS attack in a stealthy fashion to
elude the detection mechanisms [18]. In this kind of attack,
attackers exploit potential logic errors or vulnerabilities in
the service to elaborately construct malicious requests [19].
Each malicious request can consume significantly greater
resources than the benign, meanwhile, the rate and number
of malicious requests are all slightly less than the thresholds
of intrusion detection. On the basis of these characteristics,
the low-rate DDoS attack can achieve DoS attack stealthily.

Limited by the effectiveness of detection mechanisms,
many mitigation strategies have been proposed to cope
with DDoS attacks. The resource-scaling mechanism [7],
[20], [21] is one of them, which automatically extends addi-
tional resources to help services survive the DDoS attacks.
Also, the isolation mechanism [22], [23] isolates the victim
services from DDoS attacks to mitigate the influence of
DDoS attacks. And the limitation mechanism [24] limits the
resources usage of victim services to ensure the usability of
other services. With these state-of-art solutions, it is possible
to mitigate the low-rate DDoS attack successfully. However,
the researches about these mitigation mechanisms are all
based on VM-based cloud environments. Due to the differ-
ence between the container-based and the VM-based cloud
environment, these mechanisms would not have the pro-
spective effect or even can’t deal with the low-rate DDoS
attack in microservice architecture.

Specifically, the loosely coupledmicroservice architecture
facilitates scaling the microservice affected by DDoS attacks
independently. But in this case, constantly increasing the
scale of amicroservicewillmake its dependent services over-
load with great probability. And meanwhile, owing to the
sharing of microservices [25], the consequence of DDoS
attacks will affect the other microservices in a larger scope.
Further, due to the OS-level virtualization of container, there
may have serious competition for resources between plenty
of microservice instances [26], [27]. However, the existing
mitigation mechanisms in VM-based cloud environment
didn’t consider these issues in their theory models or solu-
tions. Therefore, we focus on the low-rate DDoS attack in
container-based cloud environment and explore the appro-
priate mitigation mechanism according to the actual situa-
tion in container-based cloud environment.

In this paper, we establish a mathematical model based
on queueing theory to formalize and analyze the low-rate
DDoS attack scenario in container-based cloud environ-
ment. Based on the results of these analyses, we point out
the strengths and weaknesses of the container-based cloud
environment in defeating the low-rate DDoS attack and pro-
pose a dynamic DDoS mitigation mechanism according to
the features of container-based cloud environment.

With the mitigationmechanism, we divide requests to the
microservice into two parts: the whitelist and the unknown
part. To the whitelist requests, the target of mitigation
mechanism is using the minimum amount of resources to

maintain the acceptable QoS of them. Further, using the
remaining resources increases the serving rate to the
unknown requests as much as possible for helping them sur-
vive the low-rate DDoS attack. Specifically, to achieve these
targets, we dynamically optimize the number of container
instances serving for the whitelist and unknown requests,
and regulate the resources allocation for each instance to
make system resources be utilized effectively. Finally, we
conduct a set of testbed-based and simulation-based experi-
ments to demonstrate the correctness of our analysis model
and the effectiveness of our DDoSmitigationmechanism.

To the best of our knowledge, this paper is the first work
to study the superiorities and limitations for the new fea-
tures of container-based cloud environment in defeating the
low-rate DDoS attack. And we propose a dynamic DDoS
mitigation mechanism to defeat the low-rate DDoS attack in
container-based cloud environment. More specifically, our
contributions are:

� We explore the possibility that utilizing the new fea-
tures in container-based cloud environment defeats
the low-rate DDoS attack. And we point out the
strengths and weaknesses to mitigate low-rate DDoS
attack in the container-based cloud environment.

� We establish a mathematical model based on queue-
ing theory to formalize the low-rate DDoS attack sce-
nario in container-based cloud environment and
analyze the capacity of container-based cloud envi-
ronment in defeating against low-rate DDoS attack.

� Guided by this model, we propose a dynamic miti-
gation mechanism to optimize and coordinate the
resource allocation and the number of containers for
mitigating the low-rate DDoS attack.

The remainder of this paper is organized as follows. We
introduce the related work in Section 2. In Section 3, we
review the features of container technology and microser-
vice architecture in brief. In Section 4, we discuss the design
of DDoS mitigation mechanism. We present system model-
ing detail in Section 5. Performance evaluations are shown
in Section 6. And we discuss the future research points in
Section 7. Finally, we summarize this paper in Section 8.

2 RELATED WORK

2.1 DDoS Attacks Mitigation in Cloud Environment

The main aim of DDoS attacks is exhausting the resources of
victims, such as networking resources or computing resour-
ces. When DDoS attacks spreading to cloud environment, a
series of solutions have been proposed to defeat them based
on the features of cloud environment.

Du et al. [28] explored an idea using abundant resources
in cloud environment to defense DDoS attacks. And Yu
et al. [7] proposed a dynamic resources allocation strategy
based on queueing theory to mitigate the DDoS attacks with
idle resources in cloud environment. Due to the resources
are not free in cloud environment, the DDoS attacks gradu-
ally evolved into EDoS attacks that aim to the economic
resources of victims. For the EDoS attacks, Sqalli et al. [29]
proposed a filtering approach based on graphical Turing
tests to create a virtual firewall for filtering traffic. Addition-
ally, Amazon has provided a service, CloudWatch [30],

696 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

monitoring the cloud resources in real-time to limit the scal-
ing upper and reduce the impact of EDoS attacks.

Except for investing the torrent of resources to mitigate
DDoS attacks, the methods of victim migration and resource
management are also used to mitigate the DDoS attacks in
cloud environment. To the victim migration methods, Lata-
nicki et al. [31] presented a cloud level detection method to
identify malicious VMs and migrate the victim VM to other
physical servers. To the resource management methods,
Somani et al. [32], [33] proposed service resizing methods
that use OS-level controls to constrain or isolate the system
resources usage of the victim services.

Unfortunately, few studies focus on DDoS attacks mitiga-
tion methods in the container-based cloud environment. So
far, we have found only one related work that Ye et al. [34]
used deep learning to extract features of DDoS attacks in
container-based cloud system and detect DDoS attacks
based on it.

2.2 low-Rate DDoS Mitigation in Cloud Environment

The typical features of the flood-based DDoS attack, such as
high-rate and heavy-flow, are not presented in low-rate
DDoS attack, which makes traditional detecting mecha-
nisms failure. For this problem, researchers have proposed
many detecting mechanisms against the low-rate DDoS
attack, and these detecting mechanisms can be classified
into two categories: based on the network traffic and based
on the application vulnerabilities.

To the mechanisms based on network traffic, Xiang et al.
[35] used information metrics containing generalized
entropy and information distance to detect low-rate DDoS
attack. Luo et al. [36] proposed a mathematical model based
on behaviors of victim TCPs congestion for detecting low-
rate DDoS attack. Further, Wu et al. [37] established a math-
ematical model combined MF-DFA algorithm with Holder
exponent to differentiate the malicious traffic and the nor-
mal traffic in low-rate DDoS attack.

An alternative approach against with low-rate DDoS
attack is to nip the forming causes of the attacks in the bud.
It means that the vulnerabilities and logical errors in the ser-
vice, which can cause the low-rate DDoS attack, need to be
detected and repaired before it runs. Burnim et al. [38] pre-
sented a complexity testing method based on dynamic anal-
ysis to detect logical errors in performance. Olivo et al. [19]
proposed a static analysis method and implemented it into
Torpedo to detect the vulnerabilities of DoS attacks in web
applications. Although these methods can help us wipe out
lots of low-rate DDoS attacks, they also exist false positives
and false negatives. Thus, the mitigation mechanisms to the
low-rate DDoS attack are still necessary.

2.3 Security of Container-Based Cloud Environment

Nowadays, security issues in the container-based cloud
environment are focusing on the security drift problem and
isolation problem. To the security drift problem, Byungchul
et al. [39] performed analyses on the security issues brought
by the high degree of agility, reusability, and portability
with container. For the security issues about isolation, Xing
et al. [40] systematically identified the information leakage
problem and investigated potential container-based power

attack threats built upon these leakage channels. Sergei
et al. [41] used the SGX to enhance the isolation between
containers and protect containers from outside attacks.

Previous researches about the security of containers focus
on investigating and solving new security issues in con-
tainer-based cloud environment, such as how to enhance the
isolation to achieve the same security guarantees as hard-
ware virtualization. However, there doesn’t have researchers
to study the new features of container-based cloud environ-
ment whether influence the traditional security issues. If so,
are these influences positive or negative?

3 PRELIMINARY KNOWLEDGE

In this section, we point out the key characteristics of con-
tainer technology and microservice architecture, which
make up the container-based cloud environment, to guide
system modeling in next.

3.1 Container Technology

As the OS-level virtualization technology, container presents
an alternative to the VM in cloud environment. Unlike VMs
running the whole OS on virtual device, containers share
kernel with the host system and support minimum runtime
requirements of the application. Due to the difference in the
level of virtualization between VM and container, containers
dependmore on kernel features such as namespace and con-
trol groups (cgroups) to achieve isolation and resource con-
trol instead of requiring hypervisors. With the namespace,
processes in a container are isolated from other containers
and host system. Moreover, cgroups use scheduler features
in the kernel to control the amount and priority of resources
usage for each container. Therefore, combining with these
kernel features can achieve the fine-grained runtime isola-
tion and resources control to containers.

Owing to lightweight features, container has faster
startup times, superior performance of I/O throughput and
lower latency than VM. Also, container needs fewer system
resources to run, thus a single server can host far more con-
tainers than VMs. Besides the superiorities in performance,
container also provides a consistent and portable software
environment for development, testing, and production of
applications. It can greatly shorten the release and update
cycles of the application and make applications ignore the
difference between cloud platforms to easily run and scale
anywhere without compatibility issues.

With the rapid popularity of containers and the continu-
ous development of container ecosystem, container technol-
ogy is widely used in various cloud platforms, including
AmazonWeb Services (AWS) [42], IBMCloud [43] andAzure
[44], etc. In themeantime, container has gradually become the
basic unit of resource allocation and scheduling in the cloud
platforms. To orchestrate containers in cloud environment
more efficiently, many open-source projects, such as Docker
Swarm [45] and Kubernetes [46], are developed to deploy,
manage and schedule containerized applications.

3.2 Microservice Architecture

The aforementioned characteristics of container technology
also promote the development of microservice architecture

LI ETAL.: EXPLORING NEWOPPORTUNITIES TO DEFEAT LOW-RATE DDOS ATTACK IN CONTAINER-BASED CLOUD ENVIRONMENT 697

[47], where the application is decoupled into a set of inde-
pendent services called microservices.

Comparing to traditional service architecture, the micro-
services are very loosely coupled with one another. In
microservice architecture, each microservice is a simple
RESTful web service [48], which performs a simple function
and serves as a single purpose. In general, a set of microser-
vices interact with each other using HTTP and form a ser-
vice chain to provide an integrated function. In this case,
the functions in a traditional monolithic application will be
served by multiple service chains.

Therefore, in microservice architecture, the microservice
can be scaled on demand to satisfy growing workloads in
partial functions. However, most microservices do not live
in isolation. Constantly scaling a microservice will overload
its dependent services with great probability. One solution
is ensuring that all dependencies of the microservice are
scalable and will be scaled synchronously. However, con-
sidering economic cost, another solution is capacity plan-
ning. In this solution, development teams will foresee the
expected growth of the microservice according to quantita-
tive and qualitative analyses for the microservice function
[12]. Further, they will reserve the resources that could meet
expected growth of the microservice to limit its scale.

Moreover, due to the loosely coupled feature, each
microservice is developed by a single team independently.
In this way, the development and update for the microservi-
ces will have a lower failure rate and a shorter release cycle.
And the development teams can delivery the release more
flexible and frequently. Moreover, benefited from the cer-
tainty of microservices’ function, each microservice can be
developed with different tools or languages. As a conse-
quence, the development teams have more choices to
develop microservices, meanwhile, the microservice can
also be easily reused by other services.

Furthermore, the fault-tolerant capability of the microser-
vice architecture is stronger than the monolithic architecture
where the failures in a single component will cause the
entire application broken. In contrast, with microservice
architecture, the failures shown in a single microservice
only lead to the functionality degrading rather than crash
the entire application. Due to these superiorities of micro-
service architecture, lots of companies, such as Uber and
Netflix, etc., have transformed their business into the micro-
service architecture [49], [50].

4 DDOS MITIGATION MECHANISM

In this section, we propose a dynamic DDoS mitigation
mechanism to maintain microservice availability under the
low-rate DDoS attack and maximize its QoS with limited
system resources.

First of all, we examine the features of container-based
cloud environment. Fig. 1a shows partial microservices mak-
ing up an e-commerce website. In the microservice system,
users’ requests will be served by a series of microservices
forming a chain, and the chains often share microservices.
Besides the microservices inside same application, each
microservice can also be called by third-party services. In
this case, the requests arrived at a microservice generally
have different sources and credibility. As shown in Fig. 1a,
chains A and B traverse the products microservice simulta-
neously. Any users can browse the products without authen-
tication through chain A, but in chain B, only authenticated
users can access the products to proceed payment.

When the DDoS attack occurs, the malicious requests can
reach the target microservice with the service chains having
weak authentication. And the performance of all service
chains containing this microservice would be affected. To
protect the benign users, we whitelist the requests from
creditable service chains, which only serve for the autho-
rized users, and allow them to access the attacked microser-
vice with a higher priority. Unfortunately, due to the poor
performance isolation between containers [26], [27], it is still
inevitable that the whitelist requests in serving will compete
for the resources with subsequent malicious requests under
heavy workloads. Although throttling the requests outside
whitelist may avoid the competition and block the DDoS
attack with great probability, it will also drop lots of normal
requests and cause the corresponding service chains cascad-
ing failure [48].

To this end, we propose a DDoS mitigation mechanism to
dynamically regulate and divide resources for handling the
whitelist and other unknown requests respectively. As pre-
sented in Fig. 1b, each microservice has a set of instances
running in containers. When the microservice suffering
from the low-rate DDoS attack, its instances will be divided
into two isolated parts according to the assigned resources.
One part handles the requests from whitelist, and another
part serves for the unknown requests composed by mali-
cious requests and benign requests.

To be specific, the mitigation mechanism is described in
Algorithm 1. To thewhitelist users, themitigationmechanism
will calculate the minimum resources Rwc and the optimum
number of containers cw needed for them,which canmaintain
its QoS acceptable and guarantee the resources being utilized

Fig. 1. DDoS mitigation mechanism in the container-based cloud
environment.

698 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

effectively. Further, the system resources Rwc will be divided
and isolated in unit of containers to avoid resources competi-
tion between thewhitelist and unknown requests. If the num-
ber of containers being serving the whitelist less than cw, the
mitigation mechanism will create a set of containers c0w to
complement. Otherwise, the redundant containers will be
assigned to handle unknown requests. The more details of
the strategy about resources assigning and containers’ num-
ber optimizingwill be discussed in Section 5.2.

Algorithm 1. DDoS Mitigation Method

1: //To the whitelist users
2: Rwc, cw = AssignResources (Whitelist)
3: CreateIsolatedArea(Rwc)
4: WC = GetServingContainer (Whitelist)
5: if [c0w ¼cw�num (WC)] > 0 then
6: for C 2WC do
7: Container = SplitFromOld (C)
8: AdjustResources (Container, Rwc)
9: end for
10: CreateContainer (c0w, Rwc)
11: else
12: for C 2 C’= Select (WC, j c0w j) do
13: Container = SplitFromOld (C)
14: AdjustResources (Container, Rwc)
15: end for
16: end if
17:
18: //To the unknown users
19: Ruc = Rtotal - Rwc

20: while CalculateWaitingTime(T) do
21: cu = OptimizeContainerNumbers(T,Ruc)
22: UC = GetServingContainer (Unknown)
23: for C 2 UC do
24: AdjustResources (C, Ruc)
25: end for
26: if [c0u ¼cu�num (UC)] > 0 then
27: CreateContainer (c0u, Ruc)
28: else
29: C0

u ¼ DeleteContainer (j c0u j)
30: end if
31: Waiting (BaseTime)
32: end while

On the other hand, to the unknown requests, the remain-
ing resources Ruc are used to help them survive the DDoS
attack. With the average waiting time T of requests, the mit-
igation mechanism will calculate the optimal number of
containers cu to maximize the QoS of unknown requests.

The calculation details are demonstrated in Section 5.3. Sim-
ilar to the process in whitelist, the mitigation mechanism
will dynamically add or delete the containers serving for
the unknown requests to meet cu. Also, for the ever-chang-
ing attack, this mitigating process will repeat periodically.

Furthermore, to the low-rate DDoS attack, the basic idea
is to send sophisticated requests with a low rate for consum-
ing large amounts of system resources. For bypassing the
traffic detection mechanism, the rate and number of mali-
cious traffic are all close to benign traffics. In this case, the
mitigation mechanism mentioned above will be triggered
when the resources consumption of service over the thresh-
old but the network traffic keeping stable. For simplicity,
the trigger threshold in our experiments is the same as com-
mon auto-scaling threshold that the usage of system resour-
ces is over 80 percent.

5 SYSTEM MODELING AND ANALYSIS

In this section, based on the queueing theory [51], we estab-
lish an executable mathematical model to formalize the
microservice system in container-based cloud environment.
And we list all the notations we use in Table 1. According to
this model, wewill tackle two issues for the proposedmitiga-
tion mechanism: (1) how to maintain the acceptable QoS of
whitelist requests using the least resources and the optimal
number of containers, and (2) how to regulate the number of
containers to effectively utilize the remaining resources for
improving the QoS of unknown requests asmuch as possible.

In general, each microservice has multiple instances run-
ning independently in containers. When requests arrive at a
microservice, the load balancer will send the request to a
specific instance to handle, and the handling process obeys
the first-come-first-served basis. Moreover, concluded from
observations, the serving time needed by the requests have
identically power laws distribution and are independent of
interarrival time. Under this scenario, we can use queueing
theory model to approximate the average staying time of
requests in system as the QoS of requests [7]. Further, based
on this model, we approximate the performance impact
caused by the DDoS attack and calculate the optimal param-
eters to implement DDoS mitigation mechanism effectively.

For making our analysis, modeling, and the following
experiments feasible and practical, we make some reason-
able assumptions as follows:

� Due to the characteristics of low-rate DDoS attack,
the benign and the malicious requests have similar

TABLE 1
Notations we Use when Modeling and Analyzing the System

R total amount of available resources for service m service rate of the queue under nonattack scenario
Rw available resource for serving the whitelist users mw service rate for the whitelist users of the queue
Ru available resource for serving the unknown users mu service rate for the unknown users of the queue
Rc available resource for a single container r ratio of malicious requests to the total requests
� arrival rate of the queue under nonattack scenario b ratio of service time for malicious packets to service time of benign requests
�w arrival rate of the whitelist users in queue r ratio of the arrival rate and the service rate under nonattack scenario
�u arrival rate of the unknown users in queue pi probability of the system when there are i requests in the system
cw number of containers serving for whitelist users cu number of containers serving for unknown users
Tw average staying time of whitelist requests in system T average staying time of requests in system under nonattack scenario
Tu average staying time of unknown requests in system T 0 acceptable staying time for unknown users

LI ETAL.: EXPLORING NEWOPPORTUNITIES TO DEFEAT LOW-RATE DDOS ATTACK IN CONTAINER-BASED CLOUD ENVIRONMENT 699

behavior patterns in traffic. Therefore, we suppose
the network traffic is stable and constant whether
under nonattack scenarios or attack scenarios. And
in general, the requests couldn’t all be malicious
requests under attack scenarios.

� We suppose the arrival rate of requests to the micro-
service follows the Poisson distribution under nonat-
tack scenarios. It is widely considered that the
arrival of requests follows the Poisson distribution
[7], [52], [53]. Further, based on the discussion above,
we can still be reasonable to make the assumption
that the arrival rate of requests obeys the Poisson dis-
tribution under attack cases in this paper.

� Last, we suppose the service rate of each individual
container follows an exponential distribution, which
is common in queueing analysis [7], and we suppose
the containers with same configurations have the
same service rate. Moreover, due to the capacity
planning, we suppose that each microservice only
has limited system resources to meet requirements
of users or overcome the DDoS attack.

Based on the analyses and assumptions mentioned
above, it is reasonable to use M/M/c queueing model to
formalize the system, which means the queueing process
has a Poisson arrival, infinite buffer size, cðc � 2Þ multiple
servers each with an exponential service rate. To date, the
M/M/c queueing model is still the mainstream method to
analyze this kind of system and can offer a closed form
result [7], [51].

5.1 Approximation of the Service Performance in
Nonattack Scenario

In this subsection, we formalize the microservice system
with a mathematic model. In order to quantify the perfor-
mance of the microservice, we use the average staying time of
requests in system as a metric of QoS and approximate it
with the queueing model.

In container-based cloud environment, the rate of
requests arriving at a microservice follows the Poisson dis-
tribution, and we denote the arrival rate of requests as �.
The service rate of each container is indicated as m, and the
service rate of whole system, where has c containers, is mn

shown in Equation (1).

mn ¼ nm n � c
cm n > c

�
: (1)

Moreover, we use r to denote the utility rate of system as
the ratio of arrival rate and the service rate which is shown
in Equation (2).

r ¼ �

cm
: (2)

When the system in stable state (r < 1), we get the prob-
ability pn of n requests in the system, which can be calcu-
lated by Equation (3).

pn ¼
ðcrÞn
n! p0 n � c

rncc

n! p0 n > c

8<
: : (3)

In the above formula, p0 represents the probability of sit-
uation that there has no requests in queue, and it can be for-
malized by Equation (4) in the M/M/c model.

p0ðr; cÞ ¼
"Xc�1

n¼0

ðcrÞn
n!

þ ðcrÞc
c!ð1� rÞ

#�1

: (4)

Moreover, based on the Little formula, we can get average
staying time T of the requests in system, which is denoted as
Equation (5). In more detail, we set T measured in nonattack
cases as the baseline of QoSwhich can be accepted by users.

T ¼ 1

�

crþ r

ðcrÞc
c!

p0ðr; cÞ
ð1� rÞ2

!
: (5)

5.2 QoS to Whitelist Users under DDoS Attack

Under DDoS attack, we divide the requests into two parts:
whitelist requests and unknown requests. At the same time, a
set of containers with the number of cw are used to handle
whitelist requests exclusively. Each container is assigned
with same amount of resources. To the requests in the
whitelist, our target is to maintain the QoS of them with the
least system resources and the proper number of containers.
In the same way as the nonattack cases, we can formalize
the serving process of whitelist requests with the M/M/c
queueing model. When the whitelist requests arrive at sys-
tem, it will enter a queue separated from unknown requests
and wait for being served. Moreover, the arrival rate of the
requests in whitelist also follows the Poisson distribution
and is denoted as �w. And the container’s service rate mw is
related to the available resources Rw and the number of con-
tainers cw, which is formalized as follow:

mw ¼ sðRw; cwÞ: (6)

Based on the queueing theory model M/M/c, the aver-
age staying time of whitelist requests in system can be cal-
culated by Equation (7).

Tw ¼ 1

�w

cwrw þ rw

ðcwrwÞcw
cw!

p0ðrw; cwÞ
ð1� rwÞ2

!
; (7)

where rw is the utility rate in serving process of whitelist
requests, which is defined as

rw ¼ �w

cwmw

: (8)

Based on the analysis mentioned above, for making QoS
of the whitelist requests acceptable, we need to determine
the resource Rw assigned to each container and the number
of containers cw to meet Tw � T . Therefore, we have inequal-
ity as follow:

fðcw;RwÞ ¼ Tw � T � 0: (9)

Combining (6), (7), (8) and (9), we get

fðcw;RwÞ¼ 1

sðRw;cwÞ þ
p0ðrw;cwÞ�cw

w

cw!sðRw;cwÞcw
sðRw;cwÞcw

½sðRw;cwÞcw��w�2
� T;

(10)

700 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

where has constrains shown as follow:

�w
cwmw

� 1

Rw � 0

cw ¼ 2; 3; 4; :::

8>>>><
>>>>:

: (11)

Normally, the system has sufficient idle or reserved
resources to serve the whitelist requests. So it is reasonable
that we suppose Equation (10) is solvable. And the optimal
solution in the solution set is the least resources and the
optimal number of containers which can make the QoS of
whitelist requests acceptable. Specifically, this solution can
satisfy Equation (12).

Rw ¼ min½cw �Rw�; cw; Rw 2 fcw;Rw j fðcw;RwÞ � 0g:
(12)

Moreover, in this paper, we don’t consider the resources
needed by the virtualization of containers, because of the
resources for this lightweight virtualization are much less
than the virtual machine.

5.3 QoS to Unknown Users under DDoS Attack

After determining the amount of resources assigned to the
whitelist, we use the rest of system resources Ru to serve the
requests from unknown users. With the finite resources, our
target is to maximize the QoS of unknown requests as much
as possible under the DDoS attack by optimizing the num-
ber of containers.

Similarly, we can treat the serving process of unknown
requests as a standalone M/M/c queueing model. Based on
our assumptions, the arrival rate �u of unknown requests
also follows the Poisson distribution and is denoted as
follow:

�u ¼ �� �w: (13)

The unknown requests are the mixture of benign
requests and malicious requests. Due to the properties of
the low-rate DDoS attack, we suppose that the service time
for malicious request is b times of the benign request in
average, and the malicious requests account for r of all
unknown requests. In this case, the service rate of the sys-
tem will be lower than the normal. Moreover, the service
rate is also related to the available resources Ru of each con-
tainer and the total number of containers cu. Therefore, the
service rate mu under the low-rate DDoS attack can be calcu-
lated by Equation (14).

mu ¼ " � sðRu; cuÞ; (14)

where " is a factor to depict the impact of malicious
requests on service rate and is denoted as follow:

" ¼ 1

1� rþ r � b : (15)

In the Equation (15), r meet the condition that 0 < r � 1.
Moreover, utility rate ru of the system can be calculated by
Equation (16).

ru ¼ �u

cumu

: (16)

To make QoS of the unknown requests acceptable, the
average staying time Tu of the unknown requests in the sys-
tem should meet Equation (17) where T 0 is the acceptable
staying time for requests.

Tu ¼ 1

�u

curu þ ru

ðcuruÞcu
cu!

p0ðcu; ruÞ
ð1� ruÞ2

!
� T 0: (17)

For simplicity, let

fðcuÞ ¼ Tu � T 0 � 0: (18)

Combining Equations (13) (14) (15) (16) and (17), the
fðcu;muÞ can be denoted as Equation (19). If Equation (17)
does not hold, we will constant reduce the T 0 until this
equation can be solved. With the optimal number of con-
tainers cu, the finite resources can be utilized effectively to
maximize the QoS of unknown requests.

fðcu;muÞ ¼
1

mu

þ cumup0ðcu; ruÞ
½ðcu � muÞ2 � �u�mu!

� ðcu�uÞcucu!
mcu
u

� T 0;

(19)

where has constrain as follow:

�u
cumu

� 1

cu ¼ 2; 3; 4; :::

8<
: : (20)

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our DDoS
mitigation mechanism through the combination of simula-
tion and testbed-based experiments. First, we introduce the
values of key parameters used in our experiments based on
a set of preliminary experiments and the results of existing
researches. And then, we study the effectiveness of DDoS
mitigation mechanism to the whitelist users and the
unknown users under the low-rate DDoS attack.

6.1 Key Parameters of Our Experiments

First of all, we study a set of key parameters in our experi-
mental scenarios based on the previous works and prelimi-
nary experiments. To the preliminary experiments, we use
docker-ce (version 17.09) to create a docker swarm on testbed
equipped with 2.40 GHz 64-bit Intel Xeon CPU E5-2630 v3
processor with 32-cores, 64 GB RAM, 4T disks, and two net-
work interfaces both with 1Gbps network speed. And we
use theMATLAB [54] to run simulation experiments.

In testbed-based experiments, we build a Python-based
productsmicroservice with a ReDoS vulnerability [55], which
is a part of the e-commerce website shown in Fig. 1a and pro-
vides a products-inquiring function to others. The instances
of this microservice are deployed in a set of containers, and
the requests will be dispatched to each container through the
API gateway provided by docker swarm. Further, we cap-
ture real users’ inquiring requests by tcpdump [56] as the
benign traffic. And we modify the benign request with

LI ETAL.: EXPLORING NEWOPPORTUNITIES TO DEFEAT LOW-RATE DDOS ATTACK IN CONTAINER-BASED CLOUD ENVIRONMENT 701

malicious payload, which can trigger the ReDoS vulnerabil-
ity, to construct the attack traffic.

About the processing capacity of containers, as afore-
mentioned, the container with different resource configura-
tions will have different processing capacity m, also called
service rate. Moreover, due to the resources competition
between containers, the number of containers is also a key
parameter affecting the service rate of each container when
system resources are limited. In our experiments, we only
consider the CPU resource and use the –cpu-period option in
docker to control container’s CPU usage. With different pro-
portions of CPU resource available, we test the number of
requests can be handled per second by the microservice
when it has a different scale of instances. In more detail, the
relationship between service rate, resources configuration
and the number of containers is shown in Fig. 2. In this
figure, the black dots represent the service rate m measured
in the testbed-based experiments, and the fitting results of
the relationship above are depicted with the 3D surface.

The fitting results show that the service rate of container
decline with the increase in the number of containers or the
decrease in the proportion of CPU resource. In contrast to
the number of containers, the influence of available CPU
resource to the service rate seemingly is slight. However,
omitting either of them, we can find the influence of the
other to the service rate is remarkable and can’t be ignored.
The relationships between service rate and the number of
containers, and service rate and resource configurations are
shown in Figs. 3 and 4 respectively.

The coefficient of determinations (R-square) of the fitting
results mentioned above is all over the 0.995. Therefore, we
believe that the fitting results are accurate and can be used
in follow-up experiments.

Moreover, referring to the arrival rate of requests in a
medium-sized e-commerce website [57], we set the arrival
rate of requests � in our experiments as 100 requests/s
approximately. As discussed previously, the average staying
time of requests in system is an important metric to reflect
the quality of service. Based on the Equation (5) and the
experimental results above, we can get that the average stay-
ing time T of requests is 0.067s under nonattack scenario.
Further, we use the staying time to depict the capacity of our
mitigationmechanism under different attack strengths.

To be specific, we generate a set of requests from 1,000
sourceswith an arrival rate of 100 requests per second, which
follows the Poisson distribution. Moreover, according to
the attack strength, we dynamically regulate the proportion
of malicious requests in these requests by percentage. The
number and arrival rate of the malicious requests are
changed with attack strengths. And the attack duration lasts
5minutes in our experiments.

Having verified the key parameters of our experiments, we
now discuss the effectiveness of the mitigationmechanism on
the whitelist and the unknown requests in Sections 6.2 and 6.3
respectively.

6.2 Performance of Whitelist Users

To the whitelist requests, we attempt to keep the average
staying time of them acceptable and stable using a minimal
amount of resources and the optimal number of containers.
First, based on the prior study [58], we set that the trusted
requests account for 30 percent of all requests and are
tagged as the whitelist. Further, we study the conditions
that could meet the performance requirements of whitelist
requests according to Equation (10). And the results are
shown in Fig. 5 which describe the relationship between the
number of containers, amount of CPU resource and average
staying time of requests in system.

From Fig. 5, when the number of containers is up to 6, we
can observe that the average staying time of requests is the
minimum. But exceeding that, the average staying time of
requests increases as the number of containers increasing. At
the same time, for reserving resource to unknown requests as
much as possible, the least CPU resource required towhitelist

Fig. 2. Service rate of the microservice in different scenarios.

Fig. 3. Service rate of the microservice with a different number of
containers.

Fig. 4. Service rate of the microservice with different resource
configurations.

702 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

requests is also a key parameter. Thus, the optimal solution of
these two parameters in Equation (10) will be used to ensure
the QoS of whitelist requests acceptable. For demonstrating
correctness of the solution, we apply the optimal parameters
to run a set of simulation experiments and compare the
resultswith the nonattack scenario, which is shown in Fig. 6.

Observing in Fig. 6, the staying time of requests in the
system under nonattack scenario slightly exceed the staying
time of whitelist requests under DDoS attack scenario. Due
to the isolation of resources, the container instances serving
for whitelist requests will not be impacted by the DDoS
attack. Meanwhile, optimization to the number of contain-
ers can improve the QoS of whitelist requests with a certain
degree. Based on the comparison results and the analyses
above, we can verify the correctness of our theoretical
model and the effectiveness of DDoS mitigation mechanism.

6.3 Performance of Unknown Users

To the unknown requests, the rest of resources will be
assigned to them after meeting the requirement of whitelist
requests. And we attempt to make the average staying time
of unknown requests acceptable under the scenario that the
proportion of malicious requests as high as possible. To
achieve this target, we conduct an analysis of the relation-
ship between the number of containers and average staying
time of requests under different attack strengths according
to the theoretical model described in Equation (19).

In this equation, the multiple b existing between the han-
dling time of benign requests and malicious requests is an
important parameter and fluctuate in a certain range. For

simplifying the process of experiments, we suppose b as a
deterministic value. According to the results of the research
[59], we set the handling time of malicious requests is 25
times than the benign requests.

Now based on the theoretical model mentioned above, we
depict the relationship between average staying time of
requests in system, the number of containers and attack
strengths in Fig. 7. From this figure, we can see that the stay-
ing time of requests grows linearly as the proportion of mali-
cious requests increased. Moreover, when the number of
containers is insufficient, the utility rate r of system is greater
than 1. This means that the processing capacity of existing
containers is not enough to tackle the requests arrived contin-
ually, which leads to the waiting time of subsequent requests
sharply growing. Meanwhile, as we discussed earlier, the
number of containers can’t increase indefinitely. Thus, with
the same proportion of malicious requests, if the number of
containers continues to increase after exceeding a certain
extent, the staying time of requests will continually increase
rather than decrease. In this case, to maximize the QoS of
unknown requests under different attack strengths, we need
to dynamically regulate the number of containers for taking
full advantage of resources.

Further, based on the results above, there exists the non-
zero and unique solution to the Equation (19). Therefore, the
DDoS mitigation mechanism will dynamically adjust the
number of containers according to optimal results solved by
the theoretical model to maximize the QoS of unknown
requests. Moreover, under the attack scenarios, we set that
the acceptable staying time for these requests is not more than
1.5 times to the normal requests, and this value is 1.005s in our
experiments. To discuss the correctness and effectiveness of
the mitigation mechanism, we conduct a set of simulation
experiments to measure the average staying time of requests
after DDoSmitigationmechanism optimizing under different
attack strengths. And as the comparison group, we run the
simulation experiments with the same configurations to
obtain the staying time of requests in the worst case without
optimization. In each experiment, we conduct 750,000 times
simulations and then take the average as the final results. The
details of the comparison results are shown in Fig. 8.

From Fig. 8, we observe that the average staying time of
requests in worst case increases as the attack strength
increased, and it is over the acceptable value when the pro-
portion of malicious requests over 13 percent. Comparing
with it, the growth trend of staying time of requests in the

Fig. 5. Average staying time of whitelist in scenarios with a different num-
ber of containers and different configurations of CPU resource.

Fig. 6. Comparison of average staying time between the whitelist under
attack scenario and the normal requests under nonattack scenario.

Fig. 7. Average waiting time of unknown requests in scenarios with a dif-
ferent number of containers and different attack strengths.

LI ETAL.: EXPLORING NEWOPPORTUNITIES TO DEFEAT LOW-RATE DDOS ATTACK IN CONTAINER-BASED CLOUD ENVIRONMENT 703

optimized case is more gentle than the worst case, mean-
while, the configurations in the optimized case can help sys-
tem survive the DDoS attack when its strength up to
30 percent. It means that blindly enlarging the number of
containers to mitigate DDoS attack is not sensible in the con-
tainer-based cloud environment. Moreover, based on these
results, we believe our DDoS mitigation mechanism can
keep the microservice available as long as possible when
the low-rate DDoS attack occurs in container-based cloud
environment.

6.4 Effectiveness on Complex DDoS Scenarios

At times, the low-rate DDoS attack is not launched indepen-
dently and mixes with the flood-based DDoS attack. To eval-
uate the effectiveness of our mitigation mechanism in these
complex scenarios, we simulate a flood-based DDoS attack
and add it into the previous attack cases which only contain
the low-rate DDoS attack. Specifically, the average attack rate
of the flood-based DDoS attack is 5,000 requests per second,
which is the 50 times workloads than the normal case [7].
And the evaluation results are shown in Fig. 9.

As observed in Fig. 9, with the mitigation mechanism, the
QoS of whitelist requests can still be maintained in the nor-
mal level under the mixture DDoS attacks. Also, with the
attack strength of the low-rate DDoS attack increasing, the
QoS of unknown requests has a degree of improvement com-
pared to the cases without our DDoS mitigation mechanism.
However, the QoS of the unknown requests is still far away
from the acceptable level, because the microservice only has
limited resources to face themassiveDDoS requests. In order
to maximize the effectiveness of our mitigation mechanism,
combining it with the traffic filtering mechanism will have
greater capacity to defeat the DDoS attacks in these complex
scenarios. In this case, the traffic filtering mechanism is a
complement for our mitigation mechanism to filter the mali-
cious requests from flood-basedDDoS attack.

7 FURTHER DISCUSSION

To the best of our knowledge, this paper is the first work to
discuss the DDoS mitigation mechanism in container-based
cloud environment. Limited on the space, we have only dis-
cussed the influence of partial new features of container-based
cloud environment for mitigating DDoS attack. As a new
research field, a series of issues in there need to be

investigated and optimized in the future. We list some
research points following based on our understanding.

First, multiple scaling patterns in microservice architec-
ture need to be considered in mitigating DDoS attacks. In
this paper, we only consider the scenario using limited
resources to scale a microservice to mitigate DDoS attacks.
In practice, limiting scaling degree of the microservice is
one way to keep its dependency chain stable. For example,
the number of open database connections a microservice
needs is limited. Once scaling this microservice infinitely, it
inevitably leads to the database instances overload. Also,
another way to avoid this issue is scaling all dependencies
when a microservice being scaled. In this case, a microser-
vice may need unlimited resources to be scaled. Therefore,
how to effectively utilize the system resources to mitigate
DDoS attacks with minimal economic cost in this scenario
should be considered.

Second, our solution only focuses to mitigate the low-rate
DDoS attack, without considering other kinds of DDoS
attacks. As we know, the flood-based DDoS attack is also a
common type of DDoS attacks in cloud environments [60].
Different from low-rate DDoS attack, the flood-based DDoS
attack usually uses massive requests to inundate services.
Under the monolithic application architecture, the attackers
require investing significant resources to achieve their tar-
get. In contrast, in microservice architecture, we should dis-
cuss whether attackers can defeat key microservices with
fewer resources achieving the same attack effect mentioned
above. Or maybe, we should further discuss whether the
loose-coupling feature of microservice architecture can help
users dilute amounts of DDoS attack requests.

Third, for simplicity, we treat the container instance as a
single thread service. Therefore, based on queueing theory,
we use M/M/c model to formalize the serving process of
container instances where each container instance is a
server. In practice, due to different requirements, the con-
tainer instance can also run multi-thread service. Accord-
ingly, each container instance can be model as M/M/c
queueing. Further, based on this model, the system resour-
ces can be assigned with a more fine-granularity way to
defeat DDoS attacks. That is, we can calculate the accurate
number of CPU, memory and I/O resources for each con-
tainer instance based on this model.

Finally, our work focuses to increase tolerance of the
microservice to DDoS attacks. But we are aware of the one-

Fig. 8. Average waiting time of unknown users in scenarios with a differ-
ent number of containers and different attack strengths.

Fig. 9. Average waiting time of requests in complex DDoS scenarios with
or without the DDoS mitigation mechanism.

704 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

sidedness of our work, because utilizing new features of
the container-based cloud environment could produce
more novel ideas to defeat DDoS attacks. For example,
when the low-rate DDoS attack occurs, whether can we
replace the microservice suffering from attack with another
microservice with similar functions temporarily until the
security issues solved. Researchers may take these new
features into consideration to discover new DDoS mitiga-
tion methods.

8 CONCLUSION AND FUTURE WORK

In this paper, we discuss whether the new features brought
by container technology and microservice architecture can
help the container-based cloud environment defeat low-rate
DDoS attack more effectively. For this purpose, on the basis
of queueing theory, we establish a mathematical model to
formalize the low-rate DDoS attack scenario in container-
based cloud environment. Based on this model, we explore
the feasibility for defeating DDoS attack in container-based
cloud environment with limited system resources. Further,
we propose a strategy to mitigate low-rate DDoS attack
according to the analysis resultsmentioned above. This strat-
egy can dynamically reassign the system resources and opti-
mize the number of containers to make the system resources
be sufficiently utilized for defeating DDoS attack. Finally,
we demonstrate the validity of this strategy through simula-
tions and testbed-based experiments. And the experimental
results demonstrate that our strategy can completely elimi-
nate the influence of low-rate DDoS attack to the whitelist
requests using minimal resources, and significantly improve
the ability of other users to tolerate the DDoS attack.

As the new issues to research, there are a series of works
need to be studied in the near future. As future works, we
first want to explore the solutions to mitigate low-rate DDoS
attack under the scenario that microservice can scale with
unlimited resources. Further, under the unlimited resources
scenario, we attempt to study the pricing issues in container-
based cloud environment when defending DDoS attack.
Finally, we will discuss defense schemes to more kinds of
DDoS attacks in container-based cloud environment.

ACKNOWLEDGMENTS

This paper was supported by the National Key Research &
Development (R&D) Plan of China under grant No.
2017YFB0802205.

REFERENCES

[1] “DDoS attacks in Q1 2018.” [Online]. Available: https://
securelist.com/ddos-report-in-q1-2018/85373/

[2] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, M. Rajarajan, and
R. Buyya, “Combating DDoS attacks in the cloud: Requirements,
trends, and future directions,” IEEE Cloud Comput., vol. 4, no. 1,
pp. 22–32, Jan./Feb. 2017.

[3] S. Yu, S. Guo, and I. Stojmenovic, “Can we beat legitimate cyber
behavior mimicking attacks from botnets?” in Proc. IEEE Conf.
Comput. Commun., 2012, pp. 2851–2855.

[4] Y. Chen, K. Hwang, and W.-S. Ku, “Collaborative detection of
DDoS attacks over multiple network domains,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 18, no. 12, pp. 1649–1662, 2007.

[5] J. François, I. Aib, and R. Boutaba, “Firecol: A collaborative protec-
tion network for the detection of flooding ddos attacks,” IEEE/
ACM Trans. Netw., vol. 20, no. 6, pp. 1828–1841, Dec. 2012.

[6] M. Villamizar, O. Garc�es, L. Ochoa, H. Castro, L. Salamanca,
M. Verano, R. Casallas, S. Gil, C. Valencia, A. Zambrano, et al.,
“Cost comparison of running web applications in the cloud using
monolithic, microservice, and aws lambda architectures,” Service
Oriented Comput. Appl., vol. 11, no. 2, pp. 233–247, 2017.

[7] S. Yu, Y. Tian, S. Guo, and D. O. Wu, “Can we beat DDoS
attacks in clouds?” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 9,
pp. 2245–2254, Sep. 2014.

[8] J. Idziorek, M. F. Tannian, and D. Jacobson, “The insecurity of
cloud utility models,” IT Prof., vol. 15, no. 2, pp. 22–27, 2013.

[9] M. H. Sqalli, F. Al-Haidari, and K. Salah, “Edos-shield-a two-steps
mitigation technique against edos attacks in cloud computing,” in
Proc. 4th Int. Conf. Utility Cloud Comput., 2011, pp. 49–56.

[10] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and
L. Safina, “Microservices: How to make your application scale,”
in Proc. 11th Int. Andrei Ershov Memorial Conf. Perspectives Syst.
Informat., 2017, pp. 95–104.

[11] “Benefits of Microservices.” [Online]. Available: https://aws.
amazon.com/cn/microservices/

[12] Fowler, Susan J, Production-Ready Microservices: Building Standard-
ized Systems Across an Engineering Organization., Newton, MA,
USA: O’Reilly Media, Inc., 2016.

[13] A. Bakshi and Y. B. Dujodwala, “Securing cloud from ddos attacks
using intrusion detection system in virtual machine,” in Proc. 2nd
Int. Conf. Commun. Softw. Netw., 2010, pp. 260–264.

[14] W. Dou, Q. Chen, and J. Chen, “A confidence-based filtering
method for ddos attack defense in cloud environment,” Future
Generation Comput. Syst., vol. 29, no. 7, pp. 1838–1850, 2013.

[15] T. Karnwal, S. Thandapanii, and G. Aghila, “A filter tree appr-
oach to protect cloud computing against XML DDoS and HTTP
DDoS Attack,” in Proc. 2012 Int. Symp. Intell. Informat., 2012,
pp. 459–469.

[16] M. N. Ismail, A. Aborujilah, S. Musa, and A. Shahzad, “Detecting
flooding based DoS attack in cloud computing environment using
covariance matrix approach,” in Proc. 7th Int. Conf. Ubiquitous Inf.
Manage. Commun., 2013, pp. 36:1–36:6.

[17] Z. Chen, G. Xu, V. Mahalingam, L. Ge, J. H. Nguyen, W. Yu, and
C. Lu, “A cloud computing based network monitoring and threat
detection system for critical infrastructures,” Big Data Res., vol. 3,
pp. 10–23, 2016.

[18] M. Ficco and M. Rak, “Stealthy denial of service strategy in cloud
computing,” IEEE Trans. Cloud Comput., vol. 3, no. 1, pp. 80–94,
Jan.-Mar. 2015.

[19] O. Olivo, I. Dillig, and C. Lin, “Detecting and exploiting second
order denial-of-service vulnerabilities in web applications,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 616–628.

[20] G. Somani, A. Johri, M. Taneja, U. Pyne, M. S. Gaur, and D. Sanghi,
“DARAC: DDoS mitigation using DDoS aware resource allocation
in cloud,” in Proc. 11th Int. Conf. Inf. Syst. Secur., 2015, pp. 263–282.

[21] S.M.Alqahtani andR. F. Gamble, “DDoS attacks in service clouds,”
in Proc. 48th Hawaii Int. Conf. Syst. Sci., 2015, pp. 5331–5340.

[22] Y. Gilad, A. Herzberg, M. Sudkovitch, and M. Goberman, “CDN-
on-demand: An affordable DDoS defense via untrusted clouds,”
in Proc. 23rd Annu. Netw. Distrib. Syst. Secur. Symp., 2016.

[23] S. Zhao, K. Chen, andW. Zheng, “Defend against denial of service
attack with VMM,” in Proc. 8th Int. Conf. Grid Cooperative Comput.,
2009, pp. 91–96.

[24] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and M. Rajarajan,
“DDoS victim service containment to minimize the internal collat-
eral damages in cloud computing,” Comput. Electr. Eng., vol. 59,
pp. 165–179, 2017.

[25] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices: Yesterday,
today, and tomorrow,” Present and Ulterior Software Engineering.,
pp. 195–216, 2017.

[26] Y. Li, J. Zhang, C. Jiang, J. Wan, and Z. Ren, “PINE: Optimizing
performance isolation in container environments,” IEEE Access,
vol. 7, pp. 30410–30422, 2019. [Online]. Available: https://doi.org/
10.1109/ACCESS.2019.2900451. doi: 10.1109/ACCESS.2019.2900451.

[27] X. Zhang, E. Tune, R.Hagmann, R. Jnagal, V. Gokhale, and J.Wilkes,
“CPI2: CPU performance isolation for shared compute clusters,” in
Proc. 8th ACMEur. Conf. Comput. Syst., 2013, pp. 379–391.

[28] P. Du and A. Nakao, “DDoS defense as a network service,” in
Proc. 10th Netw. Operations Manage. Symp., 2010, pp. 894–897.

[29] M.H. Sqalli, F. Al-Haidari, andK. Salah, “EDoS-Shield - A two-steps
mitigation technique against EDoS attacks in cloud computing,” in
Proc. 4th Int. Conf. Utility Cloud Comput., 2011, pp. 49–56.

LI ETAL.: EXPLORING NEWOPPORTUNITIES TO DEFEAT LOW-RATE DDOS ATTACK IN CONTAINER-BASED CLOUD ENVIRONMENT 705

https://securelist.com/ddos-report-in-q1-2018/85373/
https://securelist.com/ddos-report-in-q1-2018/85373/
https://aws.amazon.com/cn/microservices/
https://aws.amazon.com/cn/microservices/
https://doi.org/10.1109/ACCESS.2019.2900451
https://doi.org/10.1109/ACCESS.2019.2900451
http://dx.doi.org/10.1109/ACCESS.2019.2900451

[30] “Amazon CloudWatch.” 2018. [Online]. Available: https://aws.
amazon.com/cloudwatch/

[31] J. Latanicki, P. Massonet, S. Naqvi, B. Rochwerger, and M. Villari,
“Scalable cloud defenses for detection, analysis and mitigation of
DDoS attacks,” inProc. 2rd Int. Conf. Future Internet, 2010, pp. 127–137.

[32] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and R. Buyya,
“Service resizing for quick DDoS mitigation in cloud computing
environment,” Annales des T�el�ecommunications, vol. 72, no. 5/6,
pp. 237–252, 2017.

[33] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and M. Rajarajan,
“DDoS victim service containment to minimize the internal collat-
eral damages in cloud computing,” Comput. Electr. Eng., vol. 59,
pp. 165–179, 2017.

[34] K. Ye, Y. Liu, G. Xu, and C. Xu, “Fault injection and detection for
artificial intelligence applications in container-based clouds,” in
Proc. 11th Int. Conf. Cloud Comput., 2018, pp. 112–127.

[35] Y. Xiang, K. Li, and W. Zhou, “Low-Rate DDoS attacks detection
and traceback by using new information metrics,” IEEE Trans. Inf.
Forensics Secur., vol. 6, no. 2, pp. 426–437, Jun. 2011.

[36] J. Luo, X. Yang, J. Wang, J. Xu, J. Sun, and K. Long, “On a mathe-
matical model for low-rate shrew DDoS,” IEEE Trans. Inf. Forensics
Secur., vol. 9, no. 7, pp. 1069–1083, Jul. 2014.

[37] Z. Wu, L. Zhang, and M. Yue, “Low-rate dos attacks detection
based on network multifractal,” IEEE Trans. Dependable Secure
Comput., vol. 13, no. 5, pp. 559–567, Sep./Oct. 2016.

[38] J. Burnim, S. Juvekar, and K. Sen, “WISE: Automated test genera-
tion for worst-case complexity,” in Proc. 31st Int. Conf. Softw. Eng.,
2009, pp. 463–473.

[39] B. Tak, C. Isci, S. S. Duri, N. Bila, S. Nadgowda, and J. Doran,
“Understanding security implications of using containers in the
cloud,” in Proc. USENIX Annu. Tech. Conf., 2017, pp. 313–319.

[40] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang,
“ContainerLeaks: Emerging Security Threats of Information Lea-
kages in Container Clouds,” in Proc. 47th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., 2017, pp. 237–248.

[41] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. M. Eyers, R. Kapitza, P. R. Pietzuch, and C. Fetzer, “SCONE:
Secure linux containers with intel SGX,” in Proc. 12th USENIX
Symp. Operating Syst. Des. Implementation, 2016, pp. 689–703.

[42] “AWS.” 2018. [Online]. Available: https://aws.amazon.com/
[43] “IBM Cloud.” 2018. [Online]. Available: https://www.ibm.com/

cloud/container-service
[44] “Microsoft Azure.” 2018. [Online]. Available: https://azure.microsoft.

com/
[45] “Swarm mode overview.” 2018. [Online]. Available: https://docs.

docker.com/engine/swarm/
[46] “kubernetes.” 2018. [Online]. Available: https://kubernetes.io/
[47] “Microservice.” 2018. [Online]. Available: http://microservice.io
[48] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and

V. Sekar, “Gremlin: Systematic resilience testing of micro-
services,” in Proc. 36th IEEE Int. Conf. Distrib. Comput. Syst., 2016,
pp. 57–66.

[49] J. Thones, “Microservices,” IEEE Softw., vol. 32, no. 1, pp. 116–116,
May/Jun. 2015.

[50] A. Panda, M. Sagiv, and S. Shenker, “Verification in the age of
microservices,” in Proc. 16th Workshop Hot Top. Operating Syst.,
2017, pp. 30–36.

[51] D. P.Heyman, “Queueing systems,”Netw., vol. 7, no. 3, pp. 285–286,
1977.

[52] C. Raiciu, S. Barr�e, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness
with multipath TCP,” in Proc. ACM SIGCOMM Conf. Appl. Tech-
nol. Archit. Protocols Comput. Commun., 2011, pp. 266–277.

[53] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker, “Universal
packet scheduling,” in Proc. 13th USENIX Symp. Networked Syst.
Des. Implementation, 2016, pp. 501–521.

[54] “MATLAB.” 2018. [Online]. Available: https://www.mathworks.
com/

[55] “ReDoS.” 2019. [Online]. Available: https://en.wikipedia.org/
wiki/ReDoS

[56] “tcpdump.” 2018. [Online]. Available: http://www.tcpdump.org/
[57] A. Bremler-Barr, E. Brosh, and M. Sides, “DDoS attack on cloud

auto-scaling mechanisms,” in Proc. IEEE Conf. Comput. Commun.,
2017, pp. 1–9.

[58] Y. Niu, F. Liu, and Z. Li, “Load balancing across microservices,”
in Proc. IEEE Conf. Comput. Commun., 2018, pp. 198–206.

[59] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “SlowFuzz: Auto-
mated Domain-Independent Detection of Algorithmic Complex-
ity Vulnerabilities,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2017, pp. 2155–2168.

[60] J. Wang, X. Yang, M. Zhang, K. Long, and J. Xu, “HTTP-SoLDiER:
An HTTP-flooding attack detection scheme with the large devia-
tion principle,” Sci. China Inf. Sci., vol. 57, no. 10, pp. 1–15, 2014.

Zhi Li is currently working toward the PhD
degree in computer science and technology from
Huazhong University of Science and Technology
(HUST), Wuhan, China. His research interests
include security in system architecture and cloud
computing.

Hai Jin received the PhD degree in computer
engineering from Huazhong University of Science
and Technology, in 1994. In 1996, he was
awarded a German Academic Exchange Service
fellowship to visit the Technical University of
Chemnitz in Germany. He is a Cheung Kung
scholars chair professor of computer science and
engineering with Huazhong University of Science
and Technology. He worked with The University
of Hong Kong between 1998 and 2000, and as a
visiting scholar with the University of Southern

California between 1999 and 2000. He is the chief scientist of ChinaGrid,
the largest grid computing project in China, and the chief scientists of
National 973 Basic Research Program Project of Virtualization Technol-
ogy of Computing System, and Cloud Security. His research interests
include computer architecture, virtualization technology, cluster comput-
ing and cloud computing, peer-to-peer computing, network storage, and
network security. He was awarded Excellent Youth Award from the
National Science Foundation of China in 2001. He has co-authored 22
books and published more than 700 research papers. He is a fellow of
the IEEE, CCF fellow, and a member of the ACM.

Deqing Zou received the PhD degree from Huaz-
hong University of Science and Technology, in
2004. He is a professor of computer science with
Huazhong University of Science and Technology.
His main research interests include software
security, system security and cloud security. He
has more than 50 high-quality papers, including
papers published by NDSS, ACSAC, TPDS,
TDSC and so on. He has always served as a
reviewer for several prestigious Journals, such as
the IEEE Transactions on Parallel and Distributed

Systems, TOC, the IEEE Transactions on Dependable and Secure Com-
puting, the IEEE Transactions on Cloud Computing, and so on. He is on
the editorial boards of four international journals, and has served as PC
chair/PCmember of more than 40 international conferences.

Bin Yuan received the BS and PhD degrees in
computer science and technology from HUST, in
2013 and 2018, respectively. He is currently a
postdoc with Huazhong University of Science and
Technology (HUST), Wuhan, China. His research
interests include SDN security, NFV, cloud secu-
rity, privacy and IoT security. He has published
several technical papers in top journals, such as
the IEEE Transactions on Services Computing,
the IEEE Transactions on Network and Service
Management, the Future Generation Computing
Systems and the IEEE Access. He is a member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

706 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://azure.microsoft.com/
https://azure.microsoft.com/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
http://microservice.io
https://www.mathworks.com/
https://www.mathworks.com/
https://en.wikipedia.org/wiki/ReDoS
https://en.wikipedia.org/wiki/ReDoS
http://www.tcpdump.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

