SCIENTIFIC COMMITTEE SIXTEENTH REGULAR SESSION

Apia, Samoa (TBC)
11-20 August 2020

PART 1: INFORMATION ON FISHERIES, RESEARCH, AND STATISTICS
WCPFC-SC16-AR/CCM-09

INDONESIA

INDONESIAN FISHERIES
 IN WCPFC CONVENTION AREA

2019

SCIENTIFIC DATA TO BE PROVIDED TO THE COMMISSION

The Commission for the Conservation and Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean

ANNUAL REPORT TO THE COMMISSION
 PART 1: INFORMATION ON FISHERIES, RESEARCH AND STATISTICS
 INDONESIA

Scientific data was provided to the Commission in accordance with the decision relating to the provision of scientific data to the Commission by 30 April 2020	[YES]
If no, please indicate the reason(s) and intended actions:	

SUMMARY(Will be Completed after all ACES Outcome available) CFR

The Pre-Indonesia's national catch estimates 2019 for FMAs $713,714,715,716$ and 717 which involved CFR, DGCF and Pusdatin (one data) are as follows: skipjack - 301.312t; yellowfin - 163.015t and bigeye -35.610 t and albacore 947 t with total 500.884 t . The $10^{\text {th }}$ annual catch estimate workshop is secheduled on mid June 2020 which will be attended by MMAF, fishing association, fishing industry, and relevant NGOs and SPC invited expert. This activity will collaboratively funded by Indonesian Government and The West Pacific East Asia project (WPEA-ITM).

Under WPEA_ITM Port sampling activities have been continuing for seven landing sites i.e Bitung, Kendari and Sodohoa, Sorong, Majene, Gorontalo and Kwandang. The data collection has been conducted by 30 trained enumerators that assigned to conduct port samplings at those seven landingsites. In addition there are six enumerators are funded by Research Institute for marine fishereis for landing sites manado, bulukumba and bontang, two enumerators each sites. Catch composition by species by gear from these port sampling program will be used as reference and source of verifcation for national tuna catch estimate.

BACKGROUND

Indonesia is an archipelagic nation located between the continents of Asia and Australia surrounded by two oceans, Pacific Ocean in the northern part and Indian Ocean in southern part. It consists of 17,508 islands and coast line of approximately $81,000 \mathrm{~km}^{2}$. Totally, Indonesia has 5.8 million km^{2} of marine waters consisting of 3.1 million km^{2} of territorial waters (<12 miles) and 2.7 million km^{2} of EEZ (12-200 miles). Geographical situation of marine fisheries areas provide interaction with the convention area of WCPFC at Sulawesi Sea as well as Indonesia EEZ in Pacific Ocean where presence of highly migratory species is obvious.

Internationally, fisheries resources identified as highly migratory resources should follow several international and regional measures or guidelines, such as UNCLOS 1982, FAO-Compliance Agreement 1993, UN Fish Stock Agreement 1995 and FAO-Code of Conduct for Responsible Fisheries (CCRF). Indonesia has ratified UNIA 1995 through Act. Number 21 year 2009. The objective of this ratification is to ensure the long-term conservation and sustainable use of straddling fish stocks and highly migratory fish stocks through effective implementation of the relevant provisions of the UNCLOS 1982.

Indonesian Law Number 31/2004 which amended by law Number 45/2009 of Fisheries in Article 5 (2) stipulated that fishery management outside the Fishery Management Zones of the Republic of Indonesia shall be carried out inconformity with the laws and regulations, prerequisites, and/or generally accepted international standards. It is conducted to achieve the optimum and sustainable benefits while ensuring sustainable fishery resources (Article 6(1)). Furthermore, Article 10 stipulated that the Government shall participate actively in the membership of anybody/institution/ organization at the regional or international levels with respect to the cooperation for regional and international fishery management.

Indonesia since late 2013 becomes a member of WCPFC with an outlook to improve international relations and help secure small-scale fisher livelihood. This report is provided as part of obligation as a member of WCPFC.

ANNUAL FISHERIES INFORMATION

A. NOMINAL CATCHES IN FISHERIES MANAGEMENT AREA

Nominal catch will be evaluated at the Annual Tuna Fisheries Catch Estimates Review Workshops (ITFACE-10) on 24 to 26 June 2020. At this workshop, national catch will be estimated using data from PUSDATIN (known as One Data) with the comparison to other source of data gathered from port sampling activities (WPEA, MDPI, SFP,RIMF), logbook, observer, fishing ports information center (PIPP) as well as catch certificate (Surat Hasil Tangkapan Ikan/SHTI)

NOMINAL CATCHES IN FISHERIES MANAGEMENT AREA

Indonesia total tuna catch for all gears in Area FAO within WCPFC Statistical Area was estimated as below:

Table 1. Total tuna catch (Skipjack, Yellowfin, Bigeye) for all gear within WCPFC statistical areaestimated for 2000-2019

Year	Skipjack (SKJ)	\%	Yellowfin (YFT)	\%	Bigeye (BET)	\%	Total tuna
2000	220.717	64\%	105.317	31\%	16.167	5\%	342.20
2001	203.101	64\%	96.911	31\%	14.876	5\%	314.88
2002	195.213	64\%	93.147	31\%	14.299	5\%	302.65
2003	199.129	64\%	95.016	31\%	14.585	5\%	308.73
2004	262.179	64\%	125.100	31\%	19.204	5\%	406.48
2005	173.203	70\%	63.625	26\%	10.688	4\%	247.51
2006	217.310	76\%	55.920	20\%	12.612	4\%	285.84
2007	243.118	76\%	67.773	21\%	10.999	3\%	321.89
2008	255.918	76\%	63.055	19\%	15.613	5\%	334.58
2009	279.985	72\%	92.887	24\%	15.762	4\%	388.63
2010	273.637	76\%	73.846	21\%	10.771	3\%	358.25
2011	270.101	68\%	114.442	29\%	12.901	3\%	397.44
2012	272.052	61\%	151.789	34\%	19.476	4\%	443.31
2013	351.901	67\%	146.646	28\%	20.446	4\%	518.99
2014	322.840	67\%	136.210	28\%	23.868	5\%	482.91
2015	262.927	61\%	146.196	34%	22.953	5\%	432.07
2016	336.455	64%	160.092	31%	28.344	5\%	525.238
$2017{ }^{\text {a }}$	332.628	69\%	134.290	28\%	12.095	3\%	479.013
2018	291.442	55\%	215.460	41\%	19.573	4\%	526.778
2019	301.312	60\%	163.015	33\%	35.610	7\%	500.884
Fishing Port	42.130	58\%	26.108	36\%	4.959	7\%	73.200
Non-Fishing Port	259.182	61\%	136.907	32\%	30.652	7\%	427.684

AVG $2005-2019 *)$	278.989	68%	119.016	28%	18114	4%	466,954

Note:
${ }^{\text {a) }}$ Revised data based on the Annual Catch Estimates Workshop on 23-24 June 2019.

The cacth estiamate data for 2019 will be presented and agreed during the Indonesia's Annual Catch Estimates Workshop on 23-24 June 2020. The WS will be attended by MMAF, Indonesia tuna fishing industries, tuna associations, Indonesia relevant NGOs, SPC and WCPFC representative.. The total catch of SKJ, YTF and BET for all WCPFC statistical area and all gear has been further reviewed in the ACES 2020. The total nominal catches in Fisheries Management Area 716 (IEEZ Sulawesi Sea) and 717 (IEEZ Pacific Ocean) is estimated as the following table.

Table 2. Total tuna catch (Skipjack, Yellowfin, Bigeye) for all gear within FMA 716 and 717
estimated for 2000-2019

Year	Skipjack	\%	Yellowfin	\%	Bigeye	\%	Total tuna
2000	59.392	57\%	39.144	37,3\%	6.542	6,2\%	105.078
2001	54.651	57\%	36.020	37,3\%	6.020	6,2\%	96.691
2002	52.529	57\%	34.621	37,3\%	5.786	6,2\%	92.936
2003	53.583	57\%	35.316	37,3\%	5.902	6,2\%	94.800
2004	70.548	57\%	46.498	37,3\%	7.771	6,2\%	124.816
2005	52.721	61\%	28.653	33,4\%	4.443	5,2\%	85.817
2006	60.638	68\%	23.628	26,4\%	5.279	5,9\%	89.546
2007	55.715	67\%	24.367	29,1\%	3.696	4,4\%	83.777
2008	54.536	64\%	24.024	28,4\%	6.156	7,3\%	84.717
2009	54.373	51\%	44.281	41,8\%	7.179	6,8\%	105.833
2010	52.833	61\%	30.509	35,5\%	2.709	3,1\%	86.051
2011	51.077	56\%	36.665	40,1\%	3.612	4,0\%	91.353
2012	95.725	68\%	37.125	26,5\%	7.136	5,1\%	139.985
2013	94.304	73\%	24.454	19,0\%	4.083	3,2\%	122.842
2014	74.678	61\%	41.510	34,0\%	5.803	4,8\%	121.991
2015	82.018	36\%	61.925	27,4\%	6,413	2,8\%	150,357
2016	97.416	61\%	56.801	36,0\%	4,830	3,0\%	159.047
$2017{ }^{\text {a }}$	82,247	73\%	28,685	26\%	1,146	1\%	112,077
2018	76,432	60\%	48,096	37\%	3,818	3\%	128,425
2019	28,580	52\%	20,466	37\%	5,400	10\%	55,054
Fishing Port	13,811	58\%	6,931	29\%	3,068	13\%	23,810
Non-Fishing Port	14,769	47\%	13,535	43\%	2,333	7\%	31,234

AVG $2005-2019$	67,553	62%	35,413	33%	4,780	5%	108,196

${ }^{\text {a) }}$ The data based on revisit process at the Annual Catch Estimates Workshop on 23-24 June 2019.

Table 3. Total tuna catch (Skipjack, Yellowfin, Bigeye) for all gear within FMA 713, 714, 715, 716, 717 and FAO area 71 estimated for 2019

2018*) estimates								
FMAs	Skipjack	\%	Yellowfin	\%	Bigeye	\%	Albacore	Total Tuna
$\begin{aligned} & \hline \text { FMAs } \\ & \mathbf{7 1 3 , 7 1 4 , 7 1 5} \\ & \hline \end{aligned}$	272,732	61\%	142,549	32\%	30,210	7\%	339-	398,353
$\begin{aligned} & \text { FMAs 716, } \\ & 717 \\ & \hline \end{aligned}$	28,580	52\%	20,466	37\%	5,400	10\%	608	55,054
$\begin{aligned} & \text { FAO Area } \\ & 71 \end{aligned}$	301.312	60\%	163.015	33\%	35.610	7\%	947	500.884

The nominal catches by gear in Fisheries Management Area 716 (IEEZ Sulawesi Sea) and 717 (IEEZ Pacific Ocean) is estimated as the following table.

LONGLINE and PURSE SEINE

Table 4. Total tuna catch (Skipjack, Yellowfin, Bigeye) for Longline within FMA 716, 717 and high seas estimated for 2000-2019

Year	Skipjack	\%	Yellowfin	\%	Bigeye	\%	Total tuna
2000			20.361	81,4\%	4.648	18,6\%	25.009
2001			18.736	81,4\%	4.277	18,6\%	23.013
2002			18.008	81,4\%	4.111	18,6\%	22.119
2003			18.369	81,4\%	4.193	18,6\%	22.563
2004			24.186	81,4\%	5.521	18,6\%	29.707
2005			10.762	83,0\%	2.202	17,0\%	12.964
2006			9.482	75,9\%	3.011	24,1\%	12.493
2007			10.371	83,9\%	1.993	16,1\%	12.364
2008			12.689	78,0\%	3.579	22,0\%	16.268
2009			18.221	82,0\%	4.000	18,0\%	22.221
2010			14.041	92,0\%	1.221	8,0\%	15.262
2011			13.750	89,0\%	1.699	11,0\%	15.449
2012			11.656	76,0\%	3.681	24,0\%	15.337
2013			8.271	74,3\%	2.860	25,7\%	11.130
2014			13.060	78,0\%	3.673	22,0\%	16.733
2015			18.509	83,3\%	3.701	16,7\%	22.210

2016			5.632	$99,9 \%$	8	$0,1 \%$	5.640
2017^{a}	4	2%	178	91%	13	7%	195
2018	-	0%	7,707	86%	1,255	14%	8,962
2019	140	24%	409	70%	31	5%	581
Fishing Port	5	1%	281	89%	31	10%	317
Non-Fishing Port	135	51%	128	49%		$\%$	264
Average $2005-2018^{*}$	29	5%	10,316	83%	2,195	15%	12,521

${ }^{\text {a) }}$ The data based on revisit process at the Annual Catch Estimates Workshop on 23-24 June 2019.
Notes on sources of data and methodology

1. Use same methodology for 2007 for years 2005 and 2006
2. Use average species composition for years 2005-2013 and apply to the total catch for years previous to 2004
3. Use average species composition for years 2005-2009 and apply to the total catch for 2010
4. Catch of albacore needs to be reviewed (possibly Thunnus albacares)
5. Percentage of catch composition of 2009-2012 using the P4KSI Species Composition data by gear.
6. The total catch for FMA Areas 716 and 717 of 1978 -2004 is assumed to be the same as the WCPFC Statistical Area catch
7. Increasing the number of provinces that provide data of catch per gear per species
8. Percentage of catch composition of 2014 and 2016 using the DGCF and WPEA species composition
9. Source data of fishing port (Bitung) from PIPP there were $5 \mathrm{LL}<30 \mathrm{GT}$ operating in WPP 716, and data from SHTI 1 LL <30 GT
10. Source data of non-fishing port (Bitung) from Port Sampling there were 8 LL < 30 GT
11. Catch of 2019 is provisional data

Table 5. Total tuna catch (Skipjack, Yellowfin, Bigeye) for Purse seine gear within FMA 716, 717 estimated for 2000-2019

Year							
	Skipjack	\%	Yellowfin	\%	Bigeye	\%	Total tuna
2000	8.577	82\%	1.735	16,6\%	144	1,4\%	10.456
2001	7.892	82\%	1.596	16,6\%	132	1,4\%	9.621
2002	7.586	82\%	1.534	16,6\%	127	1,4\%	9.248
2003	7.738	82\%	1.565	16,6\%	130	1,4\%	9.433
2004	10.188	82\%	2.061	16,6\%	171	1,4\%	12.420
2005	12.462	65\%	6.114	32,0\%	544	2,8\%	19.120
2006	12.665	75\%	3.634	21,6\%	502	3,0\%	16.802
2007	8.619	67\%	3.958	30,7\%	301	2,3\%	12.877
2008	5.625	70\%	2.122	26,3\%	320	4,0\%	8.068
2009	7.551	78\%	1.742	18,0\%	387	4,0\%	9.681

2010	5.525	87%	635	$10,0 \%$	191	$3,0 \%$	6.351
2011	9.815	83%	1.656	$14,0 \%$	355	$3,0 \%$	11.825
2012	25.164	75%	8.198	$24,4 \%$	235	$0,7 \%$	33.597
2013	62.726	96%	2.614	$4,0 \%$	0	$0,0 \%$	65.340
2014	36.085	83%	7.000	$16,1 \%$	289	$0,7 \%$	43.374
2015	25.205	73%	8.247	$9,0 \%$	1.153	$1,3 \%$	34.604
2016	40.262	66%	20.546	$33,5 \%$	509	0.8%	61.317
$2017^{\text {a }}$	46,741	66%	23,370	33%	708	1%	70,820
2018	15,650	71%	5,951	27%	441	2%	22,043
2019	19,588	60%	9,405	29%	3,426	11%	32,418
Fishing Port	12,181	62%	4,327	22%	3,035	16%	19,542
Non-Fishing Port	7,407	58%	5,078	39%	391	3%	12,876
Average $2005-2019$	22,246	74%	7,013	23%	624	3%	29,882

Notes on sources of data and methodology

1. 2005-2008 catch estimates determined by DGCF using their statistical data collection and estimation systems. Species composition was reviewed by the workshop, compared with other fishery data sources (e.g. RCCF port sampling data, Philippines port sampling data and industry estimates), and adjusted accordingly.
2. Use same methodology for 2007 for years 2005 and 2006
3. Use average species composition for years 2005-20 13 and apply to the total catch for years previous to 2004
4. Use average species composition for years 2005-2009 and apply to the total catch for 2010
5. Percentage of catch composition of 2009-2013 using the P4KSI Species Composition data by gear.
6. Percentage of catch composition of 2016 using DGCF Species Composition data by gear.
7. Purse seine FMAs $713-715$ based on adjustment figure
8. From data SIPEPI in $2016:$ PSPK $=110$ vessels, PSPB $=21$ vessels (Total $=131$ vessels)
9. From data SIPEPI in 2017 : PSPK $=90$ vessels, PSPB $=29$ vessels (Total $=119$ vessels)
10. Catch of 2019 is provisional data

POLE and LINE (PUSDATIN)

Table 6. Total tuna catch (Skipjack, Yellowfin, Bigeye) for Pole and Line within FMA 716, 717 estimated for 2000-2019

Year	Skipjack								\%	Yellowfin	$\%$	Bigeye	$\boldsymbol{\%}$	Total tuna
		27.848	$80,6 \%$	5.264	$15,2 \%$	1.425	$4,1 \%$							
2000	25.626	$80,6 \%$	4.844	$15,2 \%$	1.311	$4,1 \%$	31.538							
2001	24.630	$80,6 \%$	4.656	$15,2 \%$	1.260	$4,1 \%$	30.547							
2002														

2003	25.124	$80,6 \%$	4.750	$15,2 \%$	1.285	$4,1 \%$	31.159
2004	33.079	$80,6 \%$	6.253	$15,2 \%$	1.693	$4,1 \%$	41.025
2005	22.209	$73,1 \%$	6.581	$21,7 \%$	1.606	$5,3 \%$	30.396
2006	28.385	$80,6 \%$	5.166	$14,7 \%$	1.673	$4,7 \%$	35.224
2007	28.064	$81,0 \%$	5.332	$15,4 \%$	1.250	$3,6 \%$	34.646
2008	30.448	$82,5 \%$	4.590	$12,4 \%$	1.855	$5,0 \%$	36.893
2009	23.339	$87,0 \%$	6.045	$10,0 \%$	2.515	$3,0 \%$	31.899
2010	29.416	$87,0 \%$	3.381	$10,0 \%$	1.014	$3,0 \%$	33.812
2011	25.484	$77,3 \%$	6.725	$20,4 \%$	758	$2,3 \%$	32.968
2012	35.500	$92,7 \%$	1.277	$3,3 \%$	1.532	$4,0 \%$	38.309
2013	16.825	$78,3 \%$	4.284	$19,9 \%$	377	$1,8 \%$	21.486
2014	7.356	$68,6 \%$	3.316	$30,9 \%$	57	$0,5 \%$	10.729
2015	8.860	$57,7 \%$	2.280	$14,9 \%$	727	$4,7 \%$	11.868
2016	8.027	69.8%	3.165	$27,5 \%$	311	$2,7 \%$	11.502
$2017^{\text {a }}$	8,374	73%	2,983	26%	115	1%	11,471
2018	35,685	91%	3,137	8%	392	1%	39,215
2019	1,297	77%	388	23%	0	0%	1,685
Fishing Port	946	71%	388	29%	0	0%	1,334
Non-Fishing Port	351	100%	-	0%	0	0%	351
Average $2000-2019$	20,618	80%	3,910	17%	946	3%	25,474

Notes on sources of data and methodology

1. 2005-2008 catch estimates determined by DGCF using their statistical data collection and estimation systems. Species composition was reviewed by the workshop, compared with other fishery data sources (e.g. RCCF port sampling data, Philippines port sampling data and industry estimates), and adjusted accordingly.
2. Use same methodology for 2007 for years 2005 and 2006
3. Use average species composition for years 2005-2013 and apply to the total catch for years previous to 2004
4. Use average species composition for years 2005-2009 and apply to the total catch for 2010
5. Percentage of catch composition of 2009-2012 using the P4KSI Species Composition data by gear
6. Percentage of catch composition of 2013 using the DGCF species composition (RCFMC data of 2013 covered only 4 (four months)
7. Percentage of catch composition of 2016 using the CFR-WPEA species composition
8. Source data of fishing port (Bitung) for 2017 from PIPP there were $4 \mathrm{PL}<30 \mathrm{GT}, 1 \mathrm{PL}>30$ GT
9. Source data of non-fishing port for 2017 from Port Sampling there were $5 \mathrm{PL}<30 \mathrm{GT}$ operating in 717 (Sorong)
10. Catch of 2019 is provisional data

HANDLINE

Table 7. Total tuna catch (Skipjack, Yellowfin, Bigeye) for Handline (Large tuna) within FMA 716, 717 estimated for 2000-2019 (PUSDATIN)

HANDLINE (FMAs 716, 717)							
Year	Estimated Tuna Catch (metric tonnes)						
	Skipjack	\%	Yellowfin	$\%$	Bigeye	$\%$	Total tuna
2000			10.329	$97,3 \%$	284	$2,7 \%$	10.613
2001			9.504	$97,3 \%$	261	$2,7 \%$	9.766
2002			9.135	$97,3 \%$	251	$2,7 \%$	9.386
2003			9.319	$97,3 \%$	256	$2,7 \%$	9.575
2004			12.269	$97,3 \%$	337	$2,7 \%$	12.606
2005			4.054	$98,0 \%$	81	$2,0 \%$	4.136
2006			4.107	$98,0 \%$	82	$2,0 \%$	4.189
2007			3.497	$98,0 \%$	70	$2,0 \%$	3.567
2008			3.378	$98,0 \%$	68	$2,0 \%$	3.446
2009			13.085	$99,0 \%$	132	$1,0 \%$	13.218
2010			8.500	$98,0 \%$	173	$2,0 \%$	8.674
2011			8.534	$96,0 \%$	356	$4,0 \%$	8.890
2012			3.359	$92,1 \%$	290	$7,9 \%$	3.648
2013			3.801	$96,0 \%$	158	$4,0 \%$	3.960
2014			15.173	$97,0 \%$	461	$3,0 \%$	15.634
2015	6.118	18.3%	26.817	$80,3 \%$	476	$1,2 \%$	33.411
2016	14.994	57%	11.039	42%	396	$1,5 \%$	26.430
$2017^{\text {a }}$		3,930	68%	1,636	28%	190	3%
2018	3,407	14.9%	19,022	83%	460	2%	22,935
2019	4,310	35%	6,510	53%	1,143	9%	12,266
Fishing Port	609	24%	1,932	76%	2	0%	2,544
Non-Fishing Port	3,700	38%	4,578	47%	1,142	12%	9,723
Average 2005-	6,552	39%	8,834	84%	302	3%	11,344
2019							

Notes on sources of data and methodology

1. 2005-2008 catch estimates determined by DGCF using their statistical data collection and estimation systems. Species composition was reviewed by the workshop, compared with other fishery data sources (e.g.

RCCF port sampling data, Philippines port sampling data and industry estimates), and adjusted accordingly.
2. FMA area 715 accounts for at least $5,000 \mathrm{t}$. more HL catch, but os not included here
3. Use same methodology for 2007 for years 2005 and 2006
4. Use average species composition for years 2005-2013 and apply to the total catch for years previous to 2004
5. Use average species composition for years 2005-2009 and apply to the total catch for 2010
6. Percentage of catch composition of 2009-2012 using the P4KSI Species Composition data by gear.
7. Percentage of catch composition of 2013 and 2015 using the P4KSI species composition of FMAs 716 -7 17
8. Handline (large tuna) WCPFC area based on adjustment figure
9. Handline in this year (2015) was combination of surface handline, deep handline, Kite line, vertical line
10. in year 2016, HL is combined catch surface HL (skipjack, small YFT/BET) and Deep HL (Large YFT/BET)
11. Catch of 2019 is provisional data.

TROLL LINE (PUSDATIN)

Table 8. Total tuna catch (Skipjack, Yellowfin, Bigeye) for Troll Line within FMA 716, 717 estimated for 2013-2019

TROLL LINE (FMAs 716, 717)							
Year	Estimated Tuna Catch (metric tonnes)						
	Skipjack	\%	Yellowfin	\%	Bigeye	\%	Total
2013	5.290	65,0\%	2.447	30,1\%	400	4,9\%	8.138
2014	19.877	93,6\%	915	4,3\%	435	2,1\%	21.228
2015	36.076	88,6\%	1.788	4,4\%	299	0,7\%	38.163
2016	28.160	61.7\%	13.929	30.5\%	3.533	7,7\%	45.622
$2017{ }^{\text {a) }}$	296	60\%	183	37\%	15	3\%	494
2018	5,137	83\%	745	12\%	309	5\%	6,191
2019	1,229	23\%	3,314	63\%	470	9\%	5,294
Fishing Port	-	0\%	-	0\%	-	0\%	0
Non-Fishing Port	1,229	23\%	3,314	63\%	470	9\%	5,294
$\begin{gathered} \text { Average } \\ 2013-2018 \end{gathered}$	13,724	69\%	3,332	26\%	780	5\%	17,876

Notes on sources of data and methodology

1. Percentage of catch composition of 2013 using PPS Kendari species composition
2. Percentage of catch composition of 2014-2015 using DGCF species composition
3. Catch of 2018 is provisional data

GILLNET

Table 9. Total tuna catch (Skipjack, Yellowfin, Bigeye) for Gillnet within FMA 716, 717 estimated for 2013-2019

GILL NET (FMAs 716 and 717)							
Year	Estimated Tuna Catch (metric tonnes)						
	Skipjack	$\%$	Yellowfin	$\%$	Bigeye	$\%$	Total tuna
2013	2.312	$83,3 \%$	460	$16,6 \%$	2	$0,1 \%$	2.775
2014	3.351	$85,0 \%$	584	$14,8 \%$	6	$0,2 \%$	3.941
2015	1.046	$20,2 \%$	297	$5,7 \%$	2	$0,03 \%$	1.344
2016	1.522	$91,7 \%$	136	8.2%	2	$0,1 \%$	1.660
$2017^{\text {a }}$	1,521	97%	40	3%	-	0%	1,561
2018	1,950	87%	303	13%	3	0%	2,256
2019	1,778	97%	35	2%	3	0%	1,840
Fishing Port	1	100%		0%		0%	1
Non-Fishing Port	1,777	97%	35	2%	3	0%	1,839
Average 2013-2019	1,926	88%	265	11%	3	0%	2,197

Notes on sources of data and methodology

1. Percentage of catch composition of 2013 and 2016 using the DGCF species composition
2. Catch of 2019 is provisional data

OTHERS (Exclude Troll, small-fish HI, gillnet, etc.) (PUSDATIN)

Table 10. Total tuna catch (Skipjack, Yellowfin, Bigeye) for Other gear within FMA 716, 717 estimated for 2000-2019*)

OTHERS (FMAs 716 and 717)							
Year	Estimated Tuna Catch (metric tonnes)						
	Skipjack	$\%$	Yellowfin	$\%$	Bigeye	$\%$	Total tuna
2000	22.966	$93,9 \%$	1.455	$5,9 \%$	41	$0,2 \%$	24.463
2001	21.133	$93,9 \%$	1.339	$5,9 \%$	38	$0,2 \%$	22.511
2002	20.313	$93,9 \%$	1.287	$5,9 \%$	36	$0,2 \%$	21.636
2003	20.720	$93,9 \%$	1.313	$5,9 \%$	37	$0,2 \%$	22.070
2004	27.281	$93,9 \%$	1.729	$5,9 \%$	49	$0,2 \%$	29.058
2005	18.050	$93,7 \%$	1.142	$5,9 \%$	10	$0,4 \%$	19.202
2006	19.588	$93,7 \%$	1.240	$5,9 \%$	11	$0,4 \%$	20.838
2007	19.032	$93,7 \%$	1.209	$5,9 \%$	81	$0,4 \%$	20.322
2008	18.463	$92,1 \%$	1.245	$6,2 \%$	334	$1,7 \%$	20.042
2009	23.484	$81,5 \%$	5.187	$18,0 \%$	144	$0,5 \%$	28.814
2010	17.891	$81,5 \%$	3.951	$18,0 \%$	110	$0,5 \%$	21.953
2011	15.778	71%	6.000	$27,0 \%$	444	$2,0 \%$	22.222
2012	35.061	$71,4 \%$	12.635	$25,7 \%$	1.398	$2,8 \%$	49.094

2013	7.151	$71,4 \%$	2.577	$25,7 \%$	285	$2,8 \%$	10.013
2014	8.010	$77,4 \%$	1.462	$14,1 \%$	881	$8,5 \%$	10.352
2015	4.714	$40,1 \%$	3.988	$33,9 \%$	55	$0,5 \%$	8.757
2016	4.451	65%	2.345	34%	71	$0,6 \%$	6.876
$2017^{\text {a }}$	21,382	98%	295	1%	104	0%	21,780
2018	14,602	54%	11,230	42%	959	4%	26,824
2019	238	24%	405	42%	327	34%	970
Fishing Port	70	97%	2	3%	0	0%	72
Non-Fishing Port	168	19%	403	45%	327	36%	898
Average 2005-2019	15,193	75%	3,661	21%	348	4%	19,204

Notes on sources of data and methodology

1. 2005-2008 catch estimates determined by DGCF using their statistical data collection and estimation systems. Species composition was reviewed by the workshop, compared with other fishery data sources (e.g. RCCF port sampling data, Philippines port sampling data and industry estimates), and adjusted accordingly.
2. The workshop acknowledged that information on species composition for these gears is lacking and more work in data collection for these gears is required in the future.
3. $\%$ BET was reduced from 7.0% to 0.4% reflecting expected $\%$ BET to $\%$ YFT composition according to understanding that most of catch comes from the TROLL gear
4. Use same methodology for 2007 for years 2005 and 2006
5. Use average species composition for years 2005-2012 and apply to the total catch for years previous to 2004
6. Use average species composition for years 2005-2009 and apply to the total catch for 2010
7. $\%$ BET reduced from 7.0% to 0.4% reflecting expected $\%$ BET to $\%$ YFT expected from these gears
8. Percentage of catch composition of 2009 and 2010 using P4KSI sampling in Kendari of 2010
9. Catch of other gears for 2013 and 2014 excluded troll line, gill net and small-fish handline
10. Catch of 2019 is provisional data

Table 10 a. Catch estimate of Sharks related to tuna fishery in FMAs 716 and 717, 2016-2019 (metric ton) (DJPT_SDI)

Year	Centrophoridae, Squalidae Dogfishes (DGZ) + Others	Carcharhinus longimanus Oceanic Whitetip (OCS)	Carcharhinus falciformis Silky shark (FAL)	Galeocerdo cuvier Tiger Sharks (TIG)	Sphyrna spp Hammerheads sharks (SPN)	Prioance glauca Blue Sharks (BSH)	Alopias spp Thresher sharks (THR)	$\begin{gathered} \hline \text { Isurus } \\ \text { spp } \\ \text { Mako } \\ \text { sharks } \\ \text { (MAK) } \end{gathered}$
2016	365	0	92	0	5	0	59	174
2017	52*	1	1**	0	2	0	6	2
2018	31	0	24	0	1	0	*0	7
2019	TBC							

Notes:

1. First time in 2016 for estimating total catch of sharks from national fisheries data statistics
2. *) subject to be further clarified, source of data from Surveillance unit of MMAF and CFR
3. ${ }^{* *}$) source of data from one data (CDSI-MMAF) and CFR
4. The estimation in 2018 was raised estimated.
5. All catches of sharks were fully utilized by the fishers as source for livelihood.
6. The catch of sharks will be confirmed (TBC) during annual catch estimate WS on mid June 2020

II. THE NUMBER OF FISHING VESSELS OPERATING IN IEEZ SULAWESI SEA AND IEEZ PACIFIC OCEAN, 2013-2019

Table 11. Number of fishing vessel operating in EEZ FMA 716 and 717, by size and gear

Gear	Size Class (GT)	2019	2018	2017	2016	2015	2014	2013
Longline (in EEZ FMA 716 and 717)	0-50	0	0	0	1	35	42	41
	5 1-200	1	2	1	0	92	95	104
	201-500	0	0	0	0	0	0	2
	500+	0	0	0	0	0	0	0
Pole and Line (in EEZ FMA 716 and 717)	0-50	1	27	27	28	9	4	6
	51-150	3	18	19	32	22	32	49
	150+	0	0	0	0	0	0	0
Purse seine (in EEZ FMA 716 and 717)	0-500	95	104	103	118	111	132	131
	50 1-1,000	0	0	0	0	6	5	2
	1,001-1,500	0	0	0	0	0	0	0
	1,500+	0	0	0	0	0	0	0
Handlines (in EEZ FMA 716 and 717)	0-10	0	0	0	0	0	0	0
	11-50	9	9	9	15	0	1	1
	51-200	0	0	0	0	0	2	7
	201-500	0	0	0	2	1	0	0
	500+	0	0	0	0	0	0	0
Troll line (in EEZ FMA 716 and 717)	0-10	0	0	0	0	0	0	0
	11-50	0	0	0	0	0	0	0
	51-200	0	0	0	0	0	0	0

Gear	Size Class (GT)	2019	2018	2017	2016	2015	2014	2013
	201-500	0	0	0	0	0	0	0
	500+	0	0	0	0	0	0	0
$\begin{gathered} \text { Gillnet (in EEZ FMA } \\ 716 \\ \text { and } 717 \text {) } \end{gathered}$	0-10	0	0	0	1	0	0	0
	11-50	1	2	2	0	2	8	2
	51-200	0	0	0	0	0	0	0
	201-500	0	0	0	1	1	3	1
	500+	0	0	0	0	1	1	1
Others, excludes troll line, handlines, gillnets (in EEZ FMA 716 and 717)	0-10	0	0	0	0	65	22	9
	11-50	0	1	0	0	55	61	53
	51-200	0	0	1	0	60	67	52
	201-500	0	0	0	1	1	1	0
	500+	0	0	0	0	0	0	0
TOTAL		*110	163	162	199	461	476	461

Note:
*Active vessels based on the licenses issued by Central Government and not include fishing vessels with license issued by Provincial Government (Further update will be conducted during annual catch estimate worskhop)

III. THE INDONESIAN FISHING FLEET STRUCTURE REGISTERED IN WCPFC 2019

Table 12. Number of Indonesia fishing fleet by gear and type registered in WCPFC (2015-2019) (SDI-
DJPT)

NO	FLEET	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}^{\boldsymbol{*}}$	$\mathbf{2 0 1 9}$
1	Long Liner Tuna long liner and long liner	153	0	0	0	0
2	Purse Seiner	124	4	6	8	17
3	Pole and Liner	28	7	9	13	0
4	Gillnetter	2	0	0	0	0
5	Handliner	4	0	0	0	2
6	Support Vessel	55	0	0	0	0
7	Non Specified vessel	2	0	0	0	0
8	Fish Carrier	26	0	0	0	0

	Total	$\mathbf{3 9 4}$	$\mathbf{1 1}$	15	21	19

*Note: data as per 31 December 2019 , futher update will conduct during annual catch estimater Workshop

IV. DEVELOPMENTS/TRENDS IN THE FISHERY (CHANGES IN FISHING PATTERNS, FLEET OPERATIONS, TARGET SPECIES, LEVEL OF TRANSHIPMENT, ETC.)

Regulations related to major changes of Indonesia tuna fisheries are Minister Regulation No. 56/2014 concerning on moratorium of fishing license for vessels built outside Indonesia (foreign built vessel) and Minister Regulation No. 57/2014 on banning of transhipment at sea. Implementation of these regulations take changes such as: Issue moratorium, issue changing fishing activities (HL, PL ,LL, PS)

1. No transhipment at sea since January 2015 to end of 2019
2. Vessels built by foreign are tight up at port or back to origin flag.
3. No fishing operation on high seas and foreign EEZ, fishing activities were conducted in archipelagic and teritorial waters.
4. Increase number of small-scale fishing boat that mostly operated in archipelagic and territorial waters, at the same time increase catch rate of these vessel

In order to monitor the activities of fishing vessel government of Indonesia (GOI) has introduced to the fishers and fishing company;

1. Re-registry and re-measure of all fishing boats
2. Develop R-VIA (Record of Vessel Authorized to fish in Indonesia waters) on line and public verification to date know as DIVA program,.
3. Increase inspection and surveillance in results to date no less than 516 vessels were arrested and sank due to IUU fishing activities both national and foreign vessel boats since 2015.

V. SPECIFIC INFORMATION ABOUT IMPLEMENTATION OF CMM (SEABIRD, CETACEAN, AND WHITE-TIP SHARK)

a. Seabird : According to the Minister regulation No 12/2012 concerning on fishing in highs seas, that Indonesian Longline fishing vessel operating in high seas should utilized tori line. Recently, Indonesia has developed national plan of action (NPOA) of seabird in collaboration with seabird life South Africa and able to join several workshops related to seabird conservation both in Indonesia and Vietnam in 2016 and April 2017. During the workshops it is noted that very small number of seabird has interact with vessel that operated in the Indian Ocean. In the 2018 in the area of WCFPC convention i.e. FMA 716 and FMA 717 there were reported zero interaction with seabird.
a. Cetacean: According to Indonesian government Act No. 7 year 1999 on protecting of cetaceans and stipulating the Minister Regulation No. 12 /20 12 on Fishing Business in High Seas, Minister Regulation No. 30 year 2012 on Fishing Business in Fisheries Management Area of Republic of Indonesia, and Minister Regulation No. 26 year 2013 on Amended of Minister Regulation No. 30 year 2012 article 73 on Fishing Business in Fisheries Management Area of Republic of Indonesian cetaceans are protected. Log book data reported in 2018 (as
submitted to Secretariat) there were no (zero) interaction of cetaceans with purse seine (PS) with cetacean
b. White-tip Shark: According to Minister regulation No $12 / 2012$, No $59 / 2014$ as amended by minister regulation No $34 / 2015$ it is regulated that landing of oceanic whitetip shark and hammer head sharks are prohibited, to date such regualtion still enforce.
c. Sea Turtle: There was zero interaction Sea Turtle with Indonesia purse-seine fishing vessels based on 2019 log book, surveillance and national observer report.

VI. DISPOSAL OF CATCH (FRESH/FROZEN/OTHER)/MARKET DESTINATION (EXPORT) DJPT-PDS (Pusdatin sdh kirim ke bu riana data ekspor produk) (Bu Puni)

a. Disposal of Catch: There was no disposal of catch in 2019.
b. Market Destination (Export)

The export data of tuna has been divided by HS number. The export data included catches from Indian Ocean and Pacific Ocean.
Indonesia has issued detailed breakdown of tuna exports into 16 HS code, as the following:
a. YFT (Fresh or Chilled);
b. Skipjack (Fresh or Chilled);
c. Bigeye (Fresh or Chilled);
d. Albacore (Fresh or Chilled);
e. Other tunas (Fresh or Chilled);
f. YFT (Frozen);
g. Skipjack (Frozen);
h. Bigeye (Frozen);
i. SBT (Frozen);
j. Other tunas (Frozen);
k. Skipjack and Frozen tuna fillet;

1. Whole or sliced tuna in the air tied container;
m . Whole or sliced Skipjack or bonito in the air tied container.

VII. SUMMARY OF OBSERVER AND PORT SAMPLING PROGRAMMES (SCIENTIFIC DATA) (CFR and SDI)

Ministry of Marine Affairs and Fisheries has issued Ministerial Regulation Number 01 Year 2013 concerning national observer program. In 2017, DGCF national observer program has deployed 41 observers for gear Long line, Pole and line and Purse seine in FMAs 716, 717 and Indonesian archipelagic waters (FMAs 714 and, 715), with total 619 days at sea. In 2018, DGCF national observer program has deployed 276 observers for Hand Line, Pole and line and Purse seine in FMAs 716, 717 and Indonesian archipelagic waters (FMAs 714 and, 715), with total 1,881 days at sea. In 2019, a total 1262 days at sea has been covered by 137 observers for various tuna fishing vessel (Table 14). Port sampling activities is continuing under WPEA-ITM in 6 landing sites i,e: Bitung (12 enumerators), Kendari (5 enumerators), Sodohoa (3 enumerators), Sorong (3 enumerators), Majene (2 enumerators) and Gorontalo FMAs 715 (2 enumerators). Other data
collection program by Resarch institute for marine fishereis (RIMF) were also conducted for Bulukumba (2 enumerators, Kwandang (2 enumerators) and Manado (2 enumerators) and Sikka, Maumere (2 enumerators).

Table 14. Indonesia national observer program (DGCF) in 2016-2019 (LL : Longline, HL: handline, PL; Pole and line, PS: Purse seine), 2019 Observer data will completed on the ACES.

Gear Type	FMA	2016		2017		2018		2019	
		No Observer	No. Days at sea						
LL	714	-	-	4	74	-	-	-	-
	$\begin{aligned} & 714- \\ & 715 \end{aligned}$	-	-	2	19	-	-	-	-
	715	-	-	3	55	-	-	-	-
	$\begin{aligned} & 716- \\ & 717 \end{aligned}$	-	-	1	20	-	-	2	57
HL	715	1	8	-	-	9	162	5	44
	$\begin{aligned} & 716- \\ & 717 \end{aligned}$							1	6
PL	714	3	12	3	59	3	23	7	137
	715	8	69	3	50	13	133	18	164-
	$\begin{aligned} & 715- \\ & 716 \end{aligned}$	-	-	1	7	15	144	-	-
	716	-	-	2	19	2	11	3	26
PS	714	2	12	4	125	63	331	46	457
	$\begin{gathered} 714- \\ 715 \end{gathered}$	-	-	1	8	81	458		
	715	17	63	11	94	18	127	31	156
	$\begin{gathered} 715- \\ 716 \end{gathered}$	-	-	3	28	36	246		
	$\begin{aligned} & 715- \\ & 717 \end{aligned}$	-	-	1	17	18	127		

	716	-	-	2	44	18	119	21	127
	717							3	88
Total		31	164	41	619	276	1881	137	1262

REPORTING OF EFFORT (Purse seine, Hand line and Pole and line)

Indonesia has launched interim harvest strategy framework for skipjack, yellowfin and bigeye in its Archipelagic waters at the $3^{\text {rd }}$ Bali Tuna Conference on the 31 May 2018. Recent nominal CPUE of the skipjack has been estimated (using WPEA data) for 1.2 tons/day and effort for all pole and line operated in FMAs 713 to 715 to be 64.581 days with 177 days/year/vessel. Log book data on 2017 and 2018 for PS, LL and PL have been submitted to the WCPFC that might be used to estimate effort for those fishery,. During annual catch estimate workshop the need to have detail information of total effort of PS, HL \& PL operated in 716 \& 717 derived from 2019 logbook data is required and will be further communicate and discuss during the next annual catch estimate workshop which scheduled on June 2020.

VIII. STATISTICAL DATA COLLECTION SYSTEMS IN USE ORGANIZATION AND JOB DUTIES

A. GENERAL PROCEDURE OF ONE DATA POLICY

1. Since 2017, based on One Data Policy within the Ministry of Marine and fisheries Affairs (MMAF), data collection has been conducted by Centre of Data Statistic and Information (CDSI). CDSI has responsible for designing survey method, supervision of the survey, tabulation/compilation, analyzing, and publishing of National Capture Fisheries Statistics.
2. Data validation process is conducted with hierarchical scheme from district, provincial to center government (MMAF).
3. Directorate General (DG) such as DG of Capture Fisheries, DG of Aquaculture, DG of Spatial and Zoning will conduct validation for catches production, Aquaculture production and Salt production respectively, all data from these DG as well as from district and Provinces will be validated by CDSI.
4. Data collection conduct at fishing port is derived from fishing logbook, landing data information, initial sheet for catch certification, vessel Inspection Report and observer program.

B. RESEARCH ACTIVITIES (TUNAS, OTHER SPECIES, SPECIES OF SPECIAL INTEREST, OCEANOGRAPHIC INFLUENCES)

- WPEA: Tuna data collection based on ports sampling on selected sampling is continuing under WPEA-ITM project. To date there are 7 landing sites are observed to produce a catch composition by species by gear as well as its size distribution. Those information will be used as references in the national annual catch estimate (by gear by species), Other research
activities in this project are investigating to reduce of BET and YFT juvenile bycatch from Pole and line fishery, tuna supply chain and prior study on climate change for highly migratory species.
- A collaborative research project between CFR-MMAF (Indonesia) and ACIAR - CSIRO (Australia) for period 2018-2021 is "Harvest strategies for Indonesian tropical tuna fisheries to increase sustainable benefits", among other objectives this activity will determine productivity of tropical tuna in Indonesia and collect socio-economic information and bio-economic modeling for the different sectors of the tuna fisheries, as well as improve capacity of operational fisheries management and research. Add text octdec.
- A collaborative research project between CFR-MMAF (Indonesia) and ACIAR - CSIRO (Australia) which was concluded in 2018 entitled "Developing capacity for management of Indonesia's large pelagic fisheries resources" which investigating connectivity of tuna stock (YFT, BET, SKJ) in the pacific Ocean and Indian Ocean as well as Indonesia's archipelagic waters through genetic populations, parasites and otolith micro chemistry techniques, FADs characteristic in Indonesia.
- Continuing data collection port based program for small scale tuna fisheries through collaborative work with NGOs (i,e. MDPI, TNC, SFP) and fishing association (AP2HI) fisheries using E.BRPL platform, IFISH and trial on used of spot trace.
- Study on for neritic tuna within Indonesian waters to support national fish stock Assessment conducted by Research Institute for Marine Fisheries (RIMF-MMAF). Add info : Data Colection with support from GOI have been condcuted for 713 (for tropical tuna)

I. FISHING GROUND (2019)

Based on interview with the skippers and having them point the position of fishing in one-degree-grid map, the fishing grounds can be presented in the following figures:

Figure 2. Fishing areas for Hand Line, Long Line, Troll Line, Troll Line/Hand Line (multi-gear), Purse Seine and Pole and Line vessels.

II. CATCH COMPOSITION

Figure 3. Catch composition of Hand Line, Long Line, Pole and Line and Purse Seine, based at Bitung, in 2019

Port Sampling activity in Bitung in 2019 reports that catch composition by gear varied: Purse Seine caught mostly SKJ (74 \%); Pole and Line caught mostly SKJ (85%); Long Line caught mostly BET (57%); Hand Line caught mostly YFT (98%);

Figure 4. Catch composistion of Purse Seine and Hand Line based at Gorontalo in 2019
Port Sampling activity in Gorontalo in 2019 reports that catch composition by gear varied: Purse Seine caught mostly SKJ (100%); Pole and Line caught mostly YFT (100 \%); Hand Line caught mostly YFT (80 \%);

Figure 5. Catch composition for Hand Line, Pole and Line, Purse Seine, Troll Line, Troll Line/Hand Line in Kendari for 2019

Port Sampling activity in Kendari in 2019 reports that catch composition by gear varied: Troll Line/Hand Line caught mostly YFT (54 \%); Troll Line caught mostly SKJ (86 \%); Purse Seine caught mostly SKJ (52 \%); Pole and Line caught mostly SKJ (58 \%);

Figure 6. Catch composition landed in Majene, 2019
Port Sampling activity in Majene in 2019 reports that catch composition by gear varied: Hand Line caught mostly YFT (100%);

III. SIZE DISTIBUTION BASED ON PORT SAMPLING.

A. Length Frequency Distribution

Yellowfin Tuna (Thunnus albacares)

Bigeye Tuna (Thunnus obesus)

B. Weight Distribution

Yellowfin Tuna (Thunnus albacares)

Bigeye Tuna (Thunnus obesus)

ADDENDUM TO ANNUAL REPORT PART 1 Specific information to be provided in Part 1 as required by CMMs ${ }^{1}$	
	22 February 2020
CMM 2005-03 [North Pacific Albacore], Para 4	There are no catch of north albacore from (PS,LL, PL) gear that operated north of equator.
CMM 2006-04 [South West striped Marlin], Para 4	Not Applicable for Indonesia. No Indonesian fishing vessel operated South of 15 S
CMM 2009-03 [Swordfish], Para 8	Not Applicable for Indonesia \rightarrow No Indonesia fishing vessels targeting swordfish South of $20^{\circ} \mathrm{S}$ as well as north of $20^{\circ} \mathrm{S}$ in WCPFC convention Area
CMM 2009-06 [Transshipment], Para 11 (ANNEX II)	No transhipment in 2019, all cacth shall landed directly to port. Indonesia has issued Minister Regulation No. 57/20 14 on banning of transhipment.
CMM 2010-07 [Sharks], Para 4	Catch of shark is provide in the table 10 a .
CMM 2011-03 [Impact of PS fishing on cetaceans], Para 5	No PS interaction with cetaceans CCMs shall include in their Part 1 Annual Report any instances in which cetaceans have been encircled by the purse seine nets of their flagged vessels, reported under paragraph 2(b).
CMM 2011-04 [Oceanic whitetip sharks], Para 3	Provision Catch of shark is provide in the table 10 a
CMM 2012-04 [Whale sharks], Para 06	No PS interaction with cetaceans
CMM 2013-08 [Silky sharks], Para 3	Provision Catch of shark is provide in the table 10 a
Observer coverage (WCPFC 11 decision - para 484(b)	Indonesia has national observer program as inform in annual part 1. Table 14. Not applicable . In year 2019 there was no Indonesia vessel operated in high seas and on other countries EEZ.
CMM 2015-02 [South Pacific Albacore] Para 4	Not applicable for Indonesia. no Indonesian fishing vessel operated South of 20 S
CMM 2017-06 [Seabirds] Para 9	Zero interactions of seabird to Indonesia's Tuna fishing Vessel

[^0]
V. CMM 2017-06: [Seabirds] Annex 2. Guidelines for reporting templates for Part 1 report

Indonesia has adopted CMM 2012-07/CMM 2015-03/CMM 2017-06 through Minister Regulation No. 12 year 2012 on Fishing in High Seas. No interactions were reported by observer on board on 2019.

ACKNOWLEDGEMENTS

We acknowledge the support of all enumerators in Bitung, Kendari, Sodohoa, sorong, Gorontalo and Majene who spent effort and provide port sampling data under WPEA project, Enumerators from RIMF, Enumerators from MDPI and AP2H1. Thanks to WCPFC including persons and countries involved. Thanks to Centre of Data Statistic and Information (Pusat Data Statistik dan Informasi) for national capture fisheries data, Directorate Fish and Resource Management (DFRM) - Directorate General for Capture Fisheries (DGCF) for log book and national observer data.

This Report prepared by: Fayakun Satria, Anung Widodo, Lilis Sadiyah, Ignatius and I Gede Bayu Sedana (CFR); Susi and Dina (Centre of Data Statistic and Information); Trian Yunanda, Syahrir Abd. Raup, , Mumpuni, Putuh Suadela, and (DFRM-DGCF); Muhammad Anas, (DGCF Data Section).

[^0]: ${ }^{1}$ Reporting requirements requested by CMMs and decisions by the Commission, as of WCPFC15 (Dec 2018)

