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Abstract: Photonics offers exciting opportunities for neu-
romorphic computing. This paper specifically reviews the
prospects of integrated optical solutions for accelerating
inference and training of artificial neural networks.
Calculating the synaptic function, thereof, is computa-
tionally very expensive and does not scale well on state-of-
the-art computing platforms. Analog signal processing,
using linear and nonlinear properties of integrated optical
devices, offers a path toward substantially improving
performance and power efficiency of these artificial intel-
ligence workloads. The ability of integrated photonics to
operate at very high speeds opens opportunities for time-
critical real-time applications, while chip-level integration
paves theway to cost-effectivemanufacturing and assembly.

Keywords: integrated optics; optical signal processing;
photonic neural networks; photonic reservoir computing.

1 Introduction

Over the last two decades, the computing landscape has
massively changed. The saturation of silicon technology
scaling started to cripple Moore’s law, and as a conse-
quence, new architectures and integration schemes had to
be developed to maintain the computing performance
roadmaps. The emergence of ultrahigh bandwidth internet
facilitated a new ‘computing-as-a-service’model based on
large flexible disaggregated systems in the cloud and

enabled new applications and services like video stream-
ing, social networks and data-driven business intelligence.
The availability of large amounts of data from, and for,
such services naturally created a desire to extract value
from them. However, because a large part of those data is
noisy, unstructured or incomplete, traditional, statistical
methods have difficulties working properly. This refueled
interest in trainable or even self-learning algorithms that
were already of great scientific interest in the 1960s and
1990s [1]. The revival of neuromorphic computing had been
triggered. Exploiting the now finally available computing
power of silicon technology, large and complex brain-
inspired architectures can be designed, optimized, and
executed, and artificial intelligence (AI) has become a
major area of R&D and an essential part of our daily life.

A big challenge on the path to ultimate brain-inspired
systems is that the brain itself is not yet understood well
enough to take it as a starting point [2]. This holds true at all
levels, from the smallest building block to the overall ar-
chitecture, interaction and memory models. Therefore, in
today’s AI systems, the so-far identified building blocks
and architectures are loosely mapped onto a suitable
technology platform, up to the extent that the term ‘brain-
inspired’ may even be a large stretch. Silicon Comple-
mentary metal-oxide-semiconductor (CMOS) is the most
advanced, highest performance,miniaturized, reliable and
established one. Hence, it is used as the basis for almost all
AI hardware implementations today. To overcome the
fundamental memory bottlenecks of the von Neumann
architecture, it became necessary to advance silicon CMOS
toward novel architectures [3] and enhance its function-
ality in a ‘more-than-Moore’ approach. One key aspect of
the latter is to deeply embed the basic neural network
building blocks like the massively parallel synaptic inter-
connect layers and nonlinear activation functions in the
platform foundation.

The main task in neuromorphic computing is calcu-
lating and optimizing the synaptic interconnects in a
neural network, wherein the signals into the neurons are
weighted and summed throughmanymultiply-accumulate
(MAC) operations. If we consider all synaptic connections
between two network layers, this operation can finally be
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formulated as one large vector-matrix multiplication. The
computational cost of the latter scaleswithN2, withN being
the number of neurons of the neural network layer.
To accelerate the computation of large numbers of these
vector-matrix multiplications during training and infer-
ence of deep neural networks (DNNs), dedicated hard-
ware accelerators were introduced. Examples include
graphics processing units (GPUs) [4] or tensor processing
units [5]. Such accelerators enable parallel and pipelined
processing of MAC operations, fetching data from mem-
ory and writing back the results. This moving back and
forth of data/results between the different memory loca-
tions and the actual computing engines constitutes the
classical von Neumann bottleneck and is attributed to the
bulk of the overall energy consumption (Figure 1). For out-
of-order instruction executions, it is probably the limiting
factor in the overall performance of the classical
computing.

With increasing distance to the processing unit,
memory access becomes increasingly more power
expensive and through larger access latency slows down
computing (Figure 1). Furthermore, the energy for per-
forming arithmetic operations strongly depends on the
required accuracy. To mitigate the massive power con-
sumption of today’s systems, two directions become
clear. First, datamust be kept as local as possible. Second,
operations must be performed at the lowest accuracy
feasible. Using accelerators like GPUs with copackaged
memory is in linewith this concept. However, though data
are kept more local and processing is massively paral-
lelized, processing and memory units are still separated
as in a von Neumann architecture. The urgency of over-
coming these power-driving mechanisms of today’s sys-
tems was recently assessed [7]. Strubell et al. [7] show that
training a state-of-the-art natural language processing
neural network, for which 213-M parameters had to be
optimized on a cloud data center using modern GPUs,
requires around 200 kWh. Even by using partially

renewable energy for running the cloud data center, this
still translates into the estimated emission of 100 kg of CO2

to train one neural network (Figure 2).
Consequently, an enhanced technology platformmust

(1) overcome excessive data motion;
(2) reduce signal processing overhead;
(3) provide synaptic connections resembling the neural

network architecture.

The processor-to-memory data exchange issue can be
largely addressed by pursuing in-memory computing con-
cepts, while the signal processing overhead is reduced by
applying analog signal processing. In the electrical domain,
fascinating new concepts are emerging adhering to the
concepts listed above. For example, the use of computa-
tional memory based on memristive devices enables to
performMAC operations, in-place (or in-memory). The MAC
operation is performed in the analog domain using mem-
ristive devices by exploiting Ohm’s law (multiply operation)
and Kirchhoff’s law (accumulate operation). The input
signal is applied as a voltage across a conductor, and the
resulting current is the multiplication of the voltage and the
conductance. Combining the currents from multiple indi-
vidual conductors leads to the accumulated current. Each
memristive device represents a synaptic weight. Recently,
impressive demonstrations of neural network operations
employing electrical crossbar technology for calculating the
synaptic interconnect were achieved [10]. The memristive
devices can be integrated in the back-end-of-the-line of
CMOS technology and are often implemented based on
phase-changematerials [11] ormetal oxide resistivememory
(OxRAM) devices [12]. The direct cointegration with CMOS
and, hence, high-density implementation is an important
aspect of this technology. Challenges remain in setting the
resistance to the desired value and the retention thereof, as
required for inference, while a well-controllable change of
the resistance is important for efficient neural network
training [13].

(a) (b)

Figure 1: Typical energy required for logic operations (a) and data transfer between various levels of storage or memory and the arithmetic
logic unit (ALU) (b). The impact of the logic operation accuracy and data transfer on the total power consumption is large. Data from the study
by Horowitz [6].
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In the remaining of this paper, we will address the
training and inference of artificial DNNs. DNNs are the
most advanced and widespread applied architectures [14].
The tremendous interest and success originates from
learning algorithms based on backpropagation, with which
synapticweight values in aDNNcanbeoptimized efficiently,
such that the DNN performs a desired task [14, 15].

Fully connected feedforward neural networks with
multiple hidden layers are a typical example of a DNN
(Figure 3b). The basic building block of these networks is
interconnected neurons, wherein each neuron applies a
nonlinear activation function on the sum of all its input
signals (Figure 3a). The neurons are arranged in layers, and
neurons of consecutive layers are connected by a synaptic
(weighted) connection. A DNN has at least two hidden
layers; current state-of-the-art networks often use hun-
dreds of hidden layers. To calculate the neural network
response, a vector-matrix operation xiWi and the nonlinear
activation function are executed for each layer in the sys-
tem. Evaluating the vector-matrix operation is the most
compute-intensive operation in the inference and training
of the neural network. Therefore, the synaptic interconnect
will be a focus of this paper.

2 Prospects of integrated photonic
neural networks

Photonic technologies are widely applied in our daily life.
Integrated photonics, as in silicon photonics [16] and

indium phosphide–based technologies [17], emerged in
solutions for optical communication in long-range, metro
and recently also short-range links. The decisive advan-
tages of optics are the larger bandwidth-distance product,
the massive parallelism, low propagation loss, density and
the availability of broadband optical amplifiers. This en-
ables the transmission of highly multiplexed signals over
large distances through optical fibers [18]. A single optical
amplifier restores the power of a series of wavelength-
multiplexed signals, each operating at bandwidths
exceeding 100 Gb/s. In such an optical link, the integrated
optical technologies mentioned above provide the inter-
face between the electrical system and the optical fiber.
Important integrated optic building blocks are high-speed
electro-optical modulators, detectors and a wide range of
passive optical devices such as couplers, splitters and
wavelength (de)multiplexers. The introduction of optical
technology in data centers, for example, the large dis-
aggregated cloud systems mentioned above, was an
important step for the integrated optic technology plat-
forms. Silicon photonics specifically profited from this new
application as it provides a cost-effective scalable plat-
form, but indium phosphide–based devices and sub-
systems remain vital as well. However, despite advances in
integration, photonic solutions come with an overhead in
terms of number of components, assembly, size, reliability
and hence often cost. The penetration of integrated optic
technology in computing systems showed that it must
provide concrete performance or functionality advantages
at reasonable cost as compared to electrical solutions to be
a viable alternative [18]. Similar considerations will hold

Figure 2: Comparison of the estimated, equivalent CO2 emission for the training of different state-of-the-art deep neural networks for natural
languageprocessing (blue bars)with various everydayactivities (redbars). Equivalent CO2 for the neural networkswas estimatedbasedon the
power consumption required for the training. The equivalent CO2 emission for a neural network architecture search evolving from the
Transformer big model with 979 million training steps was estimated to be 284,000 kg. Training of a single ‘Transformer Big’model with 213
million parameters still emits roughly 100 kg of CO2. Data sources: [7] for the neural network power estimations, [8] for air travel estimation
and [9] for the remaining values.
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for photonics neuromorphic systems. Hence, carefull
considerations on the specific differences optics can bring,
are of utmost importance [19].

Based on the above information, optical links are a
first consideration for applying photonic technology in
neuromorphic computing. Similar as in large-scale
computing systems, optical technology can help provide
bandwidth over distances in a denser or more power-
efficient way than electrical technology. However, this
does not inherently change the computing architecture.
Here, we focus on new applications for photonics, facili-
tating novel ways for performing data movement and
signal processing. In the study by Denz [20] and DeMarinis
et al. [21], an excellent overview is given on the broad
applicability of photonics for neuromorphic computing,
covering optical and nonlinear photonic signal processing,
materials, technology, architectures and applications.
Three major advantages of photonics for neuromorphic
computing are cited. We add a fourth argument:
(1) Large bandwidth, processing of high-speed data.
(2) Massive parallelism based on the ‘superposition of

light’.
(3) Parallel handling of images of arrays of light points –

so-called pixels.
(4) The ability to process signals with low latency, real-

time signal processing.

Also, in the study byDenz [20], light-matter interactions are
described, providing additional functions of importance
for neuromorphic computing. Some photonic materials’
properties of interest are

(1) Electro-optic effect, to control the photonic signal
phase by applying a current or electrical field.

(2) Electroabsorption, to impact the optical signal trans-
mission by an electrical signal.

(3) Trimmable refractive index or absorption, which re-
sults in a persistent change in the material’s optical
properties by applying an optical or electrical signal.
This is of special interest for nonvolatile weights.

(4) Photorefractive effect, local change of the refractive
index through exposure to light.

Many nonlinear optical effects provide ultrafast response
times as well as good reproducibility of the induced change
of the optical properties; the electro-optic Pockels effect is
an excellent example [22]. For analog signal processing,
such properties are crucial as they enable fast and precise
tuning of the photonic circuit functionality. Though pho-
tonic signal processing can be inherently fast, signal-to-
noise considerations limit the maximum operation speed.
Nevertheless, optical communication technology shows the
ability to operate photonic systems in the 50-GHz or 100-Gb/
s range. Though feasible, whether implementing multi-
plexing is a viable option depends on the problem to be
solved. Wavelength division multiplexing creates an over-
head that in optical communication iswell justified for long-
range (>10km) but not for short-range (<150m) links. Similar
considerations will apply for photonic neuromorphic
computing solutions; the option to implement an integrated
multiplexed signal processing or transmission solution
must be evaluated against the size, performance and cost
compared to multiple single signal processing units.

Figure 3: (a) Single neuron with synaptic connections. Each signal xi is weighted by the corresponding synaptic connection. The weighed
signals reach the neuron, where they are summed together before the nonlinear activation function σ is applied. (b) Small feedforward neural
network with two hidden layers. (c) Two nonlinear activation functions that are typically used in deep neural networks (DNNs): the rectified
linear unit (ReLU) and the sigmoid activation.
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A wide variety of photonics for neuromorphic
computing examples is described in the literature. Though
this paper focuses on integrated optics technology, it is
worthwhile to also study bulk- and fiber-optic systems as
examples highlighting advantages and capabilities of
photonic signal processing. Parallel handling of arrays of
light points, the third item in the list above, is ideally
exploited in three-dimensional systems and hence a
typical example of a bulk optical system. The benefits were
also anticipated for optical signal processing for super-
computing [23]. An input vector is projected onto an array
of spatial light modulators and subsequently on the de-
tector array to perform, for example, an analog vector-
matrix multiplication. In the study by Saade et al. [24], the
spatial light modulator prepares the input vector that is
imaged onto a scattering medium and from there onto a
detector array. The scattering matrix technique enables a
reduction in the dimension of the input data (random
projection) and therefore a more efficient neuromorphic
signal classification in the subsequent steps. This type of
system is capable of handling high-speed optical signals,
but scalability limitations are imposed by the spatial light
modulator array size and update rate.

Fiber-optic systems provide an ideal means for guiding
light over long distances with ultralow propagation loss. In
single-modeoptical fibers, the phaseproperties of the optical
signals are preserved. This opens a path to enhanced feed-
backdynamics as, for example,demonstrated in the studyby
Brunner et al. [25]. The single-mode fiber reservoir system
with a single time-modulated input signal and nonlinear
optical source can demonstrate spoken digit recognition and
chaotic time-series prediction at data rates beyond 1 Gb/s.
Multimode fiber systems do not preserve the phase of the
light, but operation is based on the signal power only.
Though this may affect functionality, avoiding drift and
noise of the optical phase can offer a stability advantage [26].

Integrated optic devices for neuromorphic computing
offer several performance merits such as form factor, man-
ufacturability, cost,mechanical stability and the availability
of high-speed devices such as modulators and detectors.
The examples above show that specific advantages exist for
each implementation. The application and specific imple-
mentation decide on the viability of each approach. In the
following sections, we discuss integrated optic neuro-
morphic computing architectures and implementations,
starting with reservoir computing (RC) approaches.

2.1 Integrated photonic RC systems

RC is a computation concept well suited for sequential data
processing (Figure 4) [27, 28]. A stream of input data is

coupled into a reservoir, which consists of recurrently
connected neurons. The synaptic interconnects between
the input and the reservoir, as well as within the reservoir,
are assigned randomly and kept fixed. RC systems are
therefore a special type of recurrent neural networks
(RNNs). The connections in the reservoir are typically
sparse (<20%). To avoid exponential growth of the signals
in the reservoir, the weights in the reservoir are scaled such
that the system fulfills the echo state property [27]. During
training, only the weights at the output layer are learned.
RC has been of great interest as it massively simplifies the
training compared to general RNNs. In an echo state
network with a linear output layer, the weights can be
learned by a simple ridge regression. While the simple
training method is still beneficial, deep learning methods
have made great progress over the last years and allow for
very effective application of RNNs on complex tasks that
could hardly be solved by RC systems. Nevertheless, RC
remains an interesting concept for neuromorphic systems
as the fixed reservoir weights map very well to a variety of
non–von Neumann hardware implementations. Tanaka
et al. [29] review various physical RC implementations
ranging from electronic to optical and mechanical as well
as biological implementations. Bulk, fiber and integrated
photonic RC systems are reviewed in detail in the study by
Van Der Sande et al. [30]. Here, we will give an overview of
the integrated systems.

Some of the early concepts for integrated photonic
reservoir systems evolved around networks of semi-
conductor optical amplifiers (SOAs). Each SOA provides an
optical nonlinearity owing to its power saturation behavior
and has a rich internal dynamic behavior. In the study by
Vandoorne et al. [31], a waterfall network architecture with

Figure 4: Illustration of the reservoir computing approach. The
weights at the input and in the reservoir are randomly selected and
kept fixed. The connectivity in the reservoir is sparse, and the
connections are recurrent. The weights at the output layer can
therefore be trained by a simple ridge regression.
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feedback connections and SOA nodes was suggested. Its
performance was compared to an echo state network with
tanh activation function (classical software implementa-
tion) on a simple pattern recognition task, indicating a
slightly better performance for the SOA network, despite
the simple network architecture. Improved architectures
were proposed, and the performance benefit over tradi-
tional software implementations has been demonstrated in
numerical simulations for various tasks, such as, for
example, spoken digit recognition [32]. However, owing to
the large power consumption of the SOAs and, hence, the
limited power efficiency of these networks, the first hard-
ware realization was based on a different concept, a pas-
sive silicon photonic implementation.

The coherent silicon photonic RC implementation
presented in the study byVandoorne et al. [33] is based on a
passive, linear photonic circuit. The linear reservoir nodes
are arranged on a grid and connected through waveguides
(delay lines), splitters and combiners to their neighbors
(Figure 5a). The state at each reservoir node is read out
through a detector, introducing a square nonlinearity at
the output of the system; the reservoir itself remains linear.
The operation speed of the reservoir is determined by the
length of the waveguide delay lines between the neigh-
boring nodes, which in this case was set to 2 cm (280 ps), to
match the speed of the available measurement equipment.
Using shorter delay lines, the operation speed could easily
be increased to 100’s of Gb/s. Operation up to 12.5 Gb/swas
demonstrated for a 16-node system and based on various
tasks. In the experiments, the input signal was fed into a
single node, and the output signals at 11 nodes were
recorded. The output signals were digitized and weighted
and combined in software. The training was performed
offline using ridge regression. Excellent performance was
reported for timewise Boolean operations like exclusive or
(XOR), bit header recognition or spoken digit recognition.
Various improvements on the architecture have been
applied over the years. The input scheme was optimized,
by injecting the input signal to multiple nodes for a better
power distribution in the network [34]. The use of multi-
mode waveguides was suggested in the study by Katumba
et al. [35] to minimize the combining loss of Y-junctions,
and a novel architecture based on four-port devices for
minimal loss and improved state-mixing behavior was
introduced in the study by Sackesyn et al. [36] (Figure 5b).
However, the missing nonlinearity inside the reservoir, the
bandwidth limitations and latency imposed by detecting
and weighting the output signals in the electronic domain,
as well as the large number of required photodetectors for
parallel operation (one detector per node), will signifi-
cantly limit the practical applicability of these systems.

To overcome the later, all-optical photonic RC con-
cepts have been suggested in the studies by Freiberger
et al. [37] and Stark et al. [38] (Figure 6). The amplitude and
phase of each node’s output signal are weighted in the
optical domain using ring resonators [39] and phase
shifters or Mach-Zehnder interferometers [40], and sub-
sequentially, the weighted signals are summed together
using a coherent photonic combiner tree. The optical
output signal can then either be kept in the optical domain,
e.g., for nonlinear dispersion compensation in an optical
link [41], or be converted into the electronic domain for
further processing using a single fast photodetector.
However, these systems cannot make use of the nonline-
arity through the detection as the detection occurs only
after the node signals have been coherently combined. It is
nevertheless appealing to work with such coherent, linear
photonic systems as some problems like the well-known
XOR function are linearly separable in the complex domain
(C), but not in the real domain (R) [42]. An additional
challenge for all-optical systems is that the individual
complex node states cannot be read out; hence, training
these all-optical networks requires iterative optimization
techniques to optimize both phase and amplitude of each
weight. Amethod to reconstruct the complex states at each
node is discussed in the study by Freiberger et al. [43],
showing promising performance in numerical simulations.
To reconstruct the amplitude of the states, all weights are
set to zero, and sequentially, a single weight is enabled,
and the output is recorded. In a second step, the relative
phase difference between the states and a selected refer-
ence state is obtained, by turning on this pair of weights.
Blackbox optimization techniques like the covariance
matrix adaptation evolution strategy (CMA-ES) work as
well but require a much longer training time.

One way to implement the missing nonlinearity in
these systems is to embed SOAs based on III–V materials
on top of the silicon photonic stack. In the study by Stark
et al. [38], we demonstrated a concept for such a system
(Figure 6), which is based on a four-port architecture, and
besides the SOAs, uses nonvolatile optical weights based
on electro-optic barium titanate technology. The main
drawback of using SOAs is their large energy consumption
and the rather complex fabrication process. An alternative
concept to bring nonlinearity into the silicon photonic
reservoir is the use of nonlinear microring resonators [44].
The nonlinearity occurs through two-photon absorption,
free carrier absorption and dispersion in the ring resonator.
By carefully optimizing the operation point and delay line
lengths, promising performance and excellent energy ef-
ficiency was obtained in numerical simulations for a
timewise XOR task.
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In the following sections, we will discuss two specific
examples where we see potential for integrated photonic
implementations of analog MAC accelerators. For com-
parison, we reference some bulk optical systems as well. In
the first example, we focus on neural network inference,
whereas the second option also opens a path toward effi-
cient neural network training.

2.2 Integrated photonic devices for neural
network inference

For neural network inference, there is a need for real-time
power-efficient vector-matrix multiplications of high-
speed signals. In literature, several examples were
demonstrated of cascaded Mach-Zehnder interferometer
structures performing a unitary matrix calculation. The
matrix elements, representing the synaptic weights, are

externally controlled by setting the phase of electro-optic
tuning elements in the Mach-Zehnder arms [45]. Alterna-
tive architectures are, for example, based on ring resonator
filters [46]. Barium titanate on silicon photonics electro-
optic devices offer ultrahigh-speed phase modulation [22]
and ultralow power tuning in the nanowatt range [47]. The
maturity of state-of-the-art silicon photonics and silicon
nitride and indium phosphide platforms is well suited for
the implementation of this type of devices. Most demon-
strations are limited to 4 × 4 matrix sizes, and indeed,
challenges arise in scaling to larger matrices. Phase errors
limit the performance, and as full control of anN×Nmatrix
requires 2N2 phase shifters, setting all elements requires
many electrical signals to be controlled. This makes this
option well suited for small-size matrix operations (N < 32)
as, for example, in convolutional signal processing [48].
The inference calculation is performed in a fully parallel
manner, and execution time and effort do not depend on

Figure 5: Two integrated photonic reservoir
computing architectures were suggested in
the study by Sackesyn et al. [36]. The swirl
architecture (a) and the four-port architec-
ture (b), wherein each node (black box) is
connected to four other nodes. The four-
port architecture offers improved power
efficiency as it does not use Y-junctions but
four-port devices to mix and redistribute
the signals.

Figure 6: Concept for an all-optical integrated reservoir computing system. The reservoir consists of a network of nodes (blue boxes) based on
semiconductor optical amplifiers (SOAs) and multimode interferometers (MMIs), which are connected by delay line waveguides (blue dots).
For the node connection, a four-port architecturewas used. Additionally, a fraction of the light is coupled out at each node and transmitted to a
photonic weight. We suggest using electro-optic switches based on barium titanate to implement the signal weights. After the weighting, the
signals are combined through a coherent combiner tree, and the output signal is either converted into the electrical domain using a
photodetector or kept in the optical domain.
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the matrix size. An important aspect is the option to adjust
the weight values very fast out of a prestored set of values.
This opens the opportunity to adapt the matrix at the same
speed as data is coming in, for example, to perform
different types of convolutional operations. Another
promising approach for neural network inference is based
on the integration of phase-change materials as adjustable
absorbers with integrated optic circuits [49, 50].

2.3 Integrated photonic devices for neural
network training

The second exciting opportunity for integrated optic tech-
nology is related to artificial neural network training.
Establishing an enhanced technology platform for neural
network training is of utmost interest. Recent publications
show the large environmental footprint of today’s tech-
nology in neural network training, as described in the
introduction [7]. There are two basic approaches to opti-
mize the training of photonic neural networks. Either the
training methods are adapted to match the system capa-
bilities, or the operations used in a general trainingmethod
like stochastic gradient with backpropagation [15] are
accelerated through photonic hardware.

An example for the former concept is given in the study
by Bueno et al. [51], wherein Bueno et al. implemented an
iterative photonic learning method based on a greedy
learning algorithm for a 4f free-space RC system with 900
nodes. A digitalmicromirror device is used to set the output
weights, which are therefore binary. The greedy learning

algorithm randomly selects an output weight and switches
its state. The system performance is evaluated, and if it
improved, the new output weight configuration is kept;
otherwise, the previous configuration will be restored.
These steps are applied iteratively, until the required per-
formance is achieved, or the error rate converges. The
training method was able to optimize the weights in about
900 learning iterations for one-step-aheadprediction of the
chaoticMackey-Glass time series, with good generalization
and performance.

For the latter, we present a concept, which extends the
inference calculation of the synaptic connection between
two neural layers to a technology platform in which also
the backpropagation and weight update steps are per-
formed in a fully parallel manner by optical signal pro-
cessing. In the Mach-Zehnder interferometer-based vector-
matrix multiplication concept, the matrix element values
are set by an external subsystem. Hence, changing these
values in an optimization procedure would require signals
to flow from the neural network output to the control sys-
tem. An in situ training algorithm for this type of structures
was proposed [52] supporting the backpropagation algo-
rithm [53]. It is based on performing intensity measure-
ments in the device and storing the obtained values for
processing in the subsequent steps. This communication
path would still introduce an information flow bottleneck
and therefore limit the performance andpower efficiency of
the training algorithm. A local weight updatemechanism is
required, directly fetching the signals in the network itself.
Here, we first summarize the backward propagation algo-
rithm as this helps to understand the merits of the optical

Figure 7: Illustration of forward- and backpropagation through a feedforward neural network with two hidden layers (similar to Fig. 3b) for
training of the networkweights. To train the networkmany training samples xwith target output t are forward propagated through the network
and the resulting output y are stored. Next, the loss which describes the error between the output y and the desired output is computed. Using
backpropagation, we compute the error signals δi for each layer for all training samples. The weight updates are averaged over all training
samples. This procedure is repeated iteratively until the loss is minimized.

4228 P. Stark et al.: Integrated photonic neural networks



signal processor presented thereafter. To train a feedfor-
ward DNN,we can use stochastic gradient descent together
with backpropagation as follows (Figure 7) [54]:
(1) Forward propagate training input samples xk

with target response tk and store the corresponding
outputs y.

(2) For each training sample, compute the loss between
the target output and the obtained outputs using a loss
function. Often, the squared error is used as a loss
function.

(3) For each training sample, find the error signal δi = δL
δzi
,

which indicates how large the influence of the input at
a neuron on the total loss is. This error signals can
be obtained by propagating the loss backward through
the network with transposed weight matrices
and using derivative of the activation functions [54].
http://neuralnetworksanddeeplearning.com/
chap2.html

(4) Using the error signals obtained in step 3, update the
weights as follows, to minimize the loss

Wi →Wi − αxi ⊗ δi

where α is the learning rate and xi ⊗ δi = δL
δWi

is the
partial derivative of the loss with respect to the
weights, which is averaged over all training samples.

(5) Iteratively repeat steps 1–4 until the loss reaches a
minimum.

Already in the 1990s, a photonic system was demonstrated
inwhich theweighting elements are stored in a bulk crystal
of a photorefractive material [55]. The MAC operation is
obtained through the diffraction efficiency of a refractive
index grating formed in the photorefractive crystal through
the interference of two beams. A detailed description of
signal processing in photorefractive materials is given in
chapter 3 of the study by Denz [20]. In Figure 8, we depict
the formation and operation principle of first a single
weight and then two synaptic weights.

The diffraction efficiency of an input signal to one of
the outputs represents the respective synaptic weight.
Also, a part of the other input signals is diffracted toward
the same output where they are coherently combined,
representing the accumulation function. Because the full
input vector can be applied in one inference cycle, the

Figure 8: (a) A synaptic weight is formed in the photorefractive crystal through the interference of two light beams. Charge carriers are
optically excited and diffuse to dark regions of the interference pattern. The charge separation induces an electrical field, and through the
Pockels effect, a modulation of the refractive index is induced. (b) An optical signal (S1) impinging from the direction of source 1 will now be
diffracted toward destination 1, resembling the operation of a single synapse. (c) A second grating is formed by applying a second source
(source 2), while the destination direction is kept the same. (d) By subsequently applying input signals from the directions of source 1 and
source 2, an analog multiply and accumulate operation is performed toward destination 1.

Figure 9: All critical vector-matrix calcula-
tions for neural network inference and
training are efficiently performed as O(1)
operations. (a) The input light is dif-
fracted by the refractive index grating
(green), which is stored in the photore-
fractive material. The weight matrix is
given by the diffraction efficiency of the
input signals to the different outputs. (b)
The same refractive index grating can be
used to compute the product of the
transpose of the weight matrix by using

alternate inputs and outputs. (c) A weight update is performed by writing a new refractive index grating by applying the input and error
vector at the same time.
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vector-matrix calculation is of O(1), independent of the size
of the matrix. The inference calculation is now visualized
for multiple beams in Figure 9a.

The backpropagation function is performed on the
transpose of the matrix (WT). The alternate input and
output sections enable a straightforward calculation of the
transpose operation on the same photorefractively
imprinted grating, as indicated in Figure 9b. Finally, the
weight update is induced by applying both the input and
the error vectors at eachnetwork layer. All operations are of
O(1), imposing a massive performance improvement
compared to digital signal processing in von Neumann
systems. Compared to themethod proposed in the study by
Hughes et al. [52], only intensity measurements at the de-
vice periphery are required and need to be transferred be-
tween layers of the network.

The availability of siliconphotonics and the cointegration
of materials like barium titanate or thin III–V layers [56] open
opportunities for chip-level implementation of an analog
photonic synaptic processing unit. In Figure 10, we show a
device layout to implement the neural network operations
based on the photorefractive effect, as depicted in Figure 9.

A thin layer of a photorefractive material is bonded to
the silicon photonics wafer in which the periphery to

operate the processing section is integrated. Electro-optic
modulators convert the electrical input vector to the
required power and phase of the optical beams. Detector
arrays convert the vector-matrix output signals back to the
electrical domain. To theoretically estimate the viability of
this concept, we take gallium arsenide (GaAs) as the pho-
torefractive material. The retention time of GaAs as a
weight storage medium is approximately 300 ms. With a
projected cycle time for the inference and backpropagation
steps of 20 ns and an update cycle of 100 ns, approximately
104–106 operations can be performed before the weight
values must be refreshed. Therefore, this does not repre-
sent a hurdle for the applicability of this technology for
neither neural network inference nor training. The theo-
retical storage density is large; we evaluated that the
storage of 106 weights in a thin layer with dimensions of
5 × 5mm2 is possible. Note that the peripheral devicesmust
be added to the required area, resulting in a total size of
25 × 25 mm2, which is still feasible. The estimated total
operating power is less than 5 W. In addition to the paral-
lelization, this in-memory computing concept avoids
communication to and frommemory, which is an essential
aspect in meeting the power efficiency advancement. Cal-
culations for electrical systems predict a power efficiency
and performance advancement of factors larger than 100
[13]. For the optical case as presented here, we anticipate
similar values as the power requirements for operating
the devices are on the same order of magnitude as for
the electrical memristive structure. Whether an optical
implementation will be a viable solution compared to the
electrical memristive structure will depend on the perfor-
mance, form factor and application. Clearly, the electrical
solution will have an overall larger areal density of about a
factor of 20–50. Inherently, the photorefractive effect pro-
vides well-controlled setting and trimming of the weight
values. This is important for efficient training and opens
opportunities for analog vector-matrix multiplications
with regularly updated matrix elements.

3 Conclusions

Photonic implementations of neuromorphic computing
technology offer exciting properties in terms of bandwidth,
processing speed and controllability. We discussed bulk,
fiber-optic and integrated optic implementations of neu-
romorphic computing structures. The potential of inte-
grated photonics for neural network inference and training
was discussed, and a new concept for training artificial
neural networkswas presented. Benchmarking of results in
photonic neuromorphic computing against other platforms

Figure 10: Schematic representation of an integrated photonic
synaptic processor for inference and training. The device has one
coherent optical input. The electrical input signals drive electro-
optic modulators in the transmitter array sections to set the optical
input vector. Collimatingmirrors convert the diverging optical waves
in the planar waveguide sections to collimated beams entering the
photorefractive region under slightly different angles (compare with
Figure 8). Both transmitter arrays are operated simultaneously to
update the gratings stored in the photorefractive material. For the
inference and backpropagation steps, only one transmitter array is
used. The resulting optical output signal is detected by the receiver
array and converted back to the electrical domain.
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is important to direct the effort toward the most promising
application.
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