
MOOD AND ANXIETY DISORDERS (C HARMER, SECTION EDITOR)

Remote Monitoring for Understanding Mechanisms
and Prediction in Psychiatry

George Gillett1,2 & Kate E A Saunders1

# The Author(s) 2019

Abstract
Purpose of Review Technological advances offer the potential to better characterise the symptoms andmechanisms of psychiatric
disorders. This review provides an overview of how remote monitoring might inform understanding of mood and anxiety
disorders, and may be used by clinicians to predict clinical outcomes and treatment response. The review also discusses salient
ethical issues and the field’s future directions.
Recent Findings A range of psychological and physiological remotely-collected data have been associated with clinical symp-
toms and outcomes, including momentary self-report, actigraphy, geolocation and heart-rate variability. Remote monitoring has
shown promise in phenotyping, predicting symptoms and clinical severity, predicting treatment response and has informed
psychological models of anxiety disorders.
Summary Remote monitoring is a diverse field involving the collection of clinically relevant data in naturalistic settings.
Although facing significant practical and ethical challenges, it has shown much potential in developing understanding in the
context of mood and anxiety disorders.

Keywords Remote monitoring . Digital phenotyping . Digital psychiatry . Ecological momentary assessment . Experience
samplingmethods . Actigraphy . Heart-rate variability . Geolocation . Anxiety .Mood disorders

Introduction

Traditional clinical assessment of psychiatric disorders has
been limited by recall and symptom-state bias, while experi-
mental assessment has been criticised for being cross-
sectional in nature and subject to significant interrater variabil-
ity. This is particularly problematic in the context of mood and
anxiety disorders where symptoms are known to be episodic,
fluctuating and context-specific. These limitations have sig-
nificantly impeded the understanding of the mechanisms of
psychiatric illness and the development of effective

treatments. The transdiagnostic nature of many symptoms
poses an additional question, as it remains unclear whether
different disorders share common symptoms or whether these
common symptoms arise from inaccuracies and a lack of sen-
sitivity in diagnostic categorisation.

The rapid evolution of mobile and wearable technology in
the last decade, the ubiquity of mobile networks and high rates
of smartphone ownership have offered new opportunities to
address the challenge of traditional diagnostic techniques.
Smartphones enable the collection of prospective, high fre-
quency self-report data about symptoms in ecologically valid
settings while the wide range of sensors within smartphones
enable collection of passive data such as movement, light
exposure and temperature. High engagement with
smartphones also offers potential to quantify the use of appli-
cations, phone-calls and messaging as a proxy for
symptomology. Wearable technologies such as wrist worn
actigraphs and mobile ECGs devices provide additional data
which can complement symptom monitoring. All these routes
of digital remote monitoring therefore offer the possibility of
capturing signals more representative of the underlying phys-
iology of a disorder in comparison to traditional clinical
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assessment, offering potential to understand mechanisms of
disease in psychiatry.

Here we will review the current literature on the use of
digital remote techniques to inform our understanding of
mechanisms and prediction in psychiatry.

Digital Phenotyping

Digital phenotyping is defined as moment-by-moment quan-
tification of the individual-level human phenotype in situ
using data from personal digital devices [1]. Data can be
collected actively, for example using self-report question-
naires, or passively, for example movement data collected
from a smartphone. Self-report data collected online or via
mobile phones are widely used in clinical and research set-
tings and has been shown to correlate with clinician rated
depressive and manic symptoms on the HDRS-17 and
YMRS [2, 3••]. The resolution and temporal nature of
such data can offer an insight into the mechanisms of
psychiatric disorders.

In bipolar disorder particularly, high frequency prospective
mood monitoring such as that conducted using the
TrueColours [4•] system gives a richer, more accurate pheno-
type than conventional descriptions (Fig. 1). It has revealed a
complex picture in which chronic mood variation – mood
instability - is more typical than the discrete episodes which
form part of the diagnostic criteria. Moreover, self-reported
mood instability is common in the population (14%) and a
risk factor for bipolar disorder [5].

The nature of the nature of mood instability also appears
to be diagnostically specific. In the AMoSS study [6••] par-
ticipants with bipolar disorder or borderline personality
disorder and healthy volunteers reported their mood on a
daily basis using a smartphone app. The three groups
could be clearly differentiated on the degree of mood
instability as well as the way in which different mood
states related to one another.

The temporal relationship between different symptoms
have also been described while phenotyping other diagnostic
groups. Van Voorhees 2018 [7] employed monitoring using
handheld devices to demonstrate that PTSD symptoms pre-
dicted subsequent irritability and hostile affect, but that the
inverse was not true. These findings suggest that trauma
history and symptoms should be implicated in anger
management in this patient group. Employing similar
methods, Simons 2018 found that PTSD symptoms predict
conduct problems the following day in the context of
alcohol dependence [8] and Short 2018 demonstrated the ef-
fect of maladaptive strategies such as avoidance on PTSD
symptoms the following day [9]. In panic disorder Helbig-
Lang 2012 used similar temporal analysis to investigate the

relationship between anticipatory anxiety and panic attacks in
panic disorder and agoraphobia.While panic attacks increased
anticipatory anxiety, heightened anticipatory anxiety did not
precede panic attacks, contrary to cognitive models of panic
[10].

Passive Correlates of Mood States

The rapid expansion in wearable technologies and smartphone
sensors has enabled the collection of data streams that do not
require any active input from users. This passive data provides
information about a range of symptoms and behaviours can be
used to predict current mood state. Phone use has been ex-
plored in a number of studies as social interaction is common-
ly affected by mood state. In bipolar disorder significant cor-
relations have been reported between the length and number
of outgoing phone calls, number of outgoing text messages
per day and symptoms of mania [11]. In bipolar depression
Beiwinkel et al. found that the number of outgoing texts neg-
atively correlated with depressive symptoms on the Hamilton
Depression Rating Scale although a reversal of this correlation
was not observed with the Young Mania Rating Scale score
[12]. Changes in voice and speech are consistently reported as
correlating with mood states in the context of structured
interview calls [13] as well as clinical interactions and unstruc-
tured voice data [14, 15].

Activity as measured using accelerometers have revealed
similarly mixed results with some studies reporting positive
correlations between activity and mood while others have
failed to find any significant relationship [16]. Geolocation
parameters have also been explored in the context of mood
disorders. Palmius et al. were able to predict current depres-
sive symptoms with an accuracy of over 86% in individuals
with bipolar disorder while Faurholt-Jepsen et al. reported
significant positive correlations between cell tower ID chang-
es per day and both rating scale scores (YMRS and HDRS-
17), with depressive symptoms being associated with reduced
movement and manic symptoms associated with increased
movement [17••, 18]. However, the direction of causality re-
mains unclear.

The chronic relapsing and remitting nature of psychi-
atric disorders is such that many researchers have sought
to use remote monitoring to predict future mood states
with a view to enabling earlier initiation of preventative
treatment. A variety of mathematical approaches have
been used including relaxation oscillatory models [19],
control charts [20] and rough paths theory [21] with vary-
ing results. It seems likely that for any model to gain the
necessary accuracy upon which to base treatment deci-
sions, predictions would need to be made at in individual
rather than group level.
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Indication of Underlying Mechanisms

The combination of self-reported mood data and data derived
from wearables is beginning to provide new insights about the
underlying mechanisms in psychiatric disorders. The combi-
nation of actigraphy and heart rate data collected via wearable
devices have revealed a specific circadian phenotype in bor-
derline personality disorder (BPD). Individuals with BPD had
clear evidence of phase delay in the diurnal rhythm of their
activity, sleep and heart rate when compared with bipolar dis-
order and healthy controls. Inspection of correlation coeffi-
cients controlling for gender and employment status revealed
strong associations between sleep/circadian rhythm parame-
ters and symptoms of impulsivity andmood instability in BPD
which were not seen in the other groups. The findings suggest
that disturbances initiating/maintaining sleep may be an exac-
erbating factor for borderline psychopathology and that
stabilisation and consolidation of rest-activity rhythms might
be considered a treatment target [22–24]. In depressed patients
the measurement of HRV as an index of vagal function have
been proposed as a mediator of the relationship between low
mood and cardiovascular disease [25].

Remote monitoring also provides insight into the psycho-
logical mechanisms of mood and anxiety disorders. Using
ecological momentary assessment (EMA) methods, Kashdan
2014 demonstrated an association between momentary expe-
riential avoidance and anxiety symptoms during social inter-
actions in naturalistic settings, highest among participants
with SAD [26]. An EMA study by Wenze 2018 provided
further insight into this association, using lag analyses to dem-
onstrate a bidirectional relationship between experiential
avoidance and negative mood, thoughts and stress [27].

Thompson 2017 used handheld electronic devices to inves-
tigate the role of should affect - the belief of how one should
feel in the moment - in major depressive disorder and gener-
alised anxiety disorder (GAD) in naturalistic settings [28]. In

both disorders, participants reported higher levels of should
positive affect and lower levels of should negative affect than
healthy controls, even once mean affect was accounted for.
Kircanski 2015 used experience sampling methods to demon-
strate prevalent rumination in participants with depression and
anxiety [29], and Ruscio 2015 used EMAmethods to demon-
strate that individuals reported more rumination after stressful
events compared to controls, even after the stressfulness of an
event had been adjusted for, and that rumination predicted
future symptoms of anxiety [30].

As well as psychological mechanisms, remote monitoring
offers insight into how behavioural factors interact with anx-
iety disorders. Farmer 2015 studied the effect of stressful so-
cial events over a period of 2 weeks in participants with SAD
and found increases in negative affect and decreases in posi-
tive affect and self-esteem on days with more stressful social
events, and that this sensitivity to stress was more marked
compared to a group of healthy controls [31]. Likewise,
Morgan 2017 assessed youth with SAD, GAD and/or separa-
tion anxiety and found them more sensitive to positive events
and rewarding social interactions than healthy controls,
experiencing an altered positive affect profile in response to
positive events, informing cognitive and behavioural theories
of anxiety [32].

Applications in Treatment Development

The use of remote monitoring in combination with existing
treatments of known efficacy may also enable greater under-
standing of underlying disease mechanisms as well as predic-
tors of therapeutic response. One of the major barriers to new
drug development in psychiatry is the lack of well validated
early markers of treatment response which means that treat-
ment trials are lengthy and prohibitively expensive to run. The
use of existing treatments to generate early markers of treat-

Fig. 1 example of a mood chart
from an individual with bipolar
disorder. Red lines denote Altman
Mania Rating Scale scores, blue
lines denote Quick Inventory of
Depression Scale scores
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ment response has already been hugely successful in depres-
sion. Using the Emotional Test Battery Harmer et al. have
shown that early changes in negative affective bias predict
subsequent improvement in mood [33]. This is now widely
accepted as providing an early marker of (and cognitive model
for) antidepressant efficacy using short-term drug administra-
tion in healthy volunteers and patient groups. The use of remote
monitoring in this context may enable experimental models for
other diagnoses to be generated. The OxLith trial is using lith-
ium to identify early clinic, neurocognitive and biological ef-
fects of treatment as captured using remote monitoring in com-
bination with a range of imaging modalities [34].

Ethics

Digital remote monitoring also raises a number of ethical
concerns [35]. Of particular interest is respect for privacy and
autonomy, especially with regard to technologies that involve
long-term monitoring and aim to predict or detect illness re-
lapse. For instance, it may be difficult to safeguard autonomy
when collecting data for use in machine learning techniques
where the use of the data is not hypothesis-driven and may
not be clear at time of collection. There is also the possibility
that self-monitoring may encourage coercion or exacerbate
power relationships between service providers and users.

A related ethical concern is that remote monitoring may
affect participants’ identity and encourage medicalisation of
everyday experiences. For instance, a qualitative study
highlighted that participants worry that reactive changes in
mood may be misinterpreted as illness relapse, while others
raised concerns that users themselves may become pre-
occupied with collecting self-report data in naturalistic set-
tings [36•].

Similarly, the collection and storage of large volumes of
data involves risks relating to confidentiality and data security,
especially when data is collected which is not typically under-
stood to be medical in nature. Other potential harms include
the risk that remote monitoring may increase stigma or dis-
crimination against certain groups of people, especially those
with mental illness. Not only may wearable devices attract
stigma, but the use of data and modelling relating to prediction
when used by third parties such as commercial enterprise or
government may result in discrimination against those with
mental disorders [37•]. Likewise, although engagement with
smartphones and wearables is growing, there is concern that
advances may not be shared equally due to individuals’ lim-
ited access to technology.

The use of remote monitoring also raises the possibility of
medical harm. The lack of regulation and validation of many
commercially available remote monitoring methods is

especially relevant in this regard [38]. Participants might be
provided with poor information, or encouraged towards self-
diagnosis and self-treatment rather seeking appropriate sup-
port [39]. Equally concerning are suggestions that when used
inappropriately, remote interventions may even increase
symptoms of anxiety/mental distress [40]. Although remote
monitoring offers a wealth of data to be collected, it is imper-
ative that such data is validated and shown to be clinically
significant before broader conclusions are drawn from it.

Future Directions

The use of remote monitoring has expanded rapidly in recent
years and there are an abundance of publicly and commercial-
ly available applications and wearables. While these are pop-
ular among consumers significant concerns have been raised
about their validity and safety. Nicholas et al. reported that
none of the symptom apps that they identified had been sub-
ject to rigorous research or cited published material and only a
small proportion had a privacy policy (Nicholas et al. 2015).
Many wearables have been shown to give inaccurate readouts
of sleep and activity and none of the commercially available
devices publish their analysis algorithms or allow user to ac-
cess raw data. At present there is no consensus as to how
remotely collected data should be reported or analysed al-
though a set of reporting guidelines for mood data is in prep-
aration [41]. The FDA is now in the process of developing
guidance for the use of digital health medical devices and has
launched a pilot precertification plan for digital health tech-
nology oversight.

There are also broader challenges for clinicians and
service-users when interacting with remote monitoring. A bet-
ter understanding of mechanisms and prediction informed by
remotely collected data may disrupt traditional psychiatric
classifications and may require changes to the phenotyping
of mental disorders. This is especially true as we develop
potential to collect data relating to physiology, movement,
light exposure and other metrics which may not have histori-
cally been thought of as relevant to psychiatric diagnosis.
Nonetheless, such shifts may promise exciting developments
for prediction and treatment in psychiatric care.
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