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ABSTRACT This work is dedicated to the construction and evaluation of random number generators used
in cryptography. The critical element on which the security of information is based is the cryptographic key
(usually a binary sequence). In order to be resistant to brute force attacks it is necessary that it be made up
of random variables with a certain degree of randomness and independence. Formally, this comes back to
generate the cryptographic key through the systems which ensures a certain minimum level of entropy. The
observer has access to a sample, of a certain size, and based on it he will estimate the minimum value of the
entropy, in the situations in which the variables resulting from the measurement process are independent.
In the situation where these variables are not independent, complex mathematical procedures also allow
estimation of the minimum entropy. This article is a review of how mathematical entropy can be estimated
and evaluated, of the construction mode (from technologies based on analogue procedures: thermal noise in
a transistor to modern procedures: quantum devices), as well as to evaluate the security of binary sequence
generators used for generating cryptographic keys or critical security parameters related to new technologies
based on quantum principles. The techniques and methods used to generate binary random values as well as
the methods of statistical and informational validation (Shannon entropy) are exemplified in this paper.

INDEX TERMS Entropy, randomness, statistical estimation, quantum.

I. INTRODUCTION
Nowadays our real life has two components: physical and
virtual. Due to the dynamics, the usual activities that we carry
out in the physical world will be relocated in the virtual world:
interaction with the local public authorities, electronic pay-
ments, civic actions (vote, surveys, donations etc.), comput-
erization of the financial field, navigation systems, computer
activities, gaming, socializing etc.

For this reason, the virtual component necessitates
implementation of safety measures for the protection of
personal data, as well as electronic communications. In high-
confidence encryption, generating ‘‘random’’ numbers is
essential in order to ensure the strength of the crypto-
graphic key, based on provable secure algorithms or physical
processes.

There are two types of elementary methods used to gen-
erate these numbers: DRBG deterministic methods (based
on the algorithm and its initialization) and non-deterministic
TRBG methods (based on physical properties: thermal noise
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from a transistor, ring oscillator, quartz, magnetic RAM etc.).
Systems based on deterministic and non-deterministic com-
binations are called mixed methods.

In the present paper we focus on the problem of con-
structing, testing and validating random number generator
devices based on deterministic and / or non-deterministic
components. In order to estimate the quality of these devices,
it is necessary to evaluate the entropy of the mentioned
components.

Section 2 is dedicated to entropy like a measure of random-
ness. After a brief introduction of Shannon entropy and condi-
tioned entropy we present several statistical tests concerning
the diversity of a population and regarding the diversity for m
independent populations.

Section 3 is focused on the manner random numbers can
be obtained: by deterministic or non-deterministic methods.
In this section there are presented the techniques and methods
based on physical principles that allow the generation of
random numbers, as well as the implementation principles of
the technologies based on TRBG.

Section 4 is widely dedicated to the validation of the math-
ematical model that underlies the TRBG implementation,
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entropy estimation methods, in case the random variables
that model the TRBG output are independent and correlated
respectively.

Section 5 presents the statistical tests used to validate these
categories of equipment and devices.

In Section 6 we present a series of such hardware devices
that are available for purchase or used in various product
categories. A comparative study has been realized from the
point of view of their security.

Section 7 hands over the conclusions.

II. ENTROPY
Assume that we have the set of possible outcomes
{α1, . . . αm} with the probability of occurrence (p1, . . . , pm).
Let us consider the random variable X with the probability:

P(X = αi) = pi i = 1, ..m (1)

The entropy of the random variable X is defined by:

H (X ) ≡ H (p1, . . . , pm) = −
m∑
i=1

pi log pi

Assume that Y is a random variable with the probability:

P(Y = βj) = qj, j = 1, . . . , n (2)

Denote by qj|i = P(Y= βj|x= αi) the conditioned prob-
ability of Y = βj given X = αi and by pi|j = p(X = αi|

y = βj) the conditioned probability of X = αi given Y = βj.
Then:

rij = P(X = α i,Y = βj) = piqj|i = qjpi|j,

i = 1, ..m, j = 1, .., n. (3)

The joint entropy H(X,Y) of (X,Y) is defined such as
H(X,Y) = H(r11, . . . , r1n, r21, . . . , rmn).
Definition 2: For the joint variables (X,Y) with the prob-

abilities (1), (2), respectively (3) the conditioned entropy
H(X|Y) of X by Y is defined as:

H (X ,Y ) = −
∑
I ,J

rij log
rij
qj

Using the properties of the entropy we get H(X|Y) =
H(X,Y)-H(Y). All the above definitions can be extended
to continuous random variables. For example, definition 1
becomes:
Definition 3: Entropy of the continuous d dimensional X=

(X1,. . . ,Xd) random variable with the density ρ(x) is defined
by:

h(X ) ≡ h(ρ) = −
∫
Rd

ρ(t) log(ρ(t)dt

if the integral exists. This entropy is called the differential
entropy. We introduce now the relative entropy. Intuitively
this has the significance of the similarity between the two
distributions. Let µ and ν two probabilistic measures defined

over the measurable space (X, B(X)). The measure µ is abso-
lute continuous reported to ν and write µ < ν if ν(A)=0⇒
µ(A) ∀ A∈B(X). Radon-Nikodym theorem states that µ is
absolute continuous relative to ν then exists a function ϕ(x)
ν-integrable such that:

µ(A) =
∫
A

ϕ(t)dν(t) ∀ A ∈ B(X)

The Radon-Nikodym derivative ϕ(x) is given by:

ϕ(t) =
dµ
dν

(t).

Definition 4: For the probability measures µ and ν, the
relative entropy H(µ;ν) is defined as:

H (µ; ν) =
∫
X

log
dµ
dν

dµ(t) if µ < ν

and H(µ;ν) = ∞ ifµ is not absolute continuous relative to ν.
The measure ν is called the reference measure. In the

discreet case consider µ and ν probability measures defined
on the space X = {α1, . . . , αm}. The measures µ and ν are
specified by µ({α i})= pi and ν({βi})=qi (i = 1, . . . ,m).
If pi = 0 when qi = 0, then µ < ν and the Radon-Nikodym
derivatives becomes:

dµ
dν

(t) =
pi
qi

if x = αi(i = 1, . . . ,m). The relative entropy becomes:

H (µν) =
m∑
i=1

pi log
pi
qi

= −H (p1, . . . , pm)−
m∑
i=1

pi log pi.

If the reference measure is the uniform distribution ν0
given by ν0({αi}) = 1/m, i = 1, . . . ,m then:

H(µ; ν0) = −H(p1, . . . , pm)+ logm.

Let us consider the continuous case. If µ and ν are two
continuous distribution on Rd with the density functions p(x)
and q(x). Assume that µ < ν. In this case the entropy H(µ;ν)
becomes:

H (µ; ν) =
∫
Rd

p(t) log
p(t)
q(t)

dx.

If

h(p) =
∫
p(t) log p(t)dx <∞

then:

H (µ; ν) == h(p)−
∫
Rd

p(t) log q(t)dx.

Consider the case when p(t) is vanished except a domain
G of Rd with a fixed volume |G| and ν0 is the uniform
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distribution on G with the density ν0. The relative entropy
H(µ;ν0) is:

H (µ; ν0) = −h(p)−
∫
Rd

p(t) log q0(t)dt

= −h(p)+ log |G|.

We have the following results.
Theorem 1: If µ and ν are two probability measures then

H(µ;ν) ≥0 with equality if and only if µ = ν.
Theorem 2: If X=(X1,. . . ,Xd) is a random vector

d-dimensional with a normal distribution N(a, 0), the entropy
of X is given by:

h(X ) =
1
2
log{(2πe)d |0|}.

In the particular case when X is a N(a, σ 2) we have

h(X ) =
1
2
log(2πeσ 2).

Based on these results, it can be demonstrated that the
normal distributions with a given covariance matrix have
the maximum entropy. As the entropy measures the degree
of "disorder’’ within a system, it is natural to impose the
following restrictions of normality on the noise affecting the
channel and to the messages transferred across the channel.
Theorem 3: If g(X) is the density function of a normal dis-

tribution N(a, 0) and p(t) the density function of a continuous
distribution with covariance matrix 0 then h(g)≥h(p).
The following theorem gives a similar result for the relative

entropy.
Theorem 4: If µ and ν are two d-dimensional gaus-

sian distribution with the repartition N(a, 0) respective
N(I, 1). If γ is a continuous distribution, with the same
mean value and the same covariance matrix 0 like µ, then
H(µ;ν) ≤ H(γ ;ν).

Now we shall present some results regarding the asymp-
totic behavior of the entropy. We present the (h, ϕ)- entropies
such generalizations of ϕ-entropy, Havrda-Charvat entropy
and Renyi entropy etc. For these distributions we shall indi-
cate the asymptotic distribution in the simple and stratified
selections. Assume we have a population with N individu-
als classified in M classes x1,. . . ,xM according to a certain
process X, the population divided in r levels such that the
diversity and the variance in each class is minimum relative
to the diversity, respective total variance. If Nk is the size
of level k, pik the probability to select an individual in the
level k which belongs to class xi, and pI he probability of an
individual to belongs to class xi, then we obtain:

r∑
k=1

NK = N ,
M∑
i=1

pik =
Nk
N

for k = 1, . . . , r

M∑
i=1

r∑
k=1

pik = 1, pi. =
r∑

k=1

pik for i = 1, ..,M

Under these circumstances the population (h, ϕ)- entropy
is

Hϕ
h (p) = h(

M∑
i=1

φ(pi.)) = h(
M∑
i=1

ϕ(
r∑

k=1

pik ))

If the probability is proportional of volume n and indepen-
dent at each level, the estimation of (h, ϕ)-entropy is defined
as:

Hϕ
h (f ) = h(

M∑
i=1

ϕ(fi.) = h(
M∑
i=1

ϕ(
r∑

k=1

fik ))

where fi is the relative frequency in the class xi in the total
selection, fik is the relative frequency of the elements which
belongs to class xi in the level k, and nk is the size of the
sample at level k. In this situation we obtain:

nk
n
=

Nk
N

for k = 1, . . . , r
r∑

k=1

nk = n

M∑
i=1

fik =
nk
n

fork = 1, . . . , r fi. =
r∑

k=1

f ik

Theorem 5: In the case of simple selection, Hϕh (s) has the
following asymptotic behavior:

√
n(Hϕ

h (f )− H
ϕ
h (p))

L
−→ N (0, σ 2)

if

σ 2
=

M∑
i=1

[ϕ′(pi.)h′(
M∑
i=1

ϕ(pi.))]2pi.

− [
M∑
i=1

pi.ϕ′(pi.)h′(
M∑
i=1

ϕ(pi.))]2 > 0

There is a similar result in the stratified selection but using
a different estimator for the variance:

σ 2
=

1
N

r∑
k=1

Nk{
M∑
i=1

[h′(
M∑
i=1

ϕ(pi.).ϕ′(pi.)]2
N
Nk

pik

− [
M∑
i=1

N
Nk

pikh′(
M∑
i=1

ϕ(pi.))ϕ′(pi.)]2}

Theorem 5 allows performing several statistical tests:
T1. H0:H

ϕ
h (p) = D0 the diversity of a population is con-

stant. The test statistic is:

Z =

√
n(Hϕ

h (p
′)− D0)

V
∼ N(0, 1)

where V is the standard deviation σ or σSt when p is replaced
by the estimation p’.

T2. H0: H
ϕ
h (p)=H

ϕ
h (q) for two independent populations

with the same variance. The test statistic is:

Z =
Hϕ
h (p
′)− Hϕ

h (q
′)√

V 2
1
n1
+

V 2
2
n2

∼ N(0, 1)
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where V2
i is the variance σ

2 or σ 2
St when p(q) is replaced by

the estimation with the estimations p’(q’).
T3. H0: H

ϕ
h (p

(1)) = Hϕh (p
(2)) = . . . = Hϕh (p

(m)) for m
independent populations with the same variance.

These tests allow us to draw some conclusions about the
entropy of a pseudorandom generator and even estimate this
entropy. Moreover, we can even estimate the size of the
encryption key that is generated by such a generator. The esti-
mation method based on stratified selection is more efficient
than in the case of simple selection because σ 2

St ≤ σ
2. These

two estimation methods give the same variance if r=1 or
M∑
i=1

Nk
N
pikh′(

M∑
i=1

ϕ(pi.)).ϕ′(pi.)

is independent of k. A particular case is ϕ- entropy whose
general expression is:

Hϕ(p) =
M∑
i=1

ϕ(pi.)

For several functions ϕ(x) we get:
1) Shannon entropy (Shannon 1948): ϕ(x) = -x log x
2) Genetic entropy (Latter 1973): ϕ(x)= x-x2-x2 (1-x)2

3) Hypo entropy (Ferrari 1980):

ϕ(x)=
1
M

(1+
1
λ
) log(1+λ)−

1
λ
(1+λx) log(1+λx).

For these entropies, corresponding asymptotic results are
obtained. It must be mentioned that similar results can also
be obtained for relative entropy. Shannon’s entropy will be
used to define mutual information and the capacity of the
communication channel.

III. SOURCES OF RANDOMENSS
A. DETERMINISTIC RANDOMNESS SOURCES
An easyway to produce „random’’ bits is based on an iterative
algorithm, denoted by Gen:

x[t] = Gen[x[t-1], . . . x[t-L]],

which is setup-ed with some initial entropy bits:

x[0], . . . x[L-1]].

From Shannon’s point of view this type of randomness
sources is not secure, thus is not used in application where
it is needed a high level of confidence.

Using deterministic random bit generators, NIST has pro-
posed in [1] some recommendations for the construction and
usage of random number generators. The proposed proce-
dures are based on the use of the HMAC concept and the
block encryption algorithms.

In order to generate pseudorandom numbers, it is used a
secret value (seed) and two functions that are hard to reverse
for updating this value, respectively generating output.

NIST 800-90A (version from 2006) has some flows in the
cryptographic definition of the dual elliptic curve DRBG [9].
The random numbers it has generated were slightly dis-
torted, which raises the question of whether the NSA hides a

secret backdoor in Dual_EC_DRBG. In 2013, internal notes
released by Edward Snowden, a former NSA contractor,
indicate that the NSA has indeed created a backdoor in
Dual_EC_DRBG.

Also E. Snowden revealed the existence of NSA’s Bullrun
program. One of the purposes of Bullrun is "to covertly
introduce weaknesses into the encryption standards followed
by hardware and software developers around the world." The
New York Times states that "the NSA had inserted a back
door into a 2006 standard adopted by NIST. . . called theDual
EC DRBG standard." To restore confidence in encryption
standards, NIST reopened the public analysis process for
NIST SP 800-90A.

Because the elliptic curves are an algebraic structure,
we will explain how to introduce hatches by using mod-
ular computation. This makes the presented scheme easier
to understand. Let us assume that the PRG is specified by
prime number p, and two integers g, h that are both less
than p. The algorithm has an internal state s that satis-
fies 1≤ s < p. In one iteration, the following steps are
performed:
r = gs mod p, s′ = gr mod p (update the state to s′),
t = hr mod p (output).
The designer of the algorithm will set g, h by a backdoor

specified by a secret number e such that g = he mod p. Due
to the complexity of the problem of the discrete logarithm,
the direct connection between g and h cannot be proved.
Knowing the secret hatch allows to find out the internal state
of the generator. t : te = (hr )e = hre = (he)r = gr = s′

(mod p).

B. NON DETETERMINISTIC RANDOMNESS SOURCES
An RNG must be specified by its security proofs, which
are defined in relation threat models based on the impact
assessment due to the likelihood of a threat being exploited
by an identified vulnerability (risk analysis). The RNG limit
must be designed to mitigate these threats, using physical
and / or logical mechanisms.

There are several types of physical phenomena which are
usually used to produce randomness: quantum based, thermal
phenomena and clock drifts.

The quantum basedmethods for producing randomness are
usually based on: Poisson noise (quantum mechanical noise
source in electronic circuits, the nuclear decay of a radiation
source, photons traveling through a semi-transparent mirror,
amplification of the signal produced on the base of a reverse
biased transistor, fluctuations in vacuum energy (based on
Heisenberg’s energy-time uncertainty principle).

Examples of thermal phenomena are thermal noise from
a resistor, avalanche noise (generated from an avalanched
diode) and atmospheric noise. There are several other related
wonders where a clock does not run at the very same rate as
a reference clock.

In order to validate the RNG, it is necessary to fulfill certain
security requirements. Some of the security requirements are
the following:
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FIGURE 1. A RNG based on Zener diode.

FIGURE 2. A ring oscillator with 3 gates.

- resistance to prediction (the tradeoff previously or present
will not bargain the future yield) of the RBG;

- backtracking resistance (the compromise at some point
will not compromise the past) of the RBG outputs.

Also it is recommended to implement the additional
measures:

- the output will be modified by an approved post-
processing method;

- performing validation and health testing.

1) ZENER BASED
Using the properties of the electromagnetic field, an opponent
can manipulate the behavior of a Zener diode. Solutions
based on two diodes mitigate this type of attack. In [17] it is
proposed a solution based on two Zener diodes with a reverse
avalanched effect (fig. 1). The outputs of the two diodes
constitute the input to an operational amplifier that amplifies
the voltage difference. The output of the operational amplifier
is fed into a Schmitt trigger. Themean voltage of the amplifier
output signal is about the middle of the two threshold values
of the Schmitt trigger.

Because of the precarious edges of the information and
use of the 0-1-upcrossings, only the hysteresis impact ought
to be immaterial. The proposed structure just endeavors
0-1-intersections, the yield sign of the Schmitt trigger com-
prises of zeros and ones. The proposed stochastic model is
the time lengths of these 0-1 switching.

2) RING OSCILATOR
A natural model for jittered oscillators is based on the fact
that half-periods of the durations Xk = Tk+1− Tk, between
the flipping times Tk (k ≥ 0) of the signal, are independent
and identically distributed random variables. Another way is
to consider a family of model where the phase ϕ of an oscil-
lator is analogue to a (stationary) one-dimensional Brownian
motion. A ring oscillator (fig. 2) is a gadget made out of an
odd number of NOT gates in a ring, whose output oscillates
between two voltage levels, representing true and false.

In a ring oscillator TRNG each oscillator’s phase relative to
the sample clock drifts over time. Most of the drift is due to
the difference between oscillator and sampling frequencies,
but some is caused by jitter. In 2007 Sunar proposed in [23]
a random number generation structure based on 114 ring
oscillators, which at that time was appreciated, considering
that it was easy to implement using a FPGA structure. Even
though it was designed on a security model, it was based
on two difficult to meet hypotheses: the independence of
the rings and the fact that the modulo 2 (XOR) summations
operation is performed fast enough to maintain the entropy
generated by the rings. Without a rigorous demonstration of
security [24], [25], the Sunar model is nothing more than one
of the generators that pass the statistical tests [4], [7], [8]
without having a guaranteed minimum entropy.

3) QUARTZ
Some general techniques to generate numbers are based on
quartz crystals located on the mother board and/or others
hardware devices for operation and timing.

4) MRAM
Another way to produce random numbers is by using the
random switching behavior of Magnetic Tunnel Junctions
under low write current [22].

5) A PROPOSAL FOR TRNG
Given that there are several categories of models on which
we can build a TRNG, one solution is to implement all four
technologies (Zener diode, ring oscillator ring, Quartz and
MRAM) to increase the degree of entropy of the solution.
How they can be combined requires a separate analysis.
A possible solution, with demonstrable security, is to carry
out XOR between the outputs of the four categories of gen-
erators. However, this approach causes the generator to take
the speed of the slowest device, which is why it is necessary
for the four types of technologies to have balanced speeds.

6) POST PROCESSING
The output of the random number generator may have a
certain deviation from the ideal value of 0.5 (if we are talk-
ing about random generators of binary sequences). In this
situation, to "center’’ the generator, we use post processing
after the output. Examples of such post processing can be
data block encryption using a block encryption algorithm
(a situation that allows output to lead to input data) applying
a non-invertible function (such as the von Newman decorre-
lation procedure: sequences 00 and 11 are discarded and the
sequences 01 and 10 are transformed into 1, respectively 0.
The process is fast, considering the fact it halves the amount
of output data).

IV. VALIDATION OF RANDOMNESS AND STANDARDS
According to Viktor Fisher [15] there are two types of
approaches among in order to study this problem: mathemati-
cal and physical. In themathematical approachwe considered
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FIGURE 3. General model of entropy source [2].

an ideal TRNG and focus on obtaining entropy rate of ten
bits per trial. In the physical approach we need to say what
can be the frequency of trials and what (physically) means
‘fair tossing’ and ‘fair coins’. The design of a TRNG is
rather a physical than a mathematical project. The physical
parameters of the source of randomness must be thoroughly
evaluated: distribution of random values (bias), correlation,
dependence (if there are many sources involved), manipula-
bility and agility (spectrum). In [2] NIST made recommenda-
tions for the entropy sources used for random bit generation.
For a set A={x1,x2,. . . ,xk}, with probability Pr(X=xi) =
pi for i = 1, . . . ,k, the min-entropy [13] of an independent
discrete random variable X is defined as:

H = min(− log2 pi) = − log(max pi).

NIST proposed in SP 800-90B [2] the model presented in
figure 3. To validate the compliance of the entropy source
with the standard requirements, after collecting the data,
we are in the situation of deciding whether the analyzed
samples come from independent and identically distributed
random variables (IIDs). In the situation the analyzed sam-
ples come from IID variables, the evaluation methodology is
relatively simple as opposed to the case where these variables
are not IIDs.

Health tests are an integral part of the design of the entropy
source and ensure that the noise source works according
to the specifications. A reference standard for estimating
the entropy quantity used by a random number generator is
specified in SP 800-90C [3]. In the favorable situation when
the random variables are IID, the min-entropy is estimated
by the most common value estimate. In reality, many of the
noise sources do not produce random IID variables and we
use in this case a complex set of entropy tests. The tests are
not independent and they do not overestimate the entropy at a
significance level of 0.005. The source code for min-entropy
estimation is available on [16].

A Common Criteria [18] approach regarding functionality
classes for random number generators is proposed by Wolf-
gang Killmann and Werner Schindler in [17]. This approach
helps developers to design random number generators,

FIGURE 4. The critical region of a statistical test with α = 0.01.

which are CC compliant and can be subject of evaluation
by a CC accredited laboratory. The proposed statistical tests
are similarly to NIST SP 800-22 [4], [7], [8], described in
section 5.

For security validation, two categories of standard ISO
19790 (similar to FIPS 140-2) and ISO 15408 (similar to
Common Criteria) are used. The two standards differ in the
approach to validation: the ISO 19790 standard is a qualitative
standard and the ISO 15408 quantitative standard in terms of
security justifications.

V. STATISTICAL TESTS USED FOR VALIDATION
The validation of the statistical hypotheses is carried out
through the samples and has a determining role in the decision
process regarding the parameters of the theoretical distribu-
tion of a population (most often these parameters are the
average or the population dispersion).

In the case of statistical testing of the cryptographic algo-
rithms, the samples are obtained from the output of the
algorithm having plain text and keys strongly auto correlated
or correlated. We model the decision making-process with
two statistical hypotheses: the null hypothesis denoted by
H0 - in this case, the sample does not indicate any devi-
ation from the theoretical distribution - and the alternative
hypothesis HA - when the sample indicates a deviation from
the theoretical distribution. Due to the sample selectionmode,
the statistical estimates are subject to measurement errors.
These are of two types: the probability of rejecting a true
hypothesis, respectively the probability of accepting a false
hypothesis. If figure [3] we present a graphical interpretation
of the connection between these two types of errors.

The effective implementation of a statistical test includes,
among others, decision rules for rejecting the null hypothesis.
These rules can be described in two ways: decisions based
on P-value, respectively decisions based on "critical region".
Because the sample data are aggregated to be reported at
the significance level of the statistical test, it is necessary
to specify (calculate) the minimum sample volume. At the
same time, the data that make up the sample must be obtained
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TABLE 1. Reference distribution of NIST statistical tests.

as achievements of randomly distributed and identically
distributed variables. One of the reference standards for test-
ing the quality of binary strings is the NIST Statistical Test
Suite standard specified in SP 800-22. The standard is com-
posed of fifteen statistical tests, which can reveal various
deviations from randomness of the binary strings. Within the
standard are specified the reference implementations, the test
vectors for them, the mathematical justification of the tests,
as well as a series of test strategies.

Depending on the sample analyzed, the function of
the test f is determined for each test and compute the
P-value =Pr(f |H0) that summarizes the strength of the evi-
dence against the null hypothesis. If the P-value > α, then
H0 is accepted otherwise reject H0.
In the specialized literature there are some comments

about possible weaknesses (or need clarification) within the
methodology of statistical testing SP 800-22: quantifying
errors, the power of the test suite, statistical assumptions,
the test dependencies/correlations [14] and inadmissible tests.

The tests specified in SP 800-22 are not independent,
which makes it hard to calculate a general rejection rate (test
power) [11], [12]. Table 1 presents the statistical distribution
used in each test.

We assume that if we sum all the P-values of the statistical
tests we shall obtain a normal distribution. As we can see,
there are three types of distributions: normal, half normal
and χ2. If we suppose that all the χ2 distributions are inde-
pendent and compute the sum of all corresponding P-values
of these distributions, we shall obtain a χ2 distribution with
the number of degree freedom greater then 30, which is well
approximated by the normal distribution. Thus, if we presume
that all the statistical tests are independent, then the sum of
all P-values will go after the normal distribution. This overall
distributionwill be the distribution of the holeNIST statistical
test suite.

FIGURE 5. Quantis RNG principle [5].

In [10] is presented the extension of the NIST statistical
tests to an arbitrary level of significance α, also being com-
puted the value of the second error order probability.

As an example, for the frequency test we have for n>30 the
following formula for second error probability:

β = φ

(√
p0q0
p1q1

(
u1− α2 −

n(p1 − p0)
√
np0q0

))
−φ

(√
p0q0
p1q1

(
u α

2
−
n(p1 − p0)
√
np0q0

))
.

VI. REAL LIFE
A. QUANTIS-QUANTIC TECHNOLOGY
Quantis [5] is a group of equipment arbitrary number gen-
erators which abuse basic quantum optical procedures as a
source of true randomness. Quantis RNG (QRNG) abilities
are:

- true hardware random number generator;
- trusted and certified source of quantum randomness;
-consistent status check and disappointment recognition

component;
- instant entropy, adaptable for various applications;
- propelled functionalities, for example, scaling and

randomness extraction.
Device is largely used in different sectors: Swiss Lottery,

IDQ-Certes Solution Brief (security solution), PokerMatch,
NS&I (banking sector).

QRNG is based on quantum physics: photons - light parti-
cles - are sent one by one onto a semi-transparent mirror and
detected. The exclusive events (reflection - transmission) are
associated to� 0� -� 1� bit values.
Quantis is themost guaranteed genuine RNG in themarket.

It has effectively passed the accompanying accreditations or
government approvals: NIST SP800-22 Test Suite Compli-
ance, METAS Certification [19], CTL Certification, Several
iTech Labs singular Certificates and consistence with the
BSI’s AIS31 standard.

B. INTEL TRUE RANDOM NUMBER GENERATOR
The Random Number Generator (BA431) is a basic IP center
for all FPGA and SoC structures that target cryptographically
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FIGURE 6. Intel Digital Random Number Generator design [20].

made sure about applications. The BA431 incorporates a True
Random Generator (TRNG) as the source of entropy. The
discretionary Deterministic Random Bit Generator (DRBG)
can be furnished with the core. The entropy source (yield
an irregular stream of bits at the pace of 3 GHz.) and the
DRBG are intended for consistence with the NIST 800-90A
and NIST 800-90B. The entropy source runs asynchronously
on a self-planned circuit and uses thermal noise within the
silicon [20], [21].

It is easily portable to any Intel FPGA device (includ-
ing SoC). The IP core effectively passes AIS31 and NIST
800-22 test suites and has passed FIPS 140-2 certification.
A portion of the end advertise for the utilization of this gadget
is on car, communication, computer and storage, purchaser,
industrial, medical, military, test and measurement, wireline
and so forth.

C. QUINTESSENCE LABS
Starting from the Kerckhoff principle, the strength of a cryp-
tographic system depends only on the key, the device for gen-
erating random numbers qStream designed by Quintessence
Labs [6] produces with a speed of 1Gbit / s maximum
entropy cryptographic keys. The device is built on quantum
principles. qStream provides random numbers for generat-
ing cryptographic keys, as well as other critical security
parameters. Other applications include Entropy as a Service
(EaaS), simulations, modeling and computer games. Operat-
ing systems use algorithmically generated random numbers.
Random numbers are used to start the operating system as
well for performing cryptographic operations (SSL / TLS,
SSH or PKI protocols). The entropy pool ensures the gen-
eration of random numbers considering the fact that the
programs on the computer are deterministic. Each operating
system has an entropy pool (without limiting the generality
we will refer to the LINUX operating system). This entropy
pool is powered by various random sources such as motion
mouse. The entropy pool has 4096 random bits (the highest
possible entropy) which makes a private key of 2048 bits

random. The kernel is responsible for maintaining an accept-
able level of this pool. More precisely, as the bits in the pool
are used the entropy is reduced, but if the operating system
finds good random events the pool is full. qRand developed
by QuintessenceLab is a daemon for Linux systems that is
configured to monitor requests for randomness and if entropy
falls below a specified limit qRand full the pool back quantum
random number generator.

VII. CONCLUSION
Random numbers are necessary ingredients in ensuring infor-
mation security in electronic format. Their generation is
accomplished through techniques and hardware means and
involves validating the quality (level of disorder) of the noise
source. The disorder level estimation (entropy) is performed
through statistical tests.
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