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Abstract 

Humans automatically detect and remember regularities in the visual environment—a type of 

learning termed visual statistical learning (VSL). Many aspects of learning from reward resemble 

statistical learning in respects, yet whether and how reward learning impacts VSL is largely 

unexamined. In two studies, we found that reward contingencies affect VSL, with high-value 

associated with stronger behavioral and neural signatures of such learning than low-value 

images. In Experiment 1, participants learned values (high or low) of images through a trial-and-

error risky choice task. Unbeknownst to them, images were paired as four types—High-High, 

High-Low, Low-High, and Low-Low. In subsequent recognition and reward memory tests, 

participants chose the more familiar of two pairs (a target and a foil) and recalled the value of 

images. We found better recognition when the first images of pairs have high-values, with High-

High pairs showing the highest recognition rate. In Experiment 2, we provided evidence that 

brain responses were affected by both value and statistical contingencies. When we compared 

responses between the high-value first image and the low-value first image, greater activation in 

regions that included inferior frontal gyrus, anterior cingulate gyrus, hippocampus, among other 

regions were found. These findings were driven by the interaction between statistically 

structured information and reward—the same value contrast yielded no regions for second-image 

contrasts and for singletons. Our results suggested that the powerful allocation of attention in 

response to the high-value first image potentially enables better memory for statistically learned 

pairs and reward information than low-value first image. 

 

Keywords: reward, visual statistical learning, reward motivation, memory, fMRI  
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INTRODUCTION 

Reward motivation impacts human cognition in many contexts (Haber & Knutson, 2010). 

Value is linked to stimuli that are critical for individuals’ survival (e.g., primary reward; water or 

food), but learned associations between reward and neutral stimuli can also shape one’s behavior 

(e.g., secondary reward; money; Daw & Doya, 2006). There is vast literature demonstrating how 

secondary cues, especially monetary reward, guide an individual’s cognitive processes such as 

memory, attention, and decision making. Higher associated value facilitates stimulus-reward 

memory association (Adcock et al., 2006), and features and objects that are associated with 

higher value capture more attention than those with low- or no rewards (e.g., Anderson, 2013; 

Theeuwes & Belopolsky, 2012). Individuals’ decision-making tends to optimize action so that 

rewards are maximized and losses minimized (Tversky & Kahneman, 1979). However, the 

relationship between learning and reward is typically studied in the context of learning rewarding 

associations, specifically, or memory of individual stimuli that are explicitly or implicitly 

associated to reward (Miendlarzewska et al., 2016). In the present study, we examined how 

learning explicitly about rewarding associations modulates the undirected and uncued learning of 

visual statistical associations.  

Visual statistical learning (VSL) is a type of learning that reflects automatic and 

unsupervised extraction of statistical contingencies by the visual system (Fiser & Aslin, 2001, 

2002). Prior studies suggested that humans may, in part, accomplish efficient processing of 

complex visual environments by learning and exploiting knowledge of visual regularities (Fiser 

& Aslin, 2001, 2002; Turk-Browne et al., 2005). In two early VSL studies, Fiser and Aslin 

(2001, 2002) found that when particular visual items co-occurred with others, subsequent 

recognition rates of those regularities were above chance, even though those regularities were 
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task-irrelevant, no instructions to remember the associations were given, and the associations 

were not cued. A typical VSL paradigm takes place in the context of passive viewing or simple 

cover tasks. How VSL occurs in the context of different task demands and contexts, as it must 

occur in everyday life, is underexplored. Since intentional seeking and learning about rewards is 

so foundational to behavior, it is natural to ask how learning about reward might impact 

incidental learning of regularities.  

Several findings support the idea of potential pathways for reward to influence VSL. 

Prior studies provided evidence that these two types of learning incorporate some similar 

associative mechanisms. For instance, both stimulus-reward and stimulus-stimulus contingencies 

are learned as a result of being presented for multiple times of these contingencies, intentionally 

or unintentionally. Further, the neural studies provide reasons to suspect reward learning and 

VSL may be interrelated. That is, these two types of learning have been shown to share common 

neural correlates, at least regionally: correlates of both reward learning and VSL have been 

found in hippocampus, striatum and medial temporal lobe (Aron, 2004; Delgado et al., 2000; 

Lansink et al., 2009; Wittmann et al., 2007). As these brain areas are known for their key roles in 

associative learning (Rieckmann et al., 2010), reward and visual statistical learning may share 

common neural substrates, in terms of extracting and binding meaningful information (or 

patterns) and predicting and evaluating upcoming events based on that information.  

Shared neural correlates between reward learning and VSL have also been found in the 

lateral occipital cortex (LOC), such that greater LOC activity was shown when exposed to visual 

regularity vs. no regularities (Turk-Browne & Scholl, 2009) and high reward vs. low reward 

(Anderson, 2017). LOC is known for its role in object perception (Grill-Spector et al., 2001; 

James et al., 2003), but previous studies also showed greater LOC activation to attended relative 
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to distractor or ignored objects (Vuilleumier et al., 2005; Woolgar et al., 2015). Considering 

prior evidence that attention modulates response patterns in higher visual areas (e.g., Murray & 

Wojciulik, 2004), variations in LOC as a function of both forms of learning may be related to 

attentional processing during object perception (see also Stokes et al., 2009). Neural activity in 

LOC in response to both types of learning may imply one potential pathway of reward to 

influence on VSL, as attention may play an important role in their relationship. Indeed, the role 

of attention in each of these phenomena is compelling enough to believe that reward may impact 

VSL on the basis of how reward shapes attention, alone.  

According to previous studies, selective attention plays an important role in VSL, as 

selective attention to stimuli is required for VSL to occur (Baker et al., 2004; Turk-Browne et al., 

2005). Baker et al. (2004) found that visual regularities were not learned in the absence of 

selective attention, such that when the memory of target-distractor combinations was tested, no 

learning was observed when participants paid attention to only one target location, but VSL 

occurred when participants paid attention to both of target and distractor locations. Turk-Browne 

et al. (2005) also found the learning of regularities occurred only with an attended color stream 

when participants were exposed to an interleaved stream that composed of attended- and 

unattended-color (but see Musz et al., 2015). Based on prior studies, we assume learning of 

structural information does not occur in a uniform way. Rather, selective attention may be 

required to process such information, with the degree of selective attention determining the 

strength of learning.  

Mounting evidence suggests that rewards bias attention towards stimuli that have been 

associated with those rewards as well (e.g., Anderson et al., 2013; Won & Leber, 2016). High 

value associations weakened the effect of the attentional blink, meaning that high reward biases 
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one’s attention (Raymond & O’Brien, 2009), and an oculomotor capture of stimulus-reward 

associations revealed that a stimulus associated with a high amount of monetary reward captures 

more attention than that associated with a low reward (Theeuwes & Belopolsky, 2012). 

Anderson et al. (2013) found greater attention was driven to items that were previously learned 

as high value items than low value items even though value information is no longer relevant to 

the task, and participants were not able to explicitly remember the association between stimulus 

and reward outcomes.  

Based on previous research, we predicted that when different amounts of reward are 

embedded in visual regularity, the rewards may interact with VSL, and selective attention 

potentially plays an important role in mediating this interaction. Reward is a powerful influence 

on the allocation of attention (Theeuwes & Belopolsky, 2012), and VSL is dependent upon 

selective attention to the constituent items (Turk-Browne et al., 2005). Therefore, VSL may be 

modulated by reward information, with high reward items driving more attention than low 

reward items and resulting in stronger memory formation of the constituent items that are 

associated with high reward.  

We further predicted that the effect of reward might be especially potent when the high 

reward item is in the first position in a temporally presented pair sequence. In VSL, the position 

of an item in a stereotyped sequence seems to determine the neural response profile to that item 

(Turk-Browne et al., 2010). Turk-Browne et al. (2010) showed that the right anterior 

hippocampus and medial temporal lobe showed enhanced responses when the first picture of a 

pair appeared (i.e. predicting the stimuli) as compared to novel singletons. These results suggest 

that during the acquisition of statistical regularities, the first item of the structured information 

plays an important role in predicting and evaluating subsequent items.  
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Hence, when reward is embedded in VSL sequences, reward may evoke different 

responses according to the position of the structured information it is associated with. In 

particular, higher reward that is specifically associated with early items in a temporal sequence 

may aid visual statistical learning. If attentional processing is involved in this interaction, greater 

activations may be found in brain regions in frontal and parietal areas, such as inferior frontal 

gyrus, precentral gyrus, and anterior cingulate gyrus, that are known for their roles in attentional 

network and cognitive control (e.g., Corbetta & Shulman, 2002; Fockert et al., 2004; Kan & 

Thompson-Schill, 2004), in addition to the LOC.  

To our knowledge, Rogers et al. (2016) is the only work to examine the relationship 

between monetary reward and VSL directly. Despite finding evidence of visual statistical 

learning, the amount of reward associated with stimuli and sequences did not affect the strength 

of VSL in their studies, suggesting that reward processing and VSL were operating 

independently. However, the manipulation of reward, in that case, may have been too subtle for 

participants to process reward contingencies in a VSL paradigm. Therefore, to motivate learning 

and enhance participants’ performance, we employed a risky choice task (e.g., Clark et al., 

2009), which is more likely to lead to in-depth processing of reward information. With this 

manipulation, we expected that participants would be more engaged in the task, and enhanced 

learning would be observed for both reward and statistical information. 

In the present study, we examined how reward modulates VSL. To clearly see the 

interaction between varying rewards (i.e., high vs. low) and the position of an item in a 

structured sequence, we used pairs presented in temporal succession to instantiate statistical 

regularities, but pairs were constructed with different reward variations (i.e., High-High, High-

Low, Low-High, and Low-Low). We found higher recognition rates for pairs when the first 
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image of a pair had a high-value, which suggested the high value of the first item in a pair 

enhances learning (or low-reward impairs learning). The neural correlates linking reward 

variations to statistical regularities was examined in Experiment 2. Using event-related fMRI, we 

measured brain responses to images that were associated with both varying levels of reward (i.e., 

high vs. low) and sequential contingencies (i.e., the first or second image in a pair, or singletons). 

The first image with a high-value, in comparison to the first image with a low-value, led to 

greater activity in areas including IFG, left ACC, LOC, OFC, accumbens, hippocampus, and 

putamen. This serves as circumstantial evidence that reward may play a role similar to selective 

attention in VSL, or it may affect VSL by shaping selective attention, since many of these neural 

correlates are shared with those evoked by manipulations of attention. Importantly, we also 

provided evidence that the differences between the high-value first image and the low-value first 

image are not driven solely by the value difference, but by an interaction of predictiveness and 

value. 

EXPERIMENT 1 

The aim of Experiment 1 was to examine the influence of learned value on VSL by 

embedding different amounts of reward into structured pairs (i.e., High-High, High-Low, Low-

High, and Low-Low reward pairs) that always co-occurred temporally in a sequence of 

decisions. After participants learned the value in a temporally structured sequence, we tested 

recognition for each type of pair, allowing us to examine how the high- or low-reward 

association might interact with the location of reward (i.e., first or second) in structured pairs.  

Method 

Participants 
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All procedures were approved by the University of Delaware Institutional Review Board. 

Thirty-three University of Delaware students who were 18-40 years of age participated for 

course credit or cash. At the last phase of Experiment 1, participants’ memory for the image 

value was measured. Pilot data suggested that reward memory recognition judged by the third 

phase was almost always above chance levels. Since it was crucial for participants to have a 

memory of reward associated with constituent items to judge reward effects on VSL, we 

established exclusion criteria based on last-phase performance. Two participants were excluded 

because they did not show above chance (50%) reward memory recognition rate.  

Stimuli and Apparatus 

Experiment 1 was run on Windows 10 with a 24-inch LCD monitor with a resolution of 

1920 x 1080. The experiment was programmed in MATLAB with Psychophysics Toolbox v. 3 

(Brainard, 1997; Kleiner et al., 2007). We used 32 fractal images as novel visual stimuli. Images 

were randomly assigned into structured sequences (i.e. pairs) between participants. Stimuli were 

200 pixels x 200 pixels, and participants sat approximately 57 cm from the monitor (images 

subtended approximately 5° of visual angle). 

Procedure 

Experiment 1 consisted of three phases. Participants performed 1) a learning phase 

followed by 2) a surprise pair recognition phase. In the last phase, they completed 3) a reward 

memory test, which asked participants to explicitly recall the value of each image (i.e., high or 

low; two-alternative forced-choice task). Before the experiment began, participants were given 

instructions about the learning task. However, no information was provided to participants about 

the subsequent memory-test phases prior to completing the learning phase. Regarding incentives, 
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participants were told that during the learning phase, points would be shown on the screen based 

on their choice (the description is below). Points added up over time and they would get money 

based on their point totals. At the end of the experiment, the points were converted to maximum 

of $10. Total points (maximum of 3200) were divided by 320 to derive this value. Participants 

were informed that points would be converted to money at the end of the experiment (up to $10 

total), but not of the exact conversion rate. 

During the learning phase (Fig 1A), images were presented at the center of the screen, 

sequentially. Participants were instructed to do a risky choice task, in which they learned the 

values (high or low) of fractal images through trial-and-error. For each image, participants 

needed to make a choice (phrased as a “gamble”) of “Yes” or “No.” If they chose "Yes” (press 

the Z button on the keyboard), they had a 50% chance of winning nothing (0 points) and a 50% 

chance of winning points. Importantly, "high-reward" images were associated with a 50% chance 

to win 10 points, while "low-reward" images were associated with a 50% chance to win two 

points. If they chose "No" (pressed the M button on the keyboard), they always got one point 

and, importantly, were able to see what they could have gained (i.e., 0, 2, or 10) if they chose 

"Yes" on that trial. This way, they were still able to learn 1) the associated value (if two or 10 

points were assigned on that trial) and 2) whether they won by not choosing “Yes” on that trial 

(if 0 was assigned on that trial). If they could not choose within two seconds, it was counted as 

"Miss." 

Unbeknownst to participants, we paired images so that some images always predicted 

other images on the following trial. This led to four types of pairings (High-High, High-Low, 

Low-High, and Low-Low; Fig. 1B). All structured pairs were pseudo-randomized within the 

stream such that no immediate repetition of a pair (e.g., ABAB) or two sets of pairs (e.g., 
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ABEFABEF) could occur. The 32 fractal images (16 pairs) were repeated four times within each 

block. With a total of five blocks, each image/pair appeared a total of 20 times. The 16 pairs 

were equally divided into four of each of the pairing conditions. 

 

 

Following the learning phase, the recognition phase began. Participants were given on-

screen instructions before they began the recognition phase. This phase involved a two-

alternative forced-choice task in which participants were asked to choose which of two two-

image sequences was more familiar (Fig. 2A). One of the sequences was a sequence of a target 

pair, and the other one was a sequence of a foil pair. The target pair was a structured pair that 

was presented multiple times during the learning phase (e.g., AB, CD, EF, etc.). Foil pairs were 

recombined from pairs constructed from using the first image of one target pair and the second 

image of another target pair (e.g., AD). Each target and foil pair were presented four times 

during the test phase. We constrained each target pair type (in terms of reward) to match with all 

Figure 1. A) General procedure of the learning phase in Experiment 1. B) Pairs were equally 

divided into four reward variations (High-High, High-Low, Low-High, and Low-Low). 
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types of foil pairs (e.g., High-High (target) vs. High-High (foil); High-Low (foil); Low-High 

(foil); Low-Low(foil)) in each presentation. No feedback was given during this phase, and 

participants had unlimited time to respond. 

After the recognition phase, participants were asked to remember the value of all images 

that they saw during the learning phase and choose whether they had high or low-values in a 

two-alternative forced-choice paradigm. All 32 images were presented one by one in a random 

order (Fig. 2B), with no time constraints and no feedback provided. 

 

RESULTS 

A two-way repeated measures ANOVA (value of image x block) on risky choice 

proportion (i.e., choosing yes) showed a significant main effect of value of image, F (1, 30) = 

48.04, p < .001, ηp² = .616 (but no main effect of blocks, F <1) and an interaction between block 

and value, F (4, 120) = 12.48, p < .001, ηp² =.3. Proportion of making a risky choice to high-

Figure 2. General procedure of the memory tests. (A) Example of the recognition test. (B) 

Example of the reward memory test. 
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value images gradually increased across blocks, and the opposite was observed with low-value 

images (Fig 3). 

 

 

In regards to the recognition phase, a one-sample t-test against chance (50%) yielded 

significant learning only for the High-High condition, t(30)= 2.71, p =.01, d=.49. In addition, 

with a 2 (value of first image, high or low) x 2 (value of second image, high or low) repeated 

measures ANOVA, we only found a significant main effect of the first image such that there was 

better recognition when the first image of a pair was a “High” image, F(1, 30) = 6.41, p = .017, 

ηp² = .17 (Fig. 4). No main effect of the second image nor interaction were found (F < 1). 

Bayesian Repeated Measures ANOVA (using a position of image as a factor; the first or the 

second position in a pair) showed evidence that the effect of value of the second image favored 

the null hypothesis (main effect of the second position, BF01 = 3.425; interaction, BF01 = 

2.725), indicating mild evidence against the possibility of an effect of second-image value. To 

ensure that results were not impacted by foil pair value, we conducted a 2 (value of first image, 

Figure 3. Proportion of making a risky choice throughout blocks. In this and all other figures, 

error bars represent standard error of the mean. 
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high or low) x 2 (value of second image, high or low) repeated measures ANOVA based on foil 

type, which resulted in no significant main effects and no interaction of foil value on recognition 

accuracy, all F <1.  

 

 

DISCUSSION 

Previous research found no differences in VSL amongst no-, low-, or high-reward 

conditions (Rogers et al., 2016). However, previous efforts did not explicitly draw attention to 

value during exposure to statistical associations. In the current study, using a risky choice task, 

the participants’ task was to learn the value of images, which drew attention explicitly to reward 

during exposure. Under these constraints, we found better recognition for pairs when the first 

image of the pair was a high-reward image.  

A number of mechanisms might explain this finding, with variations in attention caused 

by associated value being one candidate. In VSL, the first item of structured pairs plays an 

important role in predicting and evaluating subsequent outcomes during the acquisition of 

Figure 4. Accuracy at choosing target pairs over foil pair in four reward variations. 
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statistical regularities (Turk-Browne et al., 2010). Reward could impact VSL by drawing intense 

attention to the high-reward image that was located in the first position of a pair. As we do not 

see any benefit for pairs where the high-reward image appeared second (i.e., Low-High pairs), 

we speculated that value information might interact with VSL because attention is engaged with 

greater frequency and/or intensity when the first image of a pair is associated with high-reward, 

in advance of the predictable second image. This in turn enables learning of the association. On 

the other hand, if the first image of a pair did not receive such priority (i.e., the low value first 

image), VSL may not be fully engaged. In Experiment 2, we investigated the neural correlates of 

how reward variations affect the learning of statistical regularities and probe the underlying 

mechanisms of our finding that reward associations shape VSL. We mainly focused on how 

attentional processing is involved in this interaction and sought to find whether high reward 

would affect VSL by shaping the propensity of the system to learn contingencies.  

EXPERIMENT 2 

To investigate the neural basis of how reward impacts VSL, we measured brain responses 

to visual images that were associated with both varying levels of reward and sequential 

contingencies, using event-related fMRI. We examined the neural activation of the first and the 

second image in pairs, and how it differed according to the amount of reward (high vs. low). We 

also compared images with structural information (i.e., pairs) and without such information (i.e., 

singletons) in each of high and low-value (e.g., high paired images vs. high singleton; low paired 

images vs. low singleton), and asked how the varying level of reward affected the processing of 

statistically structured information. 

METHOD 
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Participants 

Thirty University of Delaware students who were 18-40 years of age each participated in 

one 2-hour long experimental session (mean age: 21.6; 22 females). One participant did not show 

above chance levels of learning in the last reward memory phase, so that participant was 

excluded from further analysis. All participants were right-handed, reported having normal color 

vision, and were compensated $20/hour. All procedures were approved by the University of 

Delaware Institutional Review Board. 

Stimuli, Apparatus, and Procedure 

In Experiment 2, a total of 48 fractal images were used. 32 images were assigned to 16 

pairs, and the remaining 16 images were used as singletons. The added singletons allowed us to 

directly compare the differences in neural activity for images that contained statistical structure 

information and images that do not. 

There were four phases, 1) the risky choice task (i.e., the learning phase), 2) the passive 

viewing task, 3) the recognition test, and 4) the reward memory test. Participants performed the 

risky choice task and the passive viewing task inside of the scanner, and two memory tests were 

performed outside of the scanner. The rules of the risky choice task were identical to Experiment 

1. However, the procedure timing was modified to accommodate fMRI analysis. In Experiment 

2, there were four runs of the risky choice task, and in each run, a new set of four pairs and four 

singletons were presented, with each repeating six times within the block. We chose six 

repetitions based on prior studies showing evidence of learning even with a small number of 

repetitions (Turk-Browne et al., 2010), and so that we could introduce new images in each run. 

Additionally, we included jittered intervals between 1) the choice phase and feedback phase of 

the trial and 2) the feedback phase of the trial and the next image presentation (Fig. 5). Jittered 
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intervals consisted of 2s, 3s, 4s, or 5s, and they were evenly divided across conditions and 

presented in a randomized order. During the risky choice task phase, participants responded with 

an MRI-compatible button box. Following the four learning runs, a passive viewing run was 

performed. In this run, all 48 images were presented one more time, with each of the 16 pairs 

presented in pair-wise order and 16 singletons randomly presented in between pairs. Participants 

were asked to focus on each image but otherwise passively view them. Each image was 

presented for one second followed by a jittered interval [2s, 3s, 4s, or 5s] 1. Despite the fact that 

these modifications (e.g., newly presented pairs and singletons in each run, jittered intervals, and 

passive viewing task) may yield different patterns of behavior results as compare to Experiment 

1, we modified the experimental settings to follow the best approach to measure the neural 

responses of how rewards impacts VSL.  

After all runs, participants completed the recognition test and reward memory test outside 

of the scanner. The procedures for the recognition and reward memory tests were the same as 

Experiment 1, and all 48 images (including singletons) were shown in the reward memory test. 

With the experimental design modifications described above, we anticipated the possibility that 

the recognition and the reward memory tests may not result in the same pattern. The incentive 

was provided based on the points participants earned during the risky choice task, and points 

were converted to a maximum of $15 (i.e., total points, maximum of 900, were divided by 60 to 

determine payout). Participants were informed at the beginning of the experiment of the possible 

reward and that points would be converted to cash rewards. 

                                                           
1 Due to time constraints, twenty-one participants performed one run of passive viewing, and eight participants 

performed three runs of passive viewing. 
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Data acquisition 

Neuroimaging data were acquired on a 3T Siemens Prisma system using a 64- channel 

head/neck coil. One high-resolution T1-weighted MPRAGE structural image was collected (0.7 

mm isotropic voxels) for anatomical information. Functional scans consisted of a T2*-weighted 

Siemens Multiband (multiband factor of 8) EPI sequence with 80 slices acquired in an 

interleaved manner, and with an oblique axial orientation (approximately 25° from anterior 

commissure/posterior commissure line). The in-plane resolution was 2.0 mm x 2.0 mm, and slice 

thickness was 2.0 mm with no skip (TR=1 s, TE = 32 ms, flip angle 61°), resulting in isotropic 

voxels. Each learning run consisted of 784 volumes and lasted 13 minutes and four seconds, and 

each passive viewing run contained 237 volumes and lasted three minutes and 57 seconds. 

Figure 5. General procedure of the learning phase in Experiment 2. 
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Structural and Functioning Processing 

Data analyses were performed using fMRIB Software Library (FSL, 

www.fmrib.ox.ac.uk/fsl) version 5.0.9, FMRI Expert Analysis Tool (FEAT) version 6.0 

(Jenkinson et al., 2012), and the AFNI software package (Cox, 1996). For structural scans, we 

first performed skull-stripping by using BET (Smith, 2002), and then registered to a standard 

MNI152 2-mm template. For functional runs, data were first de-obliqued (AFNI’s 3dWarp) and 

re-oriented to match the standard template (fslreorient2std). Then, data were motion corrected, 

smoothed (8 mm FWHM Gaussian kernel), and high-pass temporal filtered with a 100s cutoff.  

At the first-level analysis of the risky choice task phase, a total of 116 runs (four runs, 29 

participants) were modeled using a standard GLM approach. Fifteen explanatory variables (EVs) 

were set up: HH-First, HH-Second, HL-First, HL-Second, LH-First, LH-Second, LL-First, LL-

Second, High-Singleton, Low-Singleton, Choice-Yes-Win, Choice-Yes-Lose, Choice-No-Win, 

Choice-No-Lose, and the first presentation of each image as a regressor of no interest. The first 

presentation of all images was not included in the reward/location variables, because there had 

been no opportunity to learn either associated value or statistical contingency. For the passive 

viewing task, a total of 45 runs (one run: 21 participants; three runs: eight participants) were 

modeled using a standard GLM. Ten explanatory variables (EVs) were set up: HH-First, HH-

Second, HL-First, HL-Second, LH-First, LH-Second, LL-First, LL-Second, High-Singleton, 

Low-Singleton. Regressors were unit-height boxcar functions that modeled the appearance of 

image (two seconds duration) or the response / outcome (two seconds duration), and were 

convolved with a double-gamma canonical hemodynamic response function. A second-level, 

fixed-effect analysis was then used to combine across four learning runs within each participant 

for the learning phase and up to three passive viewing runs. Finally, a third-level mixed-effects 
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analysis was used to combine participants’ data. Third-level results were cluster-corrected for 

multiple comparisons using Randomise, FSL's nonparametric permutation testing tool 

(Jenkinson et al., 2012), with 5000 permutations and threshold free cluster enhancement (TFCE). 

Results are FWE-corrected within each analysis. 

Our primary interest was examining any effect uniquely driven by the high-value first 

images (H1) compared to the low-value first images (L1), to uncover activity putatively 

associated with attention-guided or prioritized processing coinciding with reward and order. We 

also ran contrasts to investigate any differences between high/low-value images that appeared 

with or without statistical structure (e.g., H1 or H2 > High-value singleton (Hsin); L1 or L2 > 

Low-value singleton (Lsin), and vice versa). This approach allowed us to explore the potential 

for reward to influence statistically structured or unstructured images (i.e., pairs vs singletons), 

as the additional associative information bound to structured images (or lack thereof for 

singletons) may predict learning based on their learned status as a high or low reward image. For 

the passive viewing phase, we focused on whether there is any relationship between reward 

contingencies and serial position even when the risky choice task was removed. If so, it would 

suggest that reward-associated structured or unstructured images continue to be represented 

uniquely outside of reward-related contexts. 

RESULTS 

fMRI data  

Learning phase 

To explore the potential impact of reward on early constituent item in a temporal 

sequence, we first uncover any differences in neural responses between the high-value first 
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image (H1) and the low-value first image (L1) in pairs, to examine whether differences would be 

consistent with differences in attentional engagement. Secondly, we were interested in 

contrasting any such observations with differences that might arise in response to high-value 

second images (H2) vs. low-value second images (L2), and high-value singletons (Hsin) vs. low-

value singletons (Lsin), to ask whether structure modulated this response.   

The contrast of the high-value first images versus the low-value first images (i.e., H1 > 

L1) yielded significant clusters in middle temporal gyrus, superior temporal gyrus, 

parahippocampal gyrus, temporal fusiform cortex, hippocampus, amygdala, thalamus, 

orbitofrontal cortex (OFC) (all bilaterally) as well as right inferior frontal gyrus (IFG), left lateral 

occipital cortex (LOC), right accumbens, right putamen, left anterior cingulate gyrus (ACC), and 

left paracingulate gyrus (Table 1 and Figure 6). To examine whether these results were driven 

solely by the value difference (i.e., high vs. low), we contrasted the activity provoked by the 

high-value second images with that in response to the low-value second images (i.e., H2>L2 and 

L2>H2), but no significant difference was observed. There was also no significant difference 

between high-value singletons and low-value singletons (i.e., Hsin>Lsin and Lsin>Hsin). 

Additionally, a statistical comparison of the interactions between 1) (H1-Hsin) and (L1-Lsin), 

and 2) (H1-L1) and (H2-L2) was derived. The contrast of (H1-Hsin) > (L1-Lsin) yielded greater 

activation in the right postcentral gyrus, right precentral gyrus, left middle temporal gyrus, right 

superior temporal gyrus, left hippocampus, left amygdala, and other regions (Table 2 and Figure 

7). The lack of any observable difference between high-value singleton and low-value singleton, 

and the significant interaction in many regions, supports the conclusion that H1 > L1 outcomes 

are not driven solely by the value difference, but rather an interaction between statistical 

regularity and value differences. With the contrasts of (H1-L1) and (H2-L2), no significant 
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clusters were observed when using Randomise2. The contrast of (H2 – Hsin) and (L2 – Lsin) 

revealed no significant clusters, which again supports the idea that the value difference is not the 

only factor that drives the findings from H1 > L1. 

Considering these activations in conjunction with our results from Experiment 1, these 

results suggest an interaction of value processing and statistical regularity, such that high-value 

first images (i.e., predictive images) in particular provoke deeper processing and greater 

attentional engagement than low-value predictive images. The greater activation in the IFG, left 

ACC, and LOC support our hypothesis that attention plays an important role in enhanced 

processing of the high-value first images.  

  

                                                           
2 However, when clusters were defined using a family-wise error (FWE) correction following a Z> 2.8 threshold (p 

< .005), based on Gaussian Random Field theory, we found greater activations in right LOC, with cluster size 

(voxels) as 443, Z= 3.776, and peak MNI (mm) on 42, -84, -8 (x, y, z). 
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Table 1. Result of the contrast with H1>L1. In this and all other tables, clusters with five or fewer voxels 

were not reported.  

Anatomical Label Hemisphere 
Cluster size 

(voxel) 

P value 

(TFCE) 

Peak MNI, 

mm 

High value first image (H1) > Low value first image (L1) 

Middle Temporal Gyrus, Superior 

Temporal Gyrus, Parahippocampal 

Gyrus, Temporal Fusiform Cortex,  

Hippocampus, Amygdala, 

Thalamus, Orbitofrontal Cortex 

Left 9220 0.009 -54, -28, -4 

Parahippocampal Gyrus, Temporal 

Fusiform Cortex,  

Hippocampus, Amygdala, 

Thalamus, Accumbens 

Right 2360 0.014 26, -34, -16 

Middle Temporal Gyrus, Superior 

Temporal Gyrus,  

Supramarginal Gyrus, Planum 

Temporale, Parietal Operculum 

Right 890 0.034 72, -32, 2 

Orbitofrontal Cortex, Inferior 

Frontal Gyrus 

Right 122 0.041 28, 20, -22 

Frontal Pole Left 54 0.04 -16, 50, 42 

Cingulate Gyrus Left 23 0.041 -2, -12, 34 

Occipital Fusiform Gyrus Right 13 0.046 30, -68, 0 

Lateral Occipital Cortex Left 8 0.048 -28, -88, 20 

Paracingulate Gyrus Left 6 0.05 -4, 46, 8 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.04.04.025668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.04.025668
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running head: REWARD IMPACTS VSL 

24 
 

Table 2. Result of the contrast with (H1-Hsin) > (L1-Lsin).  

Anatomical Label Hemisphere 
Cluster size 

(voxel) 

P value 

(TFCE) 

Peak MNI, 

mm 

 (H1 - High Singleton) > (L1 - Low Singleton) 

Postcentral Gyrus, Precentral 

Gyrus 

Right 203 0.033 26, -26, 68 

Planum Temporale, Superior 

Temporal Gyrus 

Right 145 0.041 50, -32, 14 

Middle Temporal Gyrus, Superior 

Temporal Gyrus  

Left 35 0.042 -66, -28, 0 

Hippocampus, Amygdala Left 22 0.037 -20, -10, -20 

Planum Temporale Right 10 0.048 64, -10, 2 
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Figure 6. The H1 > L1 contrast yielded clusters that included middle temporal gyrus, superior 

temporal gyrus, parahippocampal gyrus, temporal fusiform cortex, hippocampus, amygdala, 

thalamus, OFC (all bilaterally) as well as right IFG, right putamen, left ACC, left LOC, right 

accumbens, and left paracingulate gyrus. From top to bottom, coordinates are centered on left 

IFG, left OFC, left ACC, and left hippocampus. In this and all other figures, coordinates are in 

MNI standard space. 
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Figure 7. The (H1-Hsin) > (L1-Lsin) contrast yielded significant clusters in the right postcentral 

gyrus, right precentral gyrus, left middle temporal gyrus, right superior temporal gyrus, left 

hippocampus, and left amygdala. Top row coordinates are centered on right precentral gyrus, 

and bottom row coordinates are centered on left hippocampus.  

Following up on these results, we examined how statistical regularities modulate 

responses, keeping value constant. We examined four contrasts: 1) H1 vs. Hsin, 2) H2 vs. Hsin, 

3) L1 vs. Lsin, and 4) L2 vs. Lsin. We observed significant clusters for Lsin > L1 and Lsin> L2. 

The contrast of Lsin > L1 showed greater activation in middle temporal gyrus, hippocampus, 

amygdala, putamen, LOC, and other regions (Table 3 and Figure 8A), and the contrast of Lsin > 

L2 resulted in clusters in similar areas (Table 4 and Figure 8B). Comparisons between high-

value paired images and high-value singletons did not yield any significant differences.  
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Table 3. Result of the contrast with Lsin>L1 

Anatomical Label Hemisphere 
Cluster size 

(voxel) 

P value 

(TFCE) 

Peak MNI, 

mm 

Low-value singleton (Lsin) > Low-value first image (L1) 

Middle Temporal Gyrus, 

Superior Temporal Gyrus, 

Caudate, Parahippocampal 

Gyrus, Temporal Fusiform 

Cortex, Hippocampus, 

Amygdala, Cingulate Gyrus, 

Thalamus, Putamen, Postcentral 

Gyrus, Planum Temporale, 

Precentral Gyrus, Lateral 

Occipital Cortex, Ventricle, 

Right cerebellum, Accumbens 

Both (unless 

stated 

specifically) 

44022 0.009 10, -34, 58 

Precuneous Cortex Left 146 0.036 -22, -48, 26 

Lingual Gyrus Left 32 0.046 -6, -70, 2 

Cerebellum Left 32 0.046 -4, -46, -12 

Intracalcarine 

Cortex ,Precuneous Cortex 

Right 8 0.05 6, -66, 12 
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Table 4. Result of the contrast with Lsin>L2 

Anatomical Label Hemisphere 
Cluster size 

(voxel) 

P value 

(TFCE) 

Peak MNI, 

mm 

Low-value singleton (Lsin) > Low-value second image (L2) 

Middle Temporal Gyrus, 

Superior Temporal Gyrus, 

Precuneous Cortex, 

Supramarginal Gyrus 

Right 1903 0.02 22, -52, 30 

Caudate, Pallidum, Putamen Right 670 0.021 16, 4, 26 

Ventricle Both 145 0.041 0, 4, 6 

Precuneous Cortex Left 63 0.038 -24, -52, 26 

Orbitofrontal Cortex, Frontal 

Pole, Caudate, Putamen 

Right 52 0.042 22, 32, -6 

Temporal Occipital Fusiform 

Cortex 

Left 48 0.048 -40, -44, -10 

Planum Polare Right 24 0.044 42, -24, -4 

Inferior Temporal Gyrus, Lateral 

Occipital Cortex 

Left 6 0.049 -48, -66, -14 
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Figure 8. A) The contrast of Lsin > L1 showed greater activation in middle 

temporal gyrus, hippocampus, amygdala, putamen, and LOC. B) The contrast of 

Lsin > L2 also showed significant activations in middle temporal gyrus, 

hippocampus, inferior temporal gyrus, amygdala, putamen, and LOC. From top to 

bottom row, coordinates are centered on right caudate, right precentral, right 

caudate, and right LOC. 
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We were not able to find any significant differences with contrasts scrutinizing the first 

images of paired images > singletons (see Turk-Browne et al., 2010). With our design, however, 

paired images contained not only statistical structure but also reward information, and the 

interaction between these two variables may drive a different pattern of results. Rather, we found 

that low-value singletons showed greater activity than low-value predictive (L1) images in areas 

recognized for playing a role in processing reward information (e.g., caudate, putamen, 

hippocampus). These results suggest that our (H1-L1)>(Hsin-Lsin) interaction may have been 

driven predominantly by differences in the way that L1 images are processed compared to low-

value images that are non-predictive.  

Passive viewing phase 

During the passive viewing phase, participants were not required to perform any task 

other than to focus on each image as it goes by. We were interested in seeing whether any 

reward/structure related findings from the risky choice task phase would extend into other 

contexts (i.e., a context where participants are no longer making a choice or actively earning 

reward). However, we were unable to find similar patterns of activity with contrasts we ran with 

the risky choice task. We suspect that failure to observe patterns of activity similar to that found 

for the learning phase is possibly due to a lack of power, from only having time to collect data 

from a single run of the passive viewing task for most participants. This will be addressed further 

in the general discussion section.  

Behavior data 

We analyzed participants’ choices (i.e., yes or no) for the risky choice task for each time 

presentation (1st to 6th) collapsed over runs. As shown in Figure 9, a two-way repeated measures 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.04.04.025668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.04.025668
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running head: REWARD IMPACTS VSL 

31 
 

ANOVA (value of image x number of presentation) on risky choice proportion (i.e., choosing 

yes) showed a significant main effect of value, F (1, 28) = 51.21, p < .001, ηp² = .647, and a 

trend (but not significant) of main effect of the number of presentation, F (1, 28) = 2.22, p 

= .055, ηp² = .074. A significant interaction between value of image (high or low) and the 

number of presentation (1st to 6th) was found, F (5, 140) = 29.46, p < .001, ηp² =.513. 

Proportion of making a risky choice was equally high for both high-value and low-value images 

at the first presentation, but across the second to sixth presentation, the proportion of making a 

risky choice on high-value images gradually increased, and the opposite was observed with low-

value images. 

 

Participants completed two memory tasks after scanning: the recognition test and the 

reward memory test. As described earlier, there are several differences in design between 

Experiment 1 and Experiment 2, and based on these differences, the replication of behavior data 

was not guaranteed. In addition, we added the passive viewing task (one run: 21 participants; 

three runs: eight participants) after the learning phase, and this task might drive a different 

pattern of results.  

Figure 9. Proportion of making a risky choice by the number of presentations, split by value. 
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For the recognition test, a one-sample t-test of recognition accuracy against chance (50%) 

yielded significant learning for all pair conditions; High-High: t(28)=3.3, p=.002, d=.62, High-

Low: t(28)=3.26, p=.002, d=.6; Low-High: t(28)=3.1, p=.004, d=.57; Low-Low: t(28)=2.46, 

p=.02, d=.45 (Fig. 10). A 2 (value of first image, high or low) x 2 (value of second image, high 

or low) repeated measures ANOVA did not show any significant main effects nor an interaction 

(all p>.5; Fig. 10). In addition, a 2 (value of first image, high or low) x 2 (value of second image, 

high or low) repeated measures ANOVA did not reveal any main effects nor an interaction of 

foil type (i.e., foil pairs of High-High, High-Low, Low-High, and Low-Low conditions; F <1). 

Although the behavioral results of Experiment 1 did not replicate, this is likely due to design 

differences. This will be discussed further in the general discussion section.  

 

In the last reward memory phase, the mean proportion correct was 0.79 (SD: 0.13, 

t(28)=11.75, p < .001, d=2.18 ; one-sample t-test against chance, 50%). When we divided the 

results into the image type (the first, second images for pairs and singletons) and the reward type 

(high and low images), a repeated measures ANOVA did not show any significant main effect 

nor interaction (all p>.2; Fig. 11).  

Figure 10. Accuracy at choosing target pairs over foil pair in four reward variations. 
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DISCUSSION 

In Experiment 2, we measured brain responses to visual images that were associated with 

both varying levels of reward and statistical contingencies. We found that the high-value first 

image (i.e., H1) led to greater activity in areas including IFG, left ACC, LOC, fusiform gyrus, 

orbitofrontal cortex (OFC), accumbens, precuneous cortex, parahippocampal gyrus, middle 

temporal gyrus, amygdala, hippocampus, and putamen as compared to the low-value first image 

(i.e., L1). These findings suggest that H1, in comparison to L1, led to greater attentional 

engagement (Beck & Vickery, 2020; Murray & Wojciulik, 2004; Stokes et al., 2009), and may 

enhance associative learning thusly. The contrasts of (H1-Hsin) > (L1-Lsin) yielded greater 

activations in the precentral gyrus, middle temporal gyrus, hippocampus, and amygdala, which 

supports the possibility that the differences between the high-value first image and the low-value 

first image are not driven solely by the value difference, but by an interaction of predictiveness 

and value. As no difference was found between the high-value singletons and the low-value 

Figure 11. Accuracy at choosing reward value (high or low). 
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singletons, the greater activation in precentral gyrus in this interaction also supports our 

hypothesis that the first image of the pair that was associated with high value received the 

attentional priority in comparison to that was associated with the low value (Fockert et al., 2004). 

For contrasts comparing first images and singletons (e.g., H1>Hsin and L1>Lsin), we did 

not replicate the findings of Turk-Browne et al. (2010). We speculate that embedded reward 

information possibly altered learning in such a way that made it unique versus when VSL occurs 

in the absence of reward. The cover task was also quite different, which might contribute to 

differences in how VSL manifests. In addition, we found that low-value predictive images (i.e., 

L1) provoked less activity than non-predictive low-value singletons. In contrast, there was no 

difference in high-value comparisons between paired images and singletons. This suggests that 

the predictive nature of a stimulus may specifically down-regulate responses to low-value 

images, and thus that attention was less guided/prioritized to the low-value first image than the 

high-value first image.  

GENERAL DISCUSSION 

Across two experiments, we provided behavioral and neural evidence that reward may 

alter visual statistical learning. In Experiment 1, better recognition of pairs when the first image 

of a pair was associated with high-value was observed, and this effect was especially pronounced 

for High-High pairs. We hypothesized that selective attention may play an important role in this 

finding, such that the first image of the pair that was associated with high value may receive the 

attentional priority in comparison to that was associated with the low value attention. Neural 

evidence supports our hypothesis, such that when the first image of a pair was associated with 

high-value, in comparison to the first image being associated with low-value (i.e., H1 > L1), 

greater BOLD response was observed in LOC and frontal and parietal areas, such as inferior 
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frontal gyrus, precentral gyrus, and anterior cingulate gyrus, all regions whose activity is known 

to scale with attentional processing (Beck & Vickery, 2020; Corbetta & Shulman, 2002; Fockert 

et al., 2004). We did not observe similar differences with comparisons of H2 vs. L2, or Hsin vs. 

Lsin, which implies that not all high-value images led to attentional prioritization compared to 

low-value images. Rather, a combination of predictiveness and reward value was crucial in 

provoking this response. In VSL, the predictive image plays an important role, provoking 

anticipatory responses (Turk-Browne et al., 2010). Our findings suggest that VSL occurs 

differentially as a function of the magnitude of reward associated with the first image. In other 

words, when different amounts of reward are embedded in visual regularity, the rewards may 

interact with VSL in a way that it only impacts on the first position of the structured sequence, 

and selective attention may play an important role in formatting this interaction. 

We additionally predicted that if greater attentional engagement occurs in the high value 

first image than the low value first image, it may yield greater activations in brain areas that have 

been known to play an essential role in associative learning (e.g., hippocampus, precuneous 

cortex, parahippocampal gyrus; Turk-Browne et al., 2010). Our results showed that in addition to 

the above areas, brain regions that have been known to play an important role in value 

processing (e.g., OFC, accumbens, and caudate; Baliki et al., 2013; Kringelbach & Rolls, 2004) 

showed greater activations in the high value image than the low value first image. Again, these 

findings are not driven solely by the value difference (i.e. high value vs. low value), but rather 

the interaction between statistically structured information and reward. With additional analyses, 

we showed that this value difference was specific to predictive items, suggesting that 

predictiveness and value interact in determining neural responses to images.  
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In Experiment 2, the processing of reward information elicited different patterns with 

behavior and neural approaches. Our behavioral results of learning of reward associations (i.e., 

the reward memory test) showed no difference in reward memory as a function of the structured 

information, which means that predictive structure (i.e., the first position of a pair vs. the second 

position of a pair vs. singleton) did not impact the recognition of reward information. The result 

of the reward memory test in Experiment 1 did not show any difference in reward memory of 

high or low images as a function of its position in a pair as well. However, our neural evidence 

reveals that reward-related responses were differentiated based on which structural position the 

reward was embedded in. We speculate that compare to the neural method, differences in the 

binding of reward based on stimulus-stimulus predictiveness may be too subtle for behavioral 

methods to uncover. The recognition task (i.e., two-alternative forced choice task) prior to the 

reward memory test might cause the subtler effect due to the presentations of foil pairs, which 

might interfere the reward memory as a function of the structured information. 

Different results of the recognition phase between Experiment 1 and 2 may also be driven 

by design differences. For example, in Experiment 2, the gradual introduction of new pairs 

throughout the experiment might have cued learning and led to more generic learning effects. In 

addition, the timing of the risky choice task was different due to jittered intervals, and singletons 

were newly used in Experiment 2 as well. We presented singletons in between pairs during the 

learning phase to compare neural responses between paired images and singletons, but the 

inclusion of singletons might result in different patterns of behavior as compared to presenting 

only pairs, like in Experiment 1. Among these different experimental settings between 

Experiment 1 and 2, we suspect that the passive viewing task, where all pairs appeared one to 

three times across all participants, may play a critical role in yielding the different patterns. In 
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this phase, participants were not required to make any choice, which means they did not have to 

process information related to reward variation. Hence, there is a possibility that the overall 

recognition rate may be increased across the board and eliminate the differences between reward 

variations.  

To our knowledge, this is the first work to provide evidence of behavioral (Experiment 1) 

and neural responses (Experiment 2) being modulated by the interaction of reward and VSL. As 

mentioned above, Rogers et al. (2016) first explored the interaction between reward and VSL, 

but the reward variations (i.e., no-, low-, or high-reward) did not affect the learning of 

regularities. In our work, by using a risky choice task, we enhanced participants’ engagement to 

the task and value, and were able to observe an effect of reward on VSL. This implies that robust 

engagement with value information may be necessary to induce interactions with the learning of 

visual regularities. In conjunction with other recent results highlighting the importance of task 

during exposure shaping VSL (Vickery et al., 2018), the current study highlights the need to 

carefully consider context during exposure to regularities, and how those contexts shape 

incidental learning. 

With respect to the passive viewing task, we were unable to observe a similar pattern of 

activity as that found in the risky choice task phase. We suspect that this failure is possibly due 

to a lack of power, due to our only having time to collect data from a single run of the passive 

viewing task for most participants. Another possible explanation for lack of such a finding is that 

the effect of reward in VSL may only arise within the context of tasks that draw attention to 

value, like our risky choice task. Therefore, simply viewing the sequence of images may not 

yield that same neural responses as actively making a risky choice on each image. Finally, 

because we introduced new sets of images in each learning run, it is possible that persisting VSL 
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effects were variable across early vs. late, thus complicating detection of neural differences in 

our paradigm. Further studies of how the interaction between reward and VSL may affect the 

later representation of memory even outside of a reward-related context may be needed. 

Another possible limitation in this study relates to the gambling task. There is an optimal 

response on high-reward trials but no optimal response for low-reward trials. In other words, the 

expected value for a yes response is higher than for a no response with high reward images, but 

the expected value was equal for yes and no responses with low reward images. However, the 

purpose of the gambling task is to enhance participants’ motivation to learn the value and to 

draw attention explicitly to reward during exposure. We, first, did not observe equal levels of 

choosing yes or no with low reward images even though the expected value is the same; rather, 

participants tend not to choose to gamble with low reward images throughout the task. Secondly, 

even if optimality may determine the different degrees of value learning, our neural results 

demonstrate that not only the higher value but also the order in the sequence matters, such that 

only the early items in a temporal sequence and value interact in determining neural responses to 

images.  

The set of present studies provide evidence that VSL is modulated by reward. When a 

high reward is embedded in the first location of a statistically structured pair, it aids learning: a 

result we found support for in neural evidence. Several brain areas that reflect attentional 

capture, reward processing, associative learning, and the intermixed effect among them support 

the notion that reward contingencies affect VSL. These findings highlight the fact that reward 

may play a role similar to selective attention in VSL, such that the more the image can guide 

attentional resources, the better it can convey the reward information, and ultimately, facilitate 

visual statistical learning.  
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