AUTOMORPHISMS OF THE COMPLEX NUMBERS
PAUL B. YALE, Pomona College

One of the best known bits of mathematical folklore is that there are many
automorphisms of the field of complex numbers, i.e., that the complex numbers
can be permuted in many ways (besides the familiar complex conjugation) that
preserve addition and multiplication. As evidence that it is folklore we point
out that it appears without proof in a popular projective geometry text [6] as
well as an undergraduate algebra text [5]. This expository paper is devoted to
a proof of this bit of folklore, The average mathematician is vaguely aware that
the “wild” automorphisms of the complex number system probably require for
their construction the axiom of choice or some equivalent assumption about
sets. In our existence proof for wild automorphisms we illustrate a typical ap-
plication of Zorn’s lemma; moreover, we present evidence (Theorem 4) that
wild automorphisms are so wild that an assumption such as Zorn’s lemma or the
axiom of choice seems to be essential.

1. Subfields of the field of complex numbers. Any field considered in this
paper will be a subfield of the complex numbers, C, i.e., will be a subset of C
containing 0, 1 and containing a+b, ab, a —b, and (if b5£0) ¢/b whenever it con-
tains ¢ and b. Familiar examples of subfields are Q, the field of rational numbers;
R, the field of real numbers; and C itself. It is easy to show that the intersection
of any collection of subfields of C is itself a subfield of C, and, in particular, that
the intersection of all subfields is Q.

DEFINITIONS. Let F be a subfield of C and let @, 3, - - - , N be complex num-
bers. The intersection of all subfields of C containing F and «, 8, - - -, N is de-
noted by F(e, 8, - - -, N\) and is called the extension field of F generated by
a, B, - - -, N\. The numbers «, 3, - - -, \ are called generators. If G is a subfield
of C containing F such that G=F(e, 8, - - - , ) for some finite set of generators,
then we say that G is a finitely generated extension of F. If only one generator
is required then we say that G is a simple extension of F.

A complex number, «, is called algebraic or transcendental over F according
as it does or does not satisfy at least one polynomial equation with coefficients
in F. If « is algebraic over F then the (unique!) monic polynomial, p, of least
degree with coefficients in F such that p(a) =0 is called the minimal polynomial
of @ over F.

The structure of a simple extension, F(a), of F depends on the “algebraic
relationship” between « and F. If there is none, i.e., if « is transcendental over
F, then distinct rational forms, p(x)/q(x) (p, ¢ polynomials with coefficients in
F) yield distinct complex numbers, p(a)/g(e), all in F(a). However if « is alge-
braic over F, and if m is the degree of its minimal polynomial over F, then one
can show that ¢(a) 0 implies p(a) /q(a) =ao+aia+ - - - +anm_10™ ! for exactly
one set of ¢; EF. In any case F(a) = { p(@)/q(e) | $, q¢ polynomials with coefficients
in F and ¢g(&) #0}. For details see [2], Chapter 14, Theorems 1 and 4.
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DEerFINITIONS. A subfield, F, of C is said to be algebraically closed if every
complex number algebraic over F is in F, or, equivalently, if every polynomial
with coefficients in F can be factored into linear factors with coefficients in F.
We shall denote by F? the set of all complex numbers which are algebraic over
F. F¢is called the algebraic closure of F in C.

THEOREM 1. Let F be a subfield of C. F° is a subfield of C that is algebraically
closed.

There are two “standard” proofs of this theorem. In the first proof one
shows that any rational combination of numbers algebraic over F is itself alge-
braic over F. To see that this is not easy the reader should try to prove that
a+B and af are algebraic over F whenever a and B are. The second proof de-
pends on the fact that a field is also a vector space over any of its subfields. The
two main lemmas for this proof are a multiplicative property of dimensions for
extension fields and the fact that « is algebraic over F if and only if F(a) is a
finite dimensional vector space over F. Both proofs are in [3].

2. Isomorphisms between fields. Roughly speaking an isomorphism be-
tween fields is a one to one correspondence between the elements of the two
fields which “preserves” algebraic operations. Since we shall be concerned with
isomorphisms between subfields of the complex number system and because we
plan to apply Zorn's lemma to sets of isomorphisms we choose the following
specialized definition of isomorphism.

DEFINITIONS. An tsomorphism (between subfields of C) is a set, ¢, of ordered
pairs of complex numbers such that: 1. If (g, x) and (b, y) are in ¢, i.e., if p(a) =x
and ¢(b) =7, then a =5 if and only if x=7. (In other words, ¢ is a function and
is one to one.) 2. If (g, x) and (b, y) belong to ¢ then so do (a5, x+7v), {(ab, xy),
{(@a—b, x—1y), and (if b and y are nonzero) {a/b, x/v). (¢ preserves algebraic opera-
tions.) 3. (0, 0) and (1, 1) are both in ¢. (This assures that ¢ is not trivial in the
sense of being empty or containing only (0, 0).)

As is customary we call the set of all first components of ordered pairs in an
isomorphism ¢ the domain of ¢, and the set of all second components the range
of ¢. Also, as usual, we write ¢(e¢) =x and say ¢ sends a to x if and only if (g, x)
E¢. It is easy to show that the domain and range of an isomorphism are sub-
fields of C. If the domain and range are the same field, F, then we say that ¢ is
an automorphism of F. Clearly the identity map on a subfield F, Ir= {(x, x)[ x
€F}, is an automorphism of F. This is called the #rivial automorphism of F.
All other automorphisms of F are called nontrivial.

Let ¢ and ¢ be two isomorphisms. We say that ¢ extends o if o is a subset of
¢. If, in addition, the domain of ¢ is F then we say that ¢ extends o to F.

Caution! Our use of the word isomorphism is very restricted in that we allow
only complex numbers in the domain and range. The usual definition of “iso-
morphism” (between arbitrary fields) is more complicated in that not only are
more general “numbers” allowed but also the operations in the two fields in-
volved may be different. The reader who is familiar with a different definition
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of isomorphism should prove that if all fields involved are subfields of C then
the definition above is equivalent to his “standard” definition.

Examples of isomorphisms. The most familiar example of an isomorphism is
complex conjugation, {(a+bi, a—b5)|a, bER}, which is a nontrivial automor-
phism of C. Slightly more complicated examples are ¢ = { {a+cv/T7,a —c\/7)| a,c
€Q} and ¢ = {{a+bT+cT+dV343, a+iby/T—c\/T—id~/343)|a, b, ¢, d
€Q}. The reader should verify that ¢ is an automorphism of Q(+/7), that ¢
extends o to Q(+/7), and that the range of ¥ is Q(i+/7).

THEOREM 2. Any isomorphism between subfields of C extends Ig, the identity
map on Q.

Proof. Let ¢ be an isomorphism and let F= {a|¢(a)=a} = {a| (s, a)Es}.
It is easy to show that F is a subfield of C. Since Q is contained in any subfield,
¢ must extend .

This result asserts that the field of rational numbers is an “algebraically
rigid” structure. This is not too surprising since 0 and 1 can be characterized
algebraically, (0 as the only solution of x+x=x and 1 as the only nonzero solu-
tion of xx =x) and all other rational numbers are built up by rational operations
from 0 and 1. Thus if a function is to preserve algebraic properties it should
leave the rational numbers undisturbed. A similar (but more surprising) result
is valid for the field of real numbers.

THEOREM 3. The only isomorphisms between subfields of C whose domains in-
clude R and which map R into R are Ig, I¢, and complex conjugation.

Proof. Let ¢ be such an isomorphism, i.e., assume RCdomain ¢ and xER
implies ¢(x) ER. We first show that ¢ preserves order in R. If x <y, then there
is a real number w such that w0 and y —x =w? But then ¢(y) —¢(x) = [p(w) ]?
with ¢(w) ER and ¢(w) £0. Hence ¢(y) —¢(x) is positive, i.e., ¢(x) <¢(y). Now
assume ¢ ER, but that a#¢(a). Choose a rational number, ¢, between ¢ and
¢(a). Since ¢(¢) =¢ by Theorem 2, the order between a and ¢ is reversed by ¢
and we have a contradiction. Hence a €R implies ¢(a) =a, i.e., [rTo.

If ¢ =1, then the domain of ¢ is a subfield of C containing R as a proper
subset. In any such subfield we can find a complex number, ¢+ bz, with 5520 as
well as all real numbers. But, since x+yi=x-+y([(a-+bi) —a]/b), this implies
that the subfield is C itself. Thus the domain of ¢ is C. Consider ¢(7). Since
i2=—1, [p()]?=¢(—1)=—1. The only roots of x2=—1 are +4; hence ¢(3)
= +14. If ¢(7) =1, then ¢ =1I¢, and if ¢(4) = —1, then ¢ is complex conjugation.

Theorem 2 implies that Q has no nontrivial automorphism, and Theorem 3
implies the same for R. Theorem 3 also implies that a nontrivial automorphism
of a subfield of R cannot be extended to an automorphism of R. For example,
the automorphism o defined just before Theorem 2 cannot be extended to an
automorphism of R.

We shall call any automorphism of C which is not I¢ nor complex conjuga-
tion a wild automorphism of C. That these automorphisms are really “wild” is
shown by the following theorem.
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THEOREM 4. If ¢ 1s a wild automorphism of C then ¢ is a discontinuous map-
ping of the complex plane onto itself; in fact, ¢ leaves a dense subset of the real line
pointwise fixed but maps the real line onto a dense subset of the plane.

Proof. By Theorem 2, ¢ leaves Q (a dense subset of the real line!) pointwise
fixed. By Theorem 3 we can choose bER such that ¢(b) ER. Every neighbor-
hood of b contains a rational number (which is left fixed by ¢) and the number
b (which is moved by ¢); hence ¢ is discontinuous.

For every pair of rational numbers, ¢ and 7, ¢(rb+q) =¢(r)p(d) +¢(q)
=1r¢(b) +¢. Thus for a fixed 7, {$(rb-+q) | qEQ} is a set of images of real num-
bers which is a dense subset of the horizontal line through 7¢(b). As 7 varies this
horizontal line moves up and down; moreover the various r¢(b) form a dense
subset of the (nonhorizontal) line through 0 and ¢(b). Thus the set {¢(rb +q) | 7, q
€Q} is a dense subset of the plane. This set is contained in ¢(R); hence ¢(R)
is also a dense subset of C.

3. Isomorphisms and simple extensions. As a first step in extending an
automorphism to an automorphism of C we need to know how to extend it to a
“slightly larger” subfield. Since the proofs are no harder we discuss the more
general topic of extending an isomorphism to a simple extension of its domain.
There are two cases to consider according as the generator of the simple exten-
sion is algebraic or transcendental over the original field.

THEOREM SA. Let ¢ be an isomorphism with domain F and range ¥'. If o is
algebraic over F then there is an isomorphism extending ¢ to F(a) and sending o
to B if and only if 8 is a root of the polynomial obtained by applying ¢ to the coeffi-
cients of the minimal polynomial of o over F.

THEOREM 5B. Let ¢ be an isomorphism with domain F and range F'. If o is
transcendental over F, then there is an isomorphism extending ¢ to F(a) and send-
ing o to B if and only if B is transcendental over F'.

An outline of the proof. In either case it is easy to show that o= {(p(a) /q(a),
p'(8)/¢'(B))|p, g are polynomials with coefficients in F, g(a) %0, p’, ¢’ obtained
by applying ¢ to the coefficients of » and q} is the only possible isomorphism
extending ¢ to F(a) and sending « to §8. It is tedious, but not difficult, to show
that ¢ is an isomorphism if and only if & and 3 are related as stated in Theo-
rems 5A or 5B. For more details of this proof see [2], Chapter 14, Theorem 1
and Chapter 15, Lemma 1.

A special case of Theorem 5A comprises part of the proof of Theorem 3.
In that proof we showed that the only extensions of I to R(4) =C send ¢ to +1.

If we combine Theorems 5A and B we find that any isomorphism with do-
main F and range F’ can be extended to F(a) unless a is transcendental over F
and there are no complex numbers transcendental over F'. We shall show at the
end of the paper that this “unless” clause is an essential qualification.

Examples. Let ¥ and o be the isomorphisms defined just before Theorem 2.
By Theorem 5A the only extensions of I to Q(+/7) are o and the identity map
on Q(+/7) since +/7 and —+/7 are the only two roots in C of the polynomial
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x?—7. The minimal polynomial of /7 over Q(1/7) is x2—+/7 which is sent by
o to x24++/7. The only two roots of x24+/7 are +i+/7; hence an extension of ¢
to Q(~/7) must send /7 to one of these two numbers. Thus there are only two
possible extensions of ¢ to Q(+/7), one of which is ¢.

There are uncountably many complex numbers which are transcendental
over the range of ¥, Q(2+/7). Thus by Theorem 5B there are uncountably many
ways of extending ¥ to Q(~+/7, w). A few of these possibilities send = to 1/,
1—m, 7++/57, or e/17.

These examples should convince the reader that there are many isomor-
phisms between finitely generated extensions of Q. Since many of these are
clearly automorphisms differing radically in their action from I¢ or complex
conjugation, it will follow from our main result (any automorphism can be ex-
tended to an automorphism of C) that there are many wild automorphisms of C.

Using ordinary induction and Theorems 5A and B we could extend any
automorphism of a field to a finitely generated extension of that field. Unfor-
tunately C is not a finitely (or even countably) generated extension of Q so
ordinary induction will not suffice to prove that any automorphism of a sub-
field of C can be extended to C. We therefore pause to discuss a tool to handle
the “transfinite” aspect of our induction.

4. Zorn’s lemma. A nonempty collection, €, of sets is called a chain of sets
if for any two sets 4, B in €, either ACB or BC A. A family, {, of sets is said
to have the chain property if § contains the union of every chain of sets taken
from . Since the union of any finite chain of sets is simply the largest set in
that chain, it is clear that any finite family of sets has the chain property. Two
more examples of families with the chain property are §=the set of all subsets
of a given set 4, and §.= {B| BCR and B contains no integers}. Two families
without the chain property are ®={A4|4 is a finite subset of R} and ®,
= {F| F is a subfield of C and a finitely generated extension of Q}.

ZoRN’s LEMMA. If § is a nonempty family of subsets of a given set B and § has
the chain property, then there is at least one set, M, in § such that AEF and M A
implies M=A.

A set with the property specified for M is called a maximal set in §. It is
quite possible for a family of sets to have many maximal elements. Think of
them as located at the tips of branches rather than at the top of the heap.
Zorn’s lemma only requires that under certain conditions there must be at least
one maximal element. Several other properties of sets, notably the axiom of
choice, are equivalent to Zorn’s lemma. For a discussion of these equivalences
(including proofs) see [4] or [7]. Returning to the examples of families with the
chain property we note that the maximal set in §; and §; is unique. The reader
should have no difficulty constructing a finite family of sets in which there is
more than one maximal set. Neither of the families ®,; or @, has a maximal ele-
ment. The family = {A | Either A4 is a finite subset of Q or 4 = Q} is an exam-
ple of a family of sets which has a maximal member but does not satisfy the
chain property; hence the converse of Zorn’'s lemma is not true.
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5. Extending automorphisms to C. We now show that any automorphism,
¢, can be extended to C by applying Zorn’s lemma to the family of automor-
phisms extending ¢. It is awkward to do this directly since the only isomor-
phisms extending ¢ to a simple extension of its domain may not be automor-
phisms. (Consider our examples ¢ and ¢!) To avoid this difficulty we first prove
the following theorem.

THEOREM 6. If ¢ is an isomorphism with domain F and range G, then ¢ can
be extended to an isomorphism with domain F* and range G°.

Proof. Let §= {0]0 is an isomorphism extending ¢ to a subfield of F“} . We
shall show that { satisfies the three hypotheses of Zorn’s lemma. § is nonempty
since ¢ extends itself to F. Isomorphisms are sets of ordered pairs; hence all
members of § are subsets of C XC. Let € be a chain taken from § and let o be
the union of all § in €. ¢ is clearly a set of ordered pairs of complex numbers.
@, as a chain, is nonempty; hence it contains at least one isomorphism and thus
{0, 0) and (1, 1) are in . Let (@, b) and (x, ¥) be in ¢. Then {(a, b)E0; and (x, y)
&0, for some 61, 8, EC. Since € is a chain either 8; &6, or 8; D6, and thus the two
ordered pairs are both in the larger of 6; and 6,. From this it follows easily that
o is a one to one function which preserves algebraic operations. The isomor-
phism ¢ is in the family § since it clearly extends ¢ and its domain, the union of
subfields of F¢, is contained in F? We apply Zorn’s lemma and let ¢ be a maxi-
mal member of . We must show that the domain and range of ¢ are F* and G*.

If the domain of ¢ is not all of F?, then there is at least one element & in
F2 but not in the domain of ¥. Since « is algebraic over F and G® is algebraically
closed there is at least one 8 in G® which is a root of the ¢ transform of the
minimal polynomial of & over F. Thus by Theorem 5A there is at least one way
of extending ¥ to a larger isomorphism still in §. This is a contradiction and
thus F¢ is the domain of .

Since F° is algebraically closed and ¢ is an isomorphism, the range of ¢ is
an algebraically closed subfield of G* which contains G. But the only such sub-
field of G is G itself; hence G° is the range of ¥ and the proof is complete.

THEOREM 7. Any automorphism of a subfield of C can be extended to an auto-
morphism of C.

Proof. Let ¢ be an automorphism of a subfield of C, and let §= {0!0 is an
automorphism extending ¢ to some subfield of C}. The proof that § satisfies
the three hypotheses of Zorn's lemma is virtually the same as in the proof of
Theorem 6, the only change necessary is to show that domain ¢ =range ¢ in-
stead of domain ¢ CF% We leave this to the reader. Applying Zorn's lemma let
¢ be a maximal member of §:. We must show domain ¢ =C. If not, then there
is a complex number, &, not in domain ¢ =F. If « is algebraic over F then, by
Theorem 6, we could extend ¥ to an automorphism of F? contradicting the
maximality of ¢ in §. If « is transcendental over F, then by Theorem 5B we
could extend ¢ to an automorphism of F(a), sending a to « for example, since
o is also transcendental over range Y =F. This again contradicts the maximality
of ¥, so there can be no complex numbers outside of domain { and the proof is
complete.
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6. Concluding remarks.

1. Although it is doubtful that anyone will give a complete recipe for an
automorphism of C aside from I¢ or complex conjugation, we see from the
Theorem above that any automorphism that can be constructed in a finitely
generated extension of Q can be extended to C. Thus, for example, there are
automorphisms of C which interchange w and ¢, send +/3 to 7+/3, and leave /7
fixed.

2. Itis not true that any isomorphism between subfields of C can be ex-
tended to an automorphism of C. In particular there are isomorphisms with do-
main C whose range is properly contained in C. For example, choose a1, ay,
as, -+ +,a countable set of complex numbers that are algebraically independent
over Q. There is an isomorphism, ¢, of Q(ai, oz, - - - ) into itself such that
¢(a;) =aia. Applying Zorn’s lemma to = {0| 0 is an isomorphism extending ¢,
range § C domain 6, and oy transcendental over range 8} leads to a maximal
isomorphism, ¥, whose domain is all of C but such that a; is not in the range.
Note that ¢! is an example of an isomorphism defined on a subfield, F, of C
which cannot be extended to F(ay).

3. As the final comment [ mention an additional bit of mathematical folk-
lore. In [1] it is claimed, without proof or reference to the proof, that the
cardinality of the set of automorphisms of C is 2280, I have heard this from other
sources and am convinced that it is true although I do not know where the proof
may be found.
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ON SOLUTIONS OF CERTAIN RICCATI
DIFFERENTIAL EQUATIONS

JAMES S. W. WONG, University of Alberta, Edmonton

In search of exact solutions of the general Riccati differential equation
M) ¥y =f+e+ w

where the differentiation is with respect to x and f, g, & are functions of x, it is
customary to find conditions on the coefficients f, g and % such that equation
(1) may be transformed into another first order equation where the variables
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