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ABSTRACT 

Clinical trials are major and costly undertakings for researchers. Planning a clinical trial 

involves careful selection of the primary and secondary efficacy endpoints. The 2010 

draft FDA guidance on adaptive designs acknowledges possible study design 

modifications, such as selection and/or order of secondary endpoints, in addition to 

sample size re-estimation. It is essential for the integrity of a double-blind clinical trial 

that individual treatment allocation of patients remains unknown. Methods have been 

proposed for re-estimating the sample size of clinical trials, without unblinding treatment 

arms, for both categorical and continuous outcomes. Procedures that allow a blinded 

estimation of the treatment effect, using knowledge of trial operational characteristics, 

have been suggested in the literature. 

 

Clinical trials are designed to evaluate effects of one or more treatments on multiple 

primary and secondary endpoints. The multiplicity issues when there is more than one 

endpoint require careful consideration for controlling the Type I error rate. A wide 

variety of multiplicity approaches are available to ensure that the probability of making a 

Type I error is controlled within acceptable pre-specified bounds. The widely used fixed 

sequence gate-keeping procedures require prospective ordering of null hypotheses for 

secondary endpoints. This prospective ordering is often based on a number of untested 

assumptions about expected treatment differences, the assumed population variance, and 

estimated dropout rates.  
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We wish to update the ordering of the null hypotheses based on estimating standardized 

treatment effects. We show how to do so while the study is ongoing, without unblinding 

the treatments, without losing the validity of the testing procedure, and with maintaining 

the integrity of the trial. Our simulations show that we can reliably order the standardized 

treatment effect also known as signal-to-noise ratio ( / )  , even though we are unable to 

estimate the unstandardized treatment effect ( ) . 

 

In order to estimate treatment difference in a blinded setting, we must define a latent 

variable substituting for the unknown treatment assignment. Approaches that employ the 

EM algorithm to estimate treatment differences in blinded settings do not provide reliable 

conclusions about ordering the null hypotheses. We developed Bayesian approaches that 

enable us to order secondary null hypotheses. These approaches are based on posterior 

estimation of signal-to-noise ratios ( / )  . We demonstrate with simulation studies that 

our Bayesian algorithms perform better than existing EM algorithm counterparts for 

ordering effect sizes. Introducing informative priors for the latent variables, in settings 

where the EM algorithm has been used, typically improves the accuracy of parameter 

estimation in effect size ordering. We illustrate our method with a secondary analysis of a 

longitudinal study of depression. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The objective of clinical trials is to determine if a new medication or treatment is safe and 

effective. Clinical trials can have a major impact on public health. Clinical trials are 

conducted to find more effective ways to treat, prevent, or diagnose diseases. These 

research studies may also be done to find treatments with fewer side effects, or treatments 

that are easier for patients to tolerate. Studies evaluating efficacy and safety of new drugs, 

medical devices, biologics, psychological therapies, or interventions may require a 

significant number of subjects and extensive treatment duration. Clinical trials are major 

and costly undertakings for researchers. A new clinical trial examining the benefits of 

lowering cholesterol in women and older people may take years to complete. 

 

Enrollment of patients in clinical trials is a continual process staggered in time. Patient 

recruitment in studies of chronic diseases, may take many years, so that the first endpoint 

for some patients can be observed when the accrual is still ongoing. For example, a 

depression study with a target of 300 patients, each of whom studied for six weeks, may 

require 12 months to enroll all 300 subjects or a year-long (per patient) bipolar trial may 

complete subject enrollment in 3 years. In such situations there might be ethical, practical 

and economic reasons for looking at the data before the planned end of the study. The 

design of many clinical trials includes some strategy for early stopping if an interim 

analysis reveals large differences between treatment groups or the possibility of no 

benefit from a new treatment (i.e., futility). In addition to saving time and resources, such 

http://lungcancer.about.com/od/treatmentoflungcancer/a/clinicaltrials.htm
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a design feature can reduce study patients' exposure to the inferior treatment. These 

interim analyses can be done periodically, when a pre-specified number of participants 

provide required data points or at a pre-specified point in time. For instance, an interim 

analysis can be carried out at month 6 when half of the patients completed all 6 weeks of 

their participation even though this depression trial may take over 1 year to complete 

accrual of all patients. Interim analyses could also be carried out at equally spaced points 

in time or when certain information is available from the data. Statistical and clinical 

guidelines require that researchers document all considerations which will govern the 

conduct of the interim analyses in the study protocol. These considerations include, 

among other things, clearly stating the need for such interim analyses, the stopping rules 

(including any adjustment to Type I error) that will govern the conduct of the interim 

analyses, and the planned number of or the (information/calendar) times when such 

interim analyses will be carried out. Any deviations from the planned conduct of the trial 

could seriously flaw the validity of the study results. 

 

Both medical ethics and the natural curiosity of researchers require ongoing monitoring 

of accumulating data for purposes of identifying potential study violations, assessing 

potential side effects, or making sure that subjects in the study are not unnecessarily 

given a treatment known to be inferior. This also ensures that beneficial treatments are 

adopted as rapidly as possible. In this dissertation, we investigate the use of the 

accumulated data for purposes of modifying aspects of the study design. 
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During the design of a confirmatory clinical trial, it is often the case that required 

information is not fully available and information that is used is often subject to a high 

degree of uncertainty. This information includes, but is not limited to, the expected 

treatment differences, the assumed population variance, and estimated dropout rates. 

Because a study may fail to achieve its goal when the pre-study estimates or assumptions 

are substantially inaccurate, study designs must take this uncertainty into consideration to 

increase the likelihood of success. Group sequential and adaptive designs allow one to 

evaluate uncertainty in the planning phase without compromising the integrity of the trial. 

These techniques, including sample size re-estimation (blinded or unblinded), adaptive 

dose finding studies, and seamless phase II/III designs have been discussed extensively in 

the literature.  

 

At interim points of the trial, re-evaluations of preplanned effect sizes and variance 

estimates may be beneficial. If the original assumptions appear erroneous, adjustments 

can be made to improve the chance that the trial will reach a definitive conclusion. One 

such adjustment, which has been discussed extensively in the literature, is to modify the 

sample size (i.e., sample size re-estimation). The initial estimate, 
2
0s  of the true variance 

2  is typically used to compute the preplanned sample size of 0N  required to detect a 

clinically meaningful difference. This initial estimate is based on, among other things, 

previous experience with the study drugs, expert knowledge, and literature reviews. 

Estimates of expected mean differences share similar types of judgment calls and in 

many instances, these are obtained from different sets of clinical conditions. 
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Group sequential and adaptive designs, using unblinded interim data points, provide valid 

conclusions about the choice of trial design mechanisms. These are usually resource 

intensive procedures which require review of unblinded data at interim stages (i.e., 

knowledge of actual treatment assignments). Blinding and randomization are generally 

considered to be the most useful techniques for eliminating or minimizing bias in the 

design of clinical trials. Blinded experimental procedures are designed to eliminate biases 

produced by the anticipation of study participants, experimenters, and data analysts. In a 

double-blind experiment, both the participant and the experimenter are unaware of the 

treatment group assignment. Regulatory guidelines strongly demand that the results of 

interim analyses are not disseminated to the study personnel and subjects in order to 

preserve the integrity of the trial. To implement these procedures, independent Data 

Monitoring Committees need to be instituted along with data review charters to make 

sure that confidentiality is strictly maintained. These procedures may also inflate the 

Type I error rate (or equivalently, reduce power). The repeated analysis of accumulating 

data raises the chance of false positive findings if standard statistical methods are used at 

each analysis stage with no adjustments for repeated testing. The final analysis at the end 

must be based on the adjusted overall significance level and/or test statistics [1, 2]. It is 

possible to retain original power with increased sample size.  

 

Clinical trials that demonstrate treatment differences on clinical endpoints are usually 

costly. In some instances, the sponsor of such a trial may have an interest in obtaining a 

“rough idea” of the possible magnitude of the treatment effect or even the direction of the 

treatment effect without unblinding while the trial is still ongoing. This information 
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would help the sponsor to better plan future resources and new drug development 

strategies. Health authorities are also interested in knowing whether such assessments 

could impact the integrity of the trial. The following two clinical trial examples are 

presented to illustrate questions that can be raised prior to capturing final data points. 

 

Depression Trial: 

A large, prospective, double-blind, placebo controlled multicenter trial of adults with 

Major Depressive Disorder (MDD) was conducted to examine the impact of 

antipsychotic augmentation. The details of this trial were published by Mahmoud et al., 

2007 [3]. In summary, the study included a 4-week open-label run-in phase and a 6-week 

double-blind placebo-controlled phase. The patients who had insufficient response to 

antidepressant monotherapy at the end of the open-label period were randomly allocated 

(1:1) to receive either active drug or matching placebo in a 6-week double-blind placebo-

controlled phase in addition to their ongoing medication. Trained study personnel 

administered the Hamilton Rating Scale for Depression (HRSD-17 [also called HAM-D-

17]) and the Clinical Global Impressions–Severity of illness instruments at each study 

visit. Patients completed the validated Quality of Life Enjoyment and Satisfaction 

Questionnaire, and the Patient-Reported Troubling Symptoms of Depression (PaRTS-D) 

instrument through a touch-tone telephone interactive voice response system at baseline 

and at each week of the double-blind period. The primary efficacy evaluation was based 

on the Week 4 HRSD-17 score although this study was 6 weeks long. 
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Assumptions for the original study design regarding expected clinical difference, 

population variance, drop-out rates and other clinical trial characteristics may have been 

based on limited experience with this drug for treatment resistant depressed patients. This 

is usually the case during the planning phase of a new clinical trial. Due to limited 

experience with the study drug, there is a degree of uncertainty during the design stage to 

establish the Week 4 HRSD-17 score as the primary efficacy endpoint. It is also 

important to monitor accumulating data to examine potential side effects, identify study 

violations, and examine original study design assumptions. Specifically, prior to the 

database lock (i.e., the observation of final data points for last enrolled patient based on 

required guidelines), the sponsor of this trial has the option to use information from 

already accrued patients to re-specify sample size or other aspects of the study design. In 

this example, the sponsor might have looked for guidance on the appropriateness of using 

treatment difference at Week 6, instead of Week 4, as the primary time point, or on the 

appropriateness of the performance of the patient-rated PaRTS-D score, instead of the 

clinician-rated HRSD-17 score, as the primary end point.  

 

Bipolar Trial: 

This randomized, double-blind, placebo controlled, international study was conducted 

from May 2004 to February 2007 at 32 psychiatric centers in the United States and India 

to evaluate adjunctive maintenance treatment with risperidone long-acting injectable 

(RLAI) antipsychotics in patients with bipolar disorder. The details of this trial were 

published by Macfadden et al., 2009 [4]. This study assessed whether adjunctive 

maintenance treatment with long-acting antipsychotic therapy, added to treatment as 
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usual (TAU), delays relapse in patients with bipolar I disorder. This study included 

patients with bipolar I disorder with 4 mood episodes in the past 12 months. Following a 

16-week, open-label stabilization phase with active treatment RLAI plus TAU, remitted 

patients entered a double-blind, placebo-controlled, relapse-prevention phase for up to 52 

weeks. Randomized patients continued treatment with adjunctive RLAI plus TAU or 

switched to adjunctive placebo injection plus TAU. The primary outcome was time to 

first relapse to any mood episode. Of 275 enrolled patients, 139 entered the 52 week 

double-blind treatment.  

 

Prior to the database lock, the sponsor of this trial might have looked for guidance on the 

adequacy of 139 subjects in the double-blind period to assess relapse rates between the 

two treatments.  

 

1.2 Literature Review 

In both examples above it is useful to know if we could assess the treatment effect, or 

even get a sense of the direction of treatment effect, based on a blinded data review. 

Gould and Shih (GS) [5] discussed modifying the design of ongoing trials without 

unblinding. First, GS provided an adjusted version of the simple one-sample variance 

estimator. They also proposed a procedure to estimate the within-group variance for 

sample size re-estimation without unblinding the clinical trial data at interim stages [2–8] 

using the EM algorithm [9, 10]. This procedure allowed them to obtain maximum 

marginal likelihood estimates (MMLEs) of within-group variability. The suggested 

methodology can be used to estimate not only within group variance but also the mean 
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response difference between treatment groups. The algorithm treats the treatment group 

identifiers as missing data. GS demonstrated that the procedure provides a reasonable and 

satisfactory estimate of the common standard deviation. They acknowledged that the 

procedure does not reliably estimate the true difference between the treatment means. 

 

The Gould and Shih (GS) Procedure: 

Observations from treatment j  follow a normal distribution with mean ,  0,1j j   and 

common variance 
2 . The objective is to test H0: 0 1   against H1: 0 1  . Let 

0 1    . For purposes of determining the required sample size necessary to show a 

difference between treatments,   is assumed to be ̂  and the variance is assumed to be 

2̂ . If the treatment assignments were known, 
2̂  could be computed by pooling the 

within-group variances. Since the assignments are unknown 
2  can be estimated in two 

ways: simple adjustment of the pooled sample variance based on the difference between 

the means presumed by 1H ; and using an EM algorithm which does not depend on 1H . 

 

1-) GS, Simple Adjustment 

Suppose that an interim sample contains n  observations from treatment 1 (active) and 

(1 )n  observations from treatment 0 (placebo); n  is known and the group membership 

weight   is unknown. In 1:1 treatment allocation ratio,   is assumed to be 0.5 at each 

interim stage. Let ijY  denote the i th ( 1,..., )i n observation from group j . The overall 



9 

 

estimate of 
2  based on the pooled sample can be computed without unblinding and 

computed formally as: 

2 2 2 2
0 1

, ,

2 2
0 1

( 1) ( ) ( ) (1 )( )

ˆ              ( 2) (1 )( )

p ij ij j

i j i j

n s Y Y Y Y n Y Y

n n Y Y

 

  

       

    

 
 

where 
2̂  denotes the unknown within-group estimate of 

2 . Since the interim sample 

is blinded,   and the group sample means 0Y  and 1Y  will be unknown, as will both 

terms of the last expression. However, if the alternative hypothesis H1: 0 1     is true 

and if the size of n guarantees that 0 1Y Y  is reasonably close to  , then 

2 2
0 1

ˆ(1 )( ) ( 1) (1 )n Y Y n        . 

In particular, if 0.5  , then 2 2 2ˆˆ ( 1)( / 4) / ( 2)pn s n     .  

 

2-) GS, EM Algorithm 

Suppose that n  interim observations have been obtained from a normal distribution with 

variance 
2  and mean 0  or 1  depending on whether the individual providing the 

observation was in treatment group 0 or 1, respectively. Treatment group assignments are 

independent of observed values and unknown. Let  ( 1,..., )iz i n  denote the treatment 

group membership indicator for observation i . The iz ’s are independently distributed 

with ( 1)iP z   , the fraction of the total sample that is allocated to treatment group 1. 

The log-likelihood of the interim observations iy  given the treatment indicator iz , is 
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 2 2 2
1 02

1

1
log ( ) (1 )( )

2 2

n

i i i i

i

n
z y z y  

 

        

The conditional expectation of iz  given iy  is 

0 1

0 1 0 1

1
1 0 1 0

2

( | 1, , , )
Pr( 1| )

( | 1, , , ) (1 ) ( | 0, , , )

( )( 2 )(1 )
                    1 exp

2

i i
i i

i i i i

i

f y z
z y

f y z f y z

y

   

       

   

 




 

   

    
   

  

 

where, 0 1( | , , , )i if y z     is a conditional density. The details of the EM algorithm are 

provided in the Methods section. The initial estimates in GS are obtained in the following 

manner:  

Let (1) (2) ( )... ny y y    denote the ordered interim data, and let 
1 ( 0.5)

i
i

n
   
   

 
, 

1,...,i n , where 1( )  denotes the inverse of the standard normal CDF. A simple 

linear regression is fit by least squares to the points  ( )( , ),  1,...,i iy i n  ; let b denote 

the slope of the fitted line, and let a  denote the intercept: 

( )

2 2
,       .

i i

i

y n y
b a y b

n

 


 


  






 

The initial values of 1 0,  ,      are 
2

1 0,    / ,   /b a b c a b c      , where c is 

some chosen constant. The choice of c  influences the estimation of the means, but not 

the variance. Ideally, c  should be equal to 
0 1

2

 
; although b  estimates  , there is no 

good estimate of 0 1( ).   GS gets around this problem as described below: In most 

clinical trials that use a normal approximation for estimating the sample size, the inverse 
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of the coefficient of variation usually ranges between 0.2 and 0.5 which corresponds to 

about 430 and 70 patients per group, respectively, for power=0.9 and one-sided Type I 

error of 0.05. GS suggested taking the middle value in this range, 0.35, thus converting to 

2(1/ 0.35) 5.71.c    

 

Friede and Kieser questioned [11] the reliability of the within group variance estimates of 

the Gould and Shih approach and later provided numerous alternatives [12 – 15] for the 

blinded sample size evaluations. Waksman [16] examined the properties of the Gould and 

Shih estimates for both the within group variance and the difference between group 

means. He showed that the apparent non-uniqueness of the Gould and Shih estimate is 

due to an “apparently innocuous” alteration to the EM algorithm. When this alteration is 

removed, the method is valid in that it produces the maximum likelihood estimate of the 

within-group standard deviation. Waksman also noted that the estimates of the treatment 

group differences are not accurate. Xing and Ganju [17] used the enrollment order of 

subjects and the randomization block size to estimate the within group variance. Their 

simulation results showed that the variability in the estimation of treatment differences, 

 , is large enough to render the estimates for   practically useless. As a consequence, 

even though treatment differences are being estimated, their variability is so high that 

there is no risk of unblinding the trial. Miller, Friede, and Kieser [18] assessed the risk of 

blinded inferences based on knowledge of the randomization block size leading to 

inadvertent unblinding of the treatment effect. They concluded that blinded tests have 

reasonable power to estimate treatment effects only when the true treatment difference is 

several times larger than the clinically important effect assumed in the sample size 
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computations. Consequently, blinded estimation is risky only when the study is 

overpowered. Overpowered studies are rare in clinical practice. The number of patients 

exposed to treatment, the time required to obtain the data, and hence the financial cost of 

the trial are all kept under control when designing a clinical trial. Overpowering may 

happen in the case of multiple co-primary endpoints when the study sample size is chosen 

for one of the endpoints.  

 

Xie, Quan, and Zhang [19] proposed three methods, two of which were based on the EM 

algorithm for estimating blinded treatment effect for survival endpoints in an ongoing 

trial. An unblinded analysis for time-to-event data at the end of study is usually based on 

a log-rank test and/or a Cox proportional hazards model. The authors’ first approach 

classifies patients into treatment and placebo groups based on their values of the 

surrogate endpoint (e.g., blood pressure, body weight) depending on being greater or less 

than the median of the pooled data. Then, the Cox proportional hazards model is applied 

to estimate the treatment effect. The second approach is based on an exponential 

regression model with the post treatment surrogate as the covariate and uses an EM 

algorithm for estimating the model parameters. The third approach uses a simple 

exponential model without conditioning on the surrogate endpoint and applies an EM 

algorithm for estimating model parameters. Xie, Quan, and Zhang concluded that these 

three methods failed to provide any reliable estimates of treatment differences because of 

substantial variability in parameter estimates.   
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1.3 Objective 

The 2010 draft FDA guidance on adaptive designs [20] discusses possible study design 

modifications such as selection and/or order of secondary endpoints in addition to sample 

size re-estimation. It also indicates that the risk of bias is greatly reduced or entirely 

absent when adaptations rely only on blinded analyses and the blinding is strictly 

maintained. Although the guidance warns against presenting information on potential 

treatment differences, it acknowledges that blinded-analysis methods are useful and these 

methods do not raise concern about increasing the Type I error rate. The ICH E9 

guidance [21] has also discussed the utility of blinded interim analyses. 

 

Clinical trials are a major and costly undertaking for researchers and their planning 

involves careful selection of the primary and secondary endpoints. Failure to consider 

important secondary endpoints can limit the conclusions of clinical trials. In addition to 

testing the primary endpoint, examination of appropriate statistical methods to test 

secondary endpoints requires careful consideration for controlling the Type I error rate 

when performing multiple statistical tests. For instance, in schizophrenia, bipolar or 

depression research, investigators may include scales assessing response and remission 

rates, functionality, quality of life, or cognition to better characterize treatment effect. 

Depending on the study type and its objectives a wide variety of multiplicity approaches 

are available for ensuring that the probability of the Type I error is controlled within 

acceptable bounds. Fixed-sequence gatekeeping procedures [22] are widely used because 

of their ease of application and interpretation. These procedures require prospective 

ordering of null hypotheses for secondary endpoints after defining the primary endpoint. 
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This prospective ordering is based on a number of untested assumptions about the 

endpoints. An alternative to relying on a predefined ordering is to use information that is 

available to order the null hypotheses based on interim effect sizes without breaking the 

blind and compromising the integrity of the trial. 

 

Instead of formal interim analyses on unblinded data, we propose using information from 

blinded data with masked treatment assignments. The purpose of this research is to assess 

the feasibility of estimating the magnitude of treatment effects on various secondary 

endpoints in ongoing trials without breaking the treatment blind. Our primary objective is 

to compare the posterior ordering of the signal-to-noise ratios (effect sizes) of endpoint 

using available data points. This research does not assess the impact of blinded data 

reviews for the secondary endpoints on the actual overall Type I error rate.  

 

In Chapter 2, we present various Bayesian methods for ordering null hypotheses using 

blinded data. We assume that the endpoints are normally distributed for purposes of 

maximizing the power of gate-keeping approaches. For simplicity, we examine clinical 

trials with only 2 treatment groups, each having an unknown mean and an unknown 

common variance. In addition, we assume the 2 groups are compared at a fixed time 

point. Note that these techniques are generalizable to more than 2 treatment groups and to 

multiple time points (i.e., the repeated measures scenario). In Chapter 3, we show 

simulation results demonstrating both the utility and limitation of these methods 

including methods which employ the EM algorithm. Throughout the remainder of this 

research, we use the terminology “ ” to denote the treatment effect and “ ” the error 
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standard deviation. In this terminology /d    denotes the signal to noise ratio 

(standardized effect size). Each of the aforementioned methods uses posterior ordering of 

the signal to noise /d    ratio among the secondary endpoints to order the secondary 

null hypotheses. In Chapter 4, we apply our proposed method to data collected from a 

depression trial and compare the results to those with unblinded estimates. In Chapter 5, 

we provide a discussion of the scope of the proposed methods. In Chapter 6, we conclude 

with additional future research activities. 
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CHAPTER 2 

METHODS 

We consider a randomized two arm trial (placebo vs. experimental treatment group) with 

a randomization allocation ratio of 1:1. The response variable for the k th endpoint from 

j th treatment group on subject i  is denoted by  ( 1,..., ,  0,1,  1,2,..., )ijk jY i n j k K   . 

010 20 0, ,.....,k k n kY Y Y  and 
111 21 1, ,.....,k k n kY Y Y  are sequences of normally distributed 

independent variables from each placebo endpoint with 
2

0 0~ ( , )i k k kY N    and active 

treatment 
2

1 1~ ( , )i k k kY N   . We use the notation iky  to denote an observed outcome 

with unknown treatment assignment. 

 

In equation (1), we assume a fixed effects model for the k th endpoint, where iky  is the 

continuous response, 0k  is the mean placebo response, k  is the magnitude of the 

treatment effect, iz  is the latent binary treatment assignment, and ik  is the measurement 

error. We suppress the dependence of the treatment assignment on k  in the sequel. 

 
2

0 ,   ~ (0,  )  . . .  ik k k i ik ik ky z N i i d          (1)
 

The errors within each endpoint are assumed to be independent and normally distributed. 

Below, we use the notation 1iz   to indicate that subject i  is assigned treatment and 

0iz   to denote the placebo assignment, ( 1,..., )ji n . In this blinded setting, treatment 

assignments are unknown. We assume that lower y  scores are better and the average 

effect of the treatment is k . Suppose n  observations are collected while the clinical trial 
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is ongoing. Assume that the initial sample size 0N  was computed using the design 

elements for the primary endpoint. Hence,  
2 2 2

0 1 /2 12 /N z z      , where the 

notation z  donates the  th
 quantile of the standard normal cumulative distribution.  

 

The signal-to-noise ratio for endpoint k  is defined to be / ,  ( 1,..., )k k kd k K   . Our 

objective is to compare the EM and Bayesian algorithm [23, 24] induced posterior 

ordering of the signal-to-noise ratios of endpoints, 1 2( ... | )kP d d d y   . 

 

Throughout the remainder of the dissertation, 0y  and 1y  denote generic placebo and 

active treatment responses, respectively. The notation y  without an index represents the 

response with unknown treatment assignment. Generic treatment assignments are denoted 

by z . For a two component univariate normal mixture model, it is appropriate to specify 

the complete likelihood function for a given response (see equation (1)) in the form: 

 
1 0( , | ) ( | ) (1 ) ( | );      =p(z 1)p y z N y N y     1 0θ θ θ  

where 
2 2

0 1( , ),  ( , )    0 1θ θ  are vector of parameters and λ  is non-negative 

group membership weight. The treatment group membership of observation iy  is 

identified with the latent variable  ( 1,..., )i jz i n . ( | )N y θ  designates the normal pdf of 

y  with mean and variance parameters θ . The latent variable iz  is 1 if subject i  is in the 

treatment group; otherwise it is 0. It is also assumed that, for 1,..., ,  ji n  ( 1)ip z    

is fixed. The parameter   is assumed to be 0.5 since we have only two treatment groups 
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with a 1:1 allocation ratio. Estimates arising from maximizing the marginal likelihood are 

the most common way to estimate parameters of interest; however, maximum marginal 

likelihood estimates (MMLE) often do not have closed form solutions in settings where 

complex distributions are assumed. The EM algorithm is a method for finding MMLE’s 

of parameters in statistical models, where the model depends on unobserved latent 

variables. Below, we introduce the EM and Bayesian algorithms to order the signal-to-

noise ratios for endpoints. We assume, to begin with, that the endpoints are independent 

of subjects; later, we generalize this to allow for dependence on subjects. In the 

remainder of the dissertation y  denotes the vector of observations and z  denotes the 

vector of latent treatment assignments. 

 

2.1 EM Algorithm 

The EM algorithm starts with arbitrary parameter estimates, 
( 0)ˆ tθ . Let t  be the current 

iteration index. In the E-step, the conditional expectation of the log likelihood from 

equation (1),  ( )ˆlog ( , | ) | , ,tE p y z yθ θ  is computed given the data and current parameter 

values 
( )ˆ tθ . In the M-step, the aforementioned conditional expectation is maximized with 

respect to θ . This yields the new estimates for 
( 1)ˆ tθ and a distribution for 

( 1)tz 
. 

 

The log-likelihood of the interim observations for a given endpoint follows from (1) and 

is: 

   
01

2 22 201
0 02 2

1 1

1 1
log log

2 22 2

nn

i i

i i

nn
y y    

  

                      (2) 
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The aforementioned conditional expectation of latent treatment assignment at EM 

iteration 1t   is 

( ) ( ) 2( )
( 1) ( ) 0

( ) ( )( ) 2( ) 2( )
0 0

ˆˆ ˆ( | , )
ˆ( 1| , ) .

ˆˆ ˆ ˆ ˆ( | , ) (1 ) ( | , )

t t t
t t

i t tt t t

N y
P z y

N y N y

   

      

 
 

  
θ

 

We assume 0.5   throughout the remainder of the discussion. 

 

In the M-step, the mean parameters 0,  ,   and variance parameter 
2  at iteration 

( 1)t  are estimated as follows: 

1)

( 1) ( 1) ( 1)( ) ( )
0

( 1) ( 1)1 1
0

( 1) ( 1)( ) ( )

1 1

( 1) ( 1) ( 1)( ) 2
1

2(t

ˆ ˆ ˆ( 0 | , ) ( 1| , )( )

ˆˆ ,   ,       

ˆ ˆ( 0 | , ) ( 1| , )

    

ˆ ˆ( 1| , )( ) (

ˆ

n n
t t tt t

i ii i
t ti i

n n
t tt t

i i

i i

t t tt
ii i

P z y y P z y y

P z y P z y

P z y y P z



 






  

  

 

 

  

  

 

 

   



 

 

θ θ

θ θ

θ
( 1)( ) 2
0

1

ˆ ˆ0 | , )( )

 

n
tt

i

i

y y

n

 



 θ

 

where iz  is the treatment assignment indicator. The mean parameter 0  and the variance 

parameter 
2  are defined analogously. The effect size, d , for each endpoint is 

computed at each iteration after computing current mean differences and the pooled 

variance.  

 

In practice numerical methods may not identify the global maximum of the marginal 

likelihood function. In addition, maximum marginal likelihood estimates may be 

sensitive to the choice of the starting values used in the EM algorithm. 
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2.2 Bayesian Approach 

The EM algorithm is a partially non-Bayesian methodology where the final result gives a 

probability distribution over the latent variables and a point estimate for θ . In the 

Bayesian approach, the likelihood function of the mixture distribution and the prior 

distributions of ,  zθ  are combined to obtain the joint posterior distribution, which is 

assumed to contain all the information about the unknown parameters. Gibbs sampling, 

which is a special case of the Metropolis–Hastings algorithm (Gelman et al. [25]), allows 

us to generate samples whose distribution corresponds to the posterior distribution. Both 

Gibbs sampling and Metropolis–Hastings algorithm are examples of Markov Chain 

Monte Carlo (MCMC) algorithms. Using Bayes theorem, the posterior distribution 

satisfies: 

 ( , | ) ( | , ) ( | ) ( )p z y p y z p z pθ θ θ θ , 

where ( | , )p y z θ  is the likelihood, ( | )p z θ  is the prior probability of latent treatment 

assignment, and ( )p θ  is the prior distribution of θ . The conditional posterior distribution 

of the treatment allocation is given by: 

 
( | , ) ( | , )p z y p y zθ θ . 

This reduces to 
( 1) ( )ˆ( 1| , )
t t

iP z y


 θ for the E-step reflecting the fact that treatment group 

membership labels are generated independently of one another, conditional on current 

values of the model parameters at each iteration. A fully Bayesian model would assume 

that the prior distribution ( )p θ  takes the form ( | )p θ  for a given hyperparameter  . 

Each secondary endpoint would be assumed to follow a distribution from an exponential 

family and for each endpoint, ( | )kp θ  would be the conjugate Bayes prior for this 
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family. In order to reduce the sensitivity of posterior distributions to specific choices of 

 , one should consider treating   as unknown with a hyperprior distribution ( )p  . For 

purposes of simplification and without loss of accuracy we assume fixed hyperparameters 

and employ ( )p θ  for the prior distribution of θ . 

 

Below, 2,  sj jy  denote the mean and variance of placebo/active responses from a relevant 

historical experiment. Hyperparameters 0 1,  ,   and 
2  are assumed to have the 

following independent prior distributions: 

 
2 2

0 0 0 1 0 1 1~ ( , ),      ~ ( , ),N y s N y s    
 

 
2 Gamma( , )  

for fixed known quantities   and  . 

Regardless of the structure of the prior distribution, the posterior distribution, 

2
0( , , , | )p z y   , does not have a simple closed form. In order to make inferences about 

the unknown parameters, MCMC methodologies are employed to generate samples from 

the posterior distribution. The Gibbs sampler is used to simulate aposteriori from Model 

(1). The joint posterior probability distribution of these parameters satisfies: 

   

2 2 2
0 0 0

2
2 2

0 02 2 2
1 0

2 2 1
0 1 0 0 2

2 2 2
1 0
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1 1 1
exp ( ) exp ( )

2 2

1
exp exp exp( )        (3)

2 2
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n
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We assume below that 
2  has an inverse gamma prior with shape hyperparameter 3   

and a small scale hyperparameter  ( 0.01)  . Under these specifications, we compute 

the conditional posterior distributions needed to run the Gibbs sampler. The posterior 

conditional distributions of parameters of interest 
2

0( ,  ,  )    in equation (3) are given 

by: 

0 1
2 2 2

0 11
0

2 2 2 2 2 2
0 1 0 1

1
~ , ,

1 1 1 1

i i

i

y z y y

s s
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n n

s s s s
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2.3 Bayesian Approach with Covariate 

Estimates in equation (3) can be further enhanced by the inclusion of informative 

covariates. We assume a trial with stratified randomization where explanation of 

treatment differences can be further supported using a covariate (i.e., stratification 

factor). The full sample is divided into subsamples on the basis of a covariate 

(stratification factor), so that the subsamples are more homogenous. Completely 

randomized experiments can then be conducted within each of the subsamples. For 
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example, one may divide the sample into subsamples by additional medication usage 

(e.g., two levels with yes and no groups). The joint posterior distribution in equation (3) 

can be extended to include estimates for stratification level parameters: yes  and no , 

the treatment differences in yes and no groups, respectively. In addition to likelihoods, 

each group will include priors in equation (3).  

 

Let ig  denote the known strata membership of the subject i . For instance, we set 1ig   

if observation i  belongs to the yes strata and 0 if it does not. The joint posterior 

distribution then takes the form:
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The probability of missing treatment group membership for each stratum is proportional 

to the likelihood of its being treated. This conditional posterior probability treatment 

assignment at each iteration is given by: 
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The posterior distribution for parameters of interest in equation (4) are computed to be: 
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2.4 Bayesian Approach with Covariate and a Power Prior 

Equation (4) can be further enhanced using power priors. The power prior approach 

provides a useful class of informative priors for Bayesian inference. The basic idea is to 

use the power parameter 0 [0,1]   to control the influence of the historical data on the 

current study [26-28]. We denote the historical data by 0D . The power prior is 

proportional to the product of a discounted version of the likelihood of the historical data 

and a prior for the size 0  of the discount. We employ the terminology, ( )p   for the 

parameter prior and 0( )p   for the power prior of the size of the discount. We 

subsequently refer to the parameter 0  as the power parameter. The contributing 

likelihoods take the form: 

 0
0 0 0 0( | , ) ( | ) ( ) ( )p D L D p p

      is the posterior given past likelihood, 

 0( | )L D   is the past data likelihood, and 

 ( | )L D   is the current data likelihood. 

 

The full likelihood is proportional to 0 0( | , ) ( | )p D L D   . Choosing a prior for the 

power parameter 0  serves to characterize its likely values. The case 0 0  means that 

no historical data should be used; while 0 1  gives equal weight to the past data 

likelihood, 0( | )L D  , and the likelihood of the current study ( | )L D  , resulting in the 
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full incorporation of the historical data. The joint posterior distribution in equation (4) 

can be extended to include the prior Beta( , )a b  for 0 . The result takes the form: 
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where, 1pn  and 0 pn  represent the number of subjects in the previous iteration that were 

assigned to the treatment and placebo groups, respectively. The posterior distribution of 

the parameters of interest in equation (5) takes the form:  
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Although the posterior distribution of 0  is difficult to evaluate, it is easy to update the 

posterior distribution using standard Monte Carlo simulation methods.  
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2.5 Model Selection 

It is important to compare the performance of EM based methods with those employing 

the full posterior distribution of the parameters. By contrast with frequentist analogues, 

Bayesian model comparison distinguishes which likelihood and prior combinations better 

fit the data. These measures of performance can be used to choose a single “best” model 

or improve estimation via model averaging, in which expected values obtained from 

different models are weighted by their corresponding posterior probabilities. The 

deviance information criterion (DIC) provides a natural measure of performance in this 

setting (Spiegelhalter et al. [29]). Models with smaller DIC should be preferred to models 

with larger DIC. 

 

DIC is defined as: dDIC p D  , where dp  is a measure of model complexity and D  

is a Bayesian measure of how well the model fits the data. Deviance is defined as 

( ) 2log( ( | ))D p y c  θ θ , where c is a constant which cancels out in calculations. The 

expectation of deviance,  ( )D E D
θ

θ , is the average of the log likelihood values 

calculated from the parameters in each sample from the posterior. The deviance evaluated 

at the posterior expectation is denoted by ( )D θ . The effective number of parameters in 

the model is computed as ( )dp D D  θ . It follows that 2 ( )DIC D D  θ . DIC 

improves on BIC (Bayesian Information Criterion) and AIC (Akaike’s Information 

Criterion) by being sensitive to the posterior dependence between parameters. In settings 

like those introduced above, the DIC takes the form: 0 0
ˆˆ2 ( , ) ( , )DIC D D     , where 
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We employ MCMC methods to evaluate equations (6) and (7) above. The posterior 

expectation in equation (6) is computed by averaging over the values obtained for the 

expression inside the equation (6) while quantities in equation (7) are computed using 

MCMC averages. 

 

2.6 MCMC: Gibbs Sampling 

The Gibbs sampler is the most commonly used approach in mixture estimation (Diebolt 

and Robert [30]). An important feature of the Gibbs sampler is that each simulated 

posterior parameter value is always accepted (see equations (3), (4), and (5)). The main 

drawback of the Gibbs sampler in this setting is the lack of mixing when the posterior 

distribution has multiple isolated modes. In this situation, the inference made from the 

Gibbs sampler will be very poor since the allocation switch does not occur. Celeux et al. 

[31] extensively studied computational and inferential difficulties with mixture 

distributions. The Gibbs sampler cannot jump between equivalent modes of the target 

distribution. To circumvent this problem, we introduced a tempering scheme to switch 

treatment group assignments (i.e., switching labels). We employed a Metropolis–

Hastings algorithm with an acceptance-rejection sampling. This involved subsampling 

10% of the treatment and placebo group observations and proposing a label switch. The 
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subsampling frequency of 10% was chosen for computational purposes. The following 

steps are followed, using methods developed by Tierney [32] and Chip, Greenberg [33]: 

1) Draw random candidate samples from iy for switching treatment 

2) Generate u from the Uniform (0,1) distribution. 

3) If 
(1 ( ( 1))

( 1)

i i

i i

p z
u

p z

 







, make label change; otherwise return to step 1. 

This approach is appealing in that it encourages moves between the different modes, and 

is also to some extent independent of the underlying model  
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CHAPTER 3 

SIMULATIONS 

Our objective is to apply the methods discussed above to various clinical cases. The true 

effect sizes are assumed to be known for each endpoint. We want to investigate whether 

or not the researchers can obtain reliable estimates of effect sizes without knowing 

treatment assignments. Posterior estimates of parameters for each endpoint were 

examined. We infer posterior rankings of these endpoints. The performance of each 

method was evaluated. 

 

For each simulated clinical trial, we assumed two treatment arms with a 1:1 treatment 

allocation ratio, 3k   uncorrelated endpoints, 1 2,  ,y y  and 3,y and no missing data. 

During the computations of blinded treatment differences, variances, and corresponding 

effect sizes, we mask true treatment assignments for each subject. Hence there is no way 

of knowing whether or not the subject is in the active or placebo group. There is also no 

mock treatment group identifier, such as Group A or Group B. Therefore, treatment arm 

assignments are missing. It is assumed that the endpoints are evaluated at one time point. 

Multivariate settings with autoregressive correlation structures are also assessed (see 

Chapter 6). 

We considered 5 simulation scenarios for the variables 1 2,  ,y y  and 3y . Each simulation 

scenario gave rise to parameters describing treatment means and standard deviations. 

These parameters were assumed to have Gaussian and inverse Gamma priors. The priors 

have hyper means satisfying constraints leading to various fixed effect sizes. We 
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distinguish between parametric effect sizes, denoted below by 
* * *
1 2 3,  ,  d d d  and the ground 

truth (i.e., input) fixed effect size values 1 2 3,  ,  d d d . The parametric effect sizes have an 

empirical (posterior) distribution arising from simulations and our model assumptions. 

We calculate the empirical distribution under the assumption of an EM model and 

compare these results to the posterior distribution under the assumption of a Bayesian 

model. Below, we calculate the empirical (posterior) probability that the parametric effect 

sizes are ordered in various ways. The closer the posterior probability that the parametric 

effect sizes are ordered in the same way as the ground truth ordering of the effect sizes, 

the better the fit of the model. 

 

3.1 Simulation Set-up 

We simulated 20 data sets for each of the following scenarios. N denotes the total sample 

size per data set. 

Scenario 1d   2d   3d  N 

1 0.5 = 0.5 = 0.5 170 

2 0.8 > 0.5 > 0.3 170 

3 1.0 > 0.5 > 0 170 

4 1.0 > 0.5 > 0  72 

5 1.0 > 0.5 > 0 468 

 

The first scenario emulates the null case among the variables. The second and third 

scenarios provide increased variation between the effect sizes. In scenario 3, the effect 

sizes are further from 0.5. Scenarios 4 and 5 represent studies with different sample sizes. 
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In each of the 20 data sets, we considered a total sample size of 170. The sample size of 

170 was chosen to ensure 90% power to detect an effect size of 0.5; two-sample t-tests 

were used for this purpose. In scenarios 4 and 5, total sample sizes of 468 and 72 were 

respectively chosen to detect effect sizes of 0.3 and 0.8. When the true effect size is 0.5, 

the total sample size of 468 represents an over-powered trial and the 72 subjects 

represents an under-powered clinical trial. 

 

For each of the  ( 1,2,3)k k   endpoints, we assumed a different prior. We used the 

notation 0( , )k l  for the placebo mean parameter associated with prior  ( 1,2,3)k k   and 

data set number  ( 1,...,20)l l  ; similarly, ( , )k l  and 
2( , )k l  denote the parameters 

associated with mean difference and variance, respectively. 

 

We generated data sets using the following model: 

2 2
0 0 0 1 0 1 1

2

( , ) ~ ( , );    ( , ) ( , ) ( , ) ~ ( , );

~ ( , ),  1,2,3,   1,..., 20.

k k k k

k k

k l N Y s k l k l k l N Y s

IG b k l

   

 

 

 
 

This model satisfies the conditions that 0 0( )k kE Y  , 1 1( )k kE Y  , and 

2 2
0 0 1 1( ) ,  ( )k k k kVar s Var s   . 

 

Without loss of generality, we assumed that 0 10kY   and 
2 2
0 1 10k ks s  . 1kY  was 

adjusted to satisfy the fixed effect size constraints for 1,2,3k  . 
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3.2 Simulation Results 

Posterior inferences are based on 1000 iterations. The first 200 iterations are considered 

for the burn-in period for both the EM and Bayesian algorithms. Every 4
th

 point after the 

burn-in period is stored for the Bayesian simulations to reduce correlations. The objective 

is to compare the performance of the EM algorithm and the Bayesian approach under the 

five different scenarios mentioned above. 

 

The proportions of six different variations of effect size orderings using 1000 simulations 

are listed in Figure 1. The effect sizes from 20 simulated data sets produced a sample of 

8000 orderings. Approximate posterior probabilities are computed from these orderings.  

 

Simulation results for ‘Bayesian Approach with Covariate’ and ‘Bayesian Approach with 

Covariate and a Power Prior’ are listed in detail in the Appendix B-F. 

 

In Figure 1, there are six possible simulated effect size orderings. For Scenario 1, each 

simulated effect size ordering was expected to have a 16.7% chance of occurring. Only 7 

out of the aforementioned 20 simulated data sets using the EM algorithm provided results 

for all three variables 1 2 3( , , )y y y . The ordering condition, 
* * *
1 2 3d d d  , did not occur in 

the EM simulations; the ordering condition 
* * *
2 3 1d d d   occurred in 41.3% of these. 

Bayesian methodology produced simulations closer to the ground-truth. Recall that, in 

Scenario 2, the ground-truth was 1 2 3d d d  . Again, the EM algorithm did not generate 

the ordering condition 
* * *
1 2 3d d d  . The Bayesian algorithm simulated the ordering 
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condition 
* * *
1 2 3d d d   in 20.8% of the cases and *

1d  was listed as first choice in 32.0% 

of cases in Bayesian versus 19.3% in EM algorithm. In Scenario 3, the EM algorithm 

simulated the ordering condition 
* * *
1 2 3d d d   in 15.8% of the cases; the Bayesian 

algorithm produced this ordering in 26.5% of the cases. *
1d  was listed as first choice in 

42.2% of cases with the Bayesian algorithm and 34.0% with the EM algorithm. The 

Bayesian algorithm produced the ordering condition 
* * *
1 2 3d d d   in 19.9% and 36.2% 

of the cases when the sample sizes were 72 and 468, respectively. The EM algorithm 

produced the aforementioned ordering in 1.1% and 0% of the cases when sample sizes 

were 72 and 468, respectively. Again, *
1d  was listed as first choice in 33.6% and 50.7% 

of the cases when the sample sizes were 72 and 468 with Bayesian algorithm whereas 

EM listed *
1d  as a first choice in 0% and 33.6% of cases respectively. 

 

The posterior effect size orderings showed that the EM algorithm performed poorly 

compared to its Bayesian counterpart. When the true ordering was 1 2 3d d d  , the 

Bayesian empirical probability for identifying the ground-truth was increasing both as a 

function of the standardized effect size differences and sample size. The Bayesian 

simulations identified the true ordering less than 36.2% of the time. We note that the use 

of power priors in this setting increased the accuracy by up to 4%. 

  



36 

 

 
Figure 1. Posterior Probability of Effect Size Ordering by Scenario 
 

 

Figures 2 and 3 show summaries of posterior inferences over 20 data sets for effect sizes 

in each scenario. Again, simulation results for ‘Bayesian Approach with Covariate’ and 

‘Bayesian Approach with Covariate and a Power Prior’ are listed in detail in the 

Appendix B-F. In Figure 2, the posterior means of the parameter estimates are kept for 

each data set and then summarized. Figure 3 summarizes all the posterior estimates 

regardless of data set identifier. The EM algorithm failed to update parameter estimates 

for all 20 data sets. The posterior means of *d  in the Bayesian cases are overestimated 

compared to the true values of d . The differences obtained using the power prior 



37 

 

estimates with starting values of 0.25 and 0.5 are negligible. The variations around 

estimates using the EM approach seem considerably large compared to Bayesian cases.  

 

Posterior inferences for 0,  ,  and   for each endpoint were also evaluated. Both the 

EM and Bayesian approaches provide estimates for   that are close to their true values. 

Bayesian estimates of   had smaller posterior standard deviations as compared to their 

EM counterparts. Both EM and Bayesian estimates of the treatment differences, , 

overestimated their true values. 

 

Summary tables and figures for posterior estimates by scenario are listed in the Appendix 

B-F. In addition, further details of the simulation set up are given in the Appendix A. 
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Figure 2. Posterior Distribution of Effect Sizes by Scenario, Averaged Over 20 Data Sets 
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Figure 3. Posterior Distribution of Effect Sizes by Scenario  
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CHAPTER 4 

APPLICATION 

In order to apply proposed methods, we considered a placebo-controlled study in 

depression (Mahmoud et al. [3]). Many patients with major depressive disorder (MDD) 

are sub-optimally responsive to antidepressants. A variety of pharmacologic strategies are 

used in these patients, although relatively few have been tested systematically. Adult 

outpatients with MDD who had an incomplete response to ≥8 weeks of antidepressant 

treatment were randomly assigned to risperidone or placebo in addition to ongoing 

treatment for 6 weeks in a double-blind multicenter trial. Patients were randomized in a 

1:1 ratio to treatment arms and were stratified by antidepressant class (SSRI or non- 

SSRI) and study center. The primary efficacy endpoint was the change score from 

baseline to Week 4 (last observation carried forward (LOCF)) in the least squares mean 

(LS mean ± standard error [SE]) 17-item Hamilton Rating Scale for Depression (HRSD-

17) total score. At each double-blind visit (end of the open-label phase and Weeks 1, 2, 4, 

and 6), trained personnel administered the HRSD-17, clinician rated instrument. Scores 

on the HRSD-17 range from 0 to 52; higher scores indicate more severe depression. The 

change from baseline in HRSD-17 was analyzed at each visit using an analysis of 

covariance (ANCOVA) model with treatment, class of antidepressant therapy (strata), 

and the pooled site as factors, and baseline HRSD-17 as a covariate. Patients also 

independently rated their response by using the telephone interactive voice response 

system at baseline and weekly thereafter. The Patient-Rated Troubling Symptoms for 

Depression (PaRTS-D) instrument was developed to provide a more individualized 
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assessment, from the patient's perspective, of 8 commonly reported symptoms of 

depression (Pandina et al. [34]). PaRTS-D scores were calculated as a percent of the 

maximum score possible for the four most troubling symptoms as determined at baseline. 

 

Although this study was 6 weeks long, the primary objective of the study was evaluated 

at Week 4. Evaluations of blinded data while the trial was ongoing could have given 

researchers an opportunity to modify important design features. For example, treatment 

differences at Week 6 could have possibly been considered as a primary time point 

instead of treatment differences at Week 4. Additionally, the treatment differences using 

patient-rated PaRTS-D score could have possibly been used as the primary endpoint 

instead of the clinician-rated HRSD-17. Prior to completion of the trial, these questions 

were not addressed in order to preserve what was stated in the original study protocol.  

 

The MDD study results are summarized in Table 1. The LS-Mean decrease in HRSD-17 

and PaRTS-D scores from baseline to Week 4 were significantly greater with risperidone 

compared to placebo. Although Week 4 was the primary time point, significant between-

treatment difference in HRSD-17 total and PaRTS-D scores were observed at Week 6 

(95% CI at week 4 contains 0; hence not statistically significant). It is also apparent in 

Table 1 that week 6 effect sizes are numerically larger than those of Week 4. The 95% 

Confidence Intervals for least squares mean differences at week 4 for both scales overlap 

with the Week 6 results. 
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Table 1. MDD Study Results at Week 4 and Week 6 for HRSD-17 and PaRTS-D Scales 

Using ANCOVA Models 

Parameter Risperidone Placebo 

 

Hamilton Rating Scale for Depression (HRSD-17) 

  Week 4 LOCF   

    N 132 126 

    LS-Mean Change from Baseline (SE) -8.8 (0.63) -7.1 (0.6) 

    Difference on LS-Means (RIS vs. PBO) (95% CI)  -1.7 (-3.27,-0.20) 

    Effect Size (95% CI)  -0.3 (-0.53,-0.03) 

  Week 6 LOCF   

    LS-Mean Change from Baseline (SE) -10.5 (0.68) -8.1 (0.68) 

    Difference on LS-Means (RIS vs. PBO) (95% CI)  -2.5 (-4.16,-0.81) 

    Effect Size (95% CI)  -0.4 (-0.61,-0.12) 

   

Patient-Rated Troubling Symptoms for Depression (PaRTS-D) 

  Week 4 LOCF   

    N 126 120 

    LS-Mean Change from Baseline (SE) -9.1 (0.88) -7.0 (0.89) 

    Difference on LS-Means (RIS vs. PBO) (95% CI)  -2.1 (-4.21,0.04) 

    Effect Size (95% CI)  -0.3 (-0.51,0.00) 

  Week 6 LOCF   

    LS-Mean Change from Baseline (SE) -11.6 (0.84) -8.1 (0.84) 

    Difference on LS-Means (RIS vs. PBO) (95% CI)  -3.5 (-5.57,-1.44) 

    Effect Size (95% CI)  -0.4 (-0.68,-0.18) 
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Simulation Set-up 

We assumed that the trial was ongoing. Hence, there was no access to the treatment 

group assignments. We addressed the questions of (i) ordering null hypotheses Week 4 

vs. Week 6 and (ii) ordering the effect sizes of HRSD-17 vs. PaRTS-D.  

 

Our main objective was to examine the posterior ordering between 
*
1d  and 

*
2d  of the 

signal-to-noise ratios (effect sizes) of endpoints at Week 4 vs. Week 6 and/or HRSD-17 

vs. PaRTS-D using the EM and Bayesian algorithms. To carry-out these computations, 

we assumed that the initial values for parameter estimates were based on the original 

sample size calculations. For the PaRTS-D evaluations, Bayesian algorithm with strata 

and power priors are not carried out. 

 

We assumed the same prior distributions were utilized for all the endpoints. Recall that 

2,  s   ( 0,1)j jy j   denote the mean and variance of placebo or active responses, 

respecitively, from a relevant historical experiment. For example, priors for HRSD-17 

placebo and treatment means at Week 4 4( )WkH  were assumed to be: 

2 2
04 4 0 0

2 2
14 4 1 1

( ) ~ ( 15, 7 ),    

( ) ~ ( 12, 7 ).

Wk

Wk

H N Y s

H N Y s





 

 
 

 

Two decision strategies were considered: 
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1- Calculate the posterior probability that the HRSD-17 effect size at Week 4 is 

larger than that of Week 6, 
* *

4 6( ( ) ( ) | )Wk WkP d H d H Y . If this probability is greater 

than 0.5, Week 4 should be considered as the primary time point. 

2- Calculate 95% Credible Intervals for Week 4 and Week 6 effect sizes:

*
4 4 4

*
6 6 6

( ) ( ) ( )

( ) ( ) ( ).

Wk Wk Wk

Wk Wk Wk

d H d H d H

d H d H d H

 

 
 

If these intervals are non-overlapping, then the time point corresponding to the larger 

(absolute) interval should be considered as primary. If the intervals are overlapping, then 

the time points may not be distinguishable. 

 

Figure 4 summarizes simulation results for HRSD-17 and PaRTS-D scores at both Weeks 

4 and 6.  
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Figure 4. MDD Study Simulation Results - Summary of Effect Sizes for HRSD-17 and 

PaRTS-D. At Week 4, EM Results were Not Available 

 

In Figure 4, the EM Algorithm showed that Week 4 effect sizes were numerically larger 

than those of Week 6 for HRSD-17 scores in contrast with the ground-truth. In both EM 

and Bayesian cases, the 95% credible intervals for Weeks 4 and 6 were overlapping. The 

Bayesian approach showed a significantly larger effect size at Week 6 for HRSD-17. The 

EM algorithm failed to generate results for PaRTS-D scores at Week 4 due to unbalanced 

latent treatment assignments. The proportions of effect size ordering for HRSD-17 were 

also computed, decision strategy 1. The posterior probability that the HRSD-17 effect 



46 

 

size at Week 4 is larger than that of Week 6, 
* *

4 6( ( ) ( ) | )Wk WkP d H d H Y , was 0.477 

using Bayesian approach. 

 

The EM and Bayesian approaches provided estimates for   that are close to the ground-

truth. The EM and Bayesian estimates of the treatment differences, , overestimated their 

true values. The EM estimate of   had a larger standard deviation compared to its 

Bayesian counterpart.  

 

The DIC scores for the EM and Bayesian models are listed in Table 2 for both Weeks 4 

and 6. Note that models with smaller DIC should be preferred to models with larger DIC. 

The Bayesian models provided smaller DIC scores.  

 

Table 2. MDD Study Simulation Results – DIC Scores on HRSD-17 and PaRTS-D 

Model Week 4 Week 6 

 

Hamilton Rating Scale for Depression (HRSD-17) 

  EM 1.06720 1.06866 

  Bayesian 1.01029  1.00089 

  Bayesian with Strata 0.98608 1.00091 

  Bayesian with Strata and Power Prior 0.25 1.01086 1.00520 

  Bayesian with Strata and Power Prior 0.5 1.00649 1.00453 

   

Patient-Rated Troubling Symptoms for Depression (PaRTS-D)  

  EM N/A 1.27158 

  Bayesian 1.00352 0.99836 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

Clinical trials are major undertakings for sponsors and investigators. To better 

characterize the treatment effect, a number of clinically important pre-specified 

secondary endpoints are needed. At the planning stage of a clinical trial, the optimal 

endpoints for assessing the disorder or the disease aspects that best exhibit the particular 

drug’s effects may not be well understood. Choosing endpoints in this circumstance may 

be difficult at the time of study design. Obtaining data on important disease 

characteristics, including economic endpoints, would help sponsors, healthcare 

professionals, patients, and caregivers.  

 

We investigated whether or not the researchers can obtain reliable estimates of effect 

sizes without knowing treatment assignments. In order to estimate treatment difference in 

a blinded setting, we defined a latent variable substituting for the unknown treatment 

assignment. We explored modifying the ordering of endpoints based on a blinded interim 

analysis of standardized treatment effect. Models were examined where continuous 

endpoints were assumed to have a normal distribution. Instead of relying on the 

clinician’s subjective evaluations, the suggested methodologies provide numerical 

assistance to researchers for the purpose of ordering secondary endpoints. We simply 

updated the ordering of the null hypotheses based on estimating standardized treatment 

effects. We showed how to order secondary null hypotheses while the study is ongoing, 

without unblinding the treatments, without losing the validity of the testing procedure, 

and with maintaining the integrity of the trial. 
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Performance of the EM and Bayesian algorithms was evaluated using both simulations 

and applications. Mixture models were used for this purpose in both univariate and 

multivariate settings. Posterior estimates of parameters for each endpoint were examined 

along with posterior rankings of effect sizes based on various scenarios. The problems 

with initial estimates of the model parameters using the EM algorithm are well 

documented [11, 16 – 18]. In our simulations, we used prior distributions whose hyper 

parameters reflect the true values of the model parameters. In our secondary analyses, we 

used prior distributions whose hyper parameters reflect the original study design 

elements. 

 

In order to infer posterior rankings of effect sizes, it is necessary that an algorithm 

generate estimates for all endpoints. The Bayesian approach generated posterior estimates 

for all parameters; the EM algorithm frequently failed to generate posterior parameter 

estimates. The Bayesian approach performed well in ordering the standardized effect 

sizes; the EM algorithm performed poorly. Both the Bayesian and the EM algorithms 

overestimated treatment differences and standardized effect sizes.  

 

With the Bayesian algorithm, the posterior probability for identifying the ground-truth 

ordering increased both as a function of the effect size differences and as a function of the 

sample size. For large sample sizes, the proportion of times the true ordering was selected 

was high (above 35%) and the variability of standardized effect sizes was low.  
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With the EM algorithm, the probability for identifying the ground-truth ordering was low 

(sometimes near zero) and the variability of standardized effect sizes was high. 

 

A high level of precision is necessary for modifying design features in blinded settings. 

The performance of the algorithms discussed in this paper was evaluated under the 

assumption that the complete set of observations was available. In practice, this is not the 

case. Since the standard deviations of the effect size estimates were large, it was difficult 

to draw proper conclusions regarding the magnitude of effect sizes. If the researcher 

wants to change the design of an ongoing trial, clear arguments for the changes should be 

provided and the arguments should be based on the clinical, functional, and economic 

importance of the endpoints. 

 

Previous research about estimation of blinded treatment differences used the EM 

algorithm which failed to provide reliable conclusions about the treatment effect. 

Approaches that employ the EM algorithm to estimate treatment differences in blinded 

settings do not provide reliable conclusions about ordering the null hypotheses. We have 

demonstrated with simulation studies that Bayesian algorithms performed better than 

existing EM algorithm counterparts in ordering effect sizes. We have shown that the 

Bayesian approach provides results close to the ground-truth of simulations. In our 

secondary analysis, we have demonstrated using the Bayesian approach that Week 6 

would have been chosen as a primary endpoint instead of Week 4. 
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CHAPTER 6 

FUTURE RESEARCH 

The current research findings do not account for within-subject correlations among 

endpoints nor among the measurement times. In many applications, it is of interest to 

assess the dependence structure (i.e., the variance-covariance structure) in multivariate 

longitudinal data. Identifying such dependence is challenging due to the dimensionality 

involved. If the dependence structure between different responses (endpoints) is not of 

interest, in other words, the focus is the time-varying relationship between the different 

longitudinal responses, then one can use multivariate normal linear models, which allow 

correlations between random effects in component models for each response. A natural 

question in Chapter 4 for the comparison of HRSD-17 scores at Week 4 and Week 6 is 

“why should we use a different treatment assignment given that the subject treatment 

assignment does not change during the trial from visit to visit.” This specific question is 

also important for the comparisons of effect sizes among the secondary endpoints.  

 

Researchers often have specific expectations with respect to changes over time (e.g., 

response increases on average over time). When the study population is divided into 

different subgroups, such as in Chapter 2, researchers may also be interested in the 

difference between these groups over time. In other words, group 1 may respond 

similarly to group 2 at Week 4, but not at Week 6 or vice-verse. 
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Multivariate Model 

Using the aforementioned terminology we now present a multivariate model to explain 

treatment effects over time. We focus on the time-varying relationships between 

responses associated with a single endpoint.  Multivariate treatment models serve to 

exploit the correlation between the observed responses of a patient at different times. One 

option is to estimate the matrix of correlations between the treatment effects of a patient 

at different times. This option has the disadvantage that the typical conjugate priors have 

a Wishart distribution; it is difficult to specify priors for the specific temporal correlations 

in this setting. In view of this, we adopt a model in which correlations are specified via 

specific parameters. In this model the parameters, 't t  are used to specify the correlations 

between the treatment response at times t  and  ( )t t t  . Below, we assume time units 

1t   (Week 1), 2t   (Week 2), etc.. The model we adopt was first suggested in a paper 

by Pourahmadi and Daniels [35]; it was first employed in economic settings where it was 

called the “GARP” model. The model is summarized as follows:  

 
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0 ' ' 0

' 1
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~ (0, )

i i
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The parameters of this model are  0 '( , , , [1 ' 4])t t t t        . We assume a uniform 

prior for all of these parameters. Posterior inference for estimating   uses a Gibbs 

sampling MCMC algorithm. Gibbs sampling exploits the conditional distributions of 

each parameter given the rest. In what follows, we outline these conditional posterior 
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distributions. We used the notation   to denote the entire class of   parameters 

excluding  . The latent treatment assignment, averaged   over time points, averaged   

over time points, and 
2  have the following form: 

 

 

 

4
2

1

4 4
2 2

1 1

' '

'

' '

'

1
exp ( , ,1)

2
( 1| , ) ,

1 1
exp ( , ,1) exp ( , ,0)

2 2

( , ,1) ,

( , ,0)

i

t
i z

t t

it tt it

t t

it tt it

t t

r i t

P z y

r i t r i t

r i t y y

r i t y y



    

  




 





  
 
   

      
     
      

     

   



 





 

 

 
 

4

' ' '

1 1 ' '

2 2
4 4

' '

1 ' 1 '

1

1
| ~ ,

1 1

n

it i t t it i t t

t i t t t t

t t t t

t t t t t t

y z y z

n n



   

 

 

   


   

               
     

    
     
    

    

   

   

N

 

 

 

 
4

' ' '

1 1 ' '

2 2

' '

1 ' 1 '

1

1
| ~ ,

1 1

n

it t t it t t

t i t t t t

n n

i t t i t t

i t t i t t

y y

N

z z



   

 

 

   


   

               
     

    
     
    

    

   

   

 

 



53 

 

 

2
4

' '

1 1 '
2

2
4 3

~

n

it i t t it i

t i t t

n

y z y z    




  



   
      
 

   

  
 

  



54 

 

REFERENCES CITED 

1. Jennison C, Turnbull B. Group Sequential Methods With Applications to Clinical 

Trials. Chapman and Hall/CRC; 1999. 

2. Cui L, Hung MJ, Wang SJ. Modification of sample size in group sequential trials. 

Biometrics 1999; 55:853–857. 

3. Mahmoud AR, Pandina JG, Turkoz I, Kosik-Gonzalez C, Canuso MC, Kujawa JM, 

and Gharabawi GM. Risperidone for treatment-refractory major depressive disorder. 

Annals of Internal Medicine 2007; 147: 593-602. 

4. Macfadden W, Alphs L, Haskins JT, Turner N, Turkoz I, Bossie C, Kujawa M, 

Mahmoud R. A randomized, double-blind, placebo controlled study of maintenance 

treatment with adjunctive risperidone long-acting therapy in patients with bipolar I 

disorder who relapse frequently. Bipolar Disord 2009: 11: 827–839. 

5. Gould AL, Shih WJ. Modifying the design of ongoing trials without unblinding. 

Statistics in Medicine 1998; 17: 89-100. 

6. Gould AL, Shih WJ. Sample size re-estimation without unblinding for normally 

distributed outcomes with unknown variance. Communications in Statististics Theory and 

Methods 1992; 21: 2833–2853. 

7. Shih WJ. Sample size reestimation in clinical trials. In Biopharmaceutical sequential 

statistical applications, Peace K (ed.). Marcel Dekker: New York, 1992; 285–301. 

8. Shih WJ. Sample size reestimation for triple blind clinical trials. Drug Information 

Journal 1993; 27: 761–764. 



55 

 

9. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via 

the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B 

1977; 39: 1–38. 

10. Little RJA, Rubin DB. Statistical analysis with missing data. Wiley: New York, 

1987. 

11. Friede T, Kieser M. On the inappropriateness of an EM algorithm based procedure 

for blinded sample size re-estimation. Statistics in Medicine 2002; 21: 165–176. 

12. Kieser M, Friede T. Re-calculating the sample size in internal pilot study designs with 

control of the type I error rate. Statistics in Medicine 2000; 19: 901-911. 

13. Friede T, Kieser M. A comparison of methods for adaptive sample size adjustment. 

Statistics in Medicine 2001; 20: 2625-2643. 

14. Kieser M, Friede T. Simple procedures for blinded sample size adjustment that do not 

affect the type I error rate. Statistics in Medicine 2003; 22: 3571-3581. 

15. Friede T, Kieser M. Blinded sample size assessment in non-inferiority and 

equivalence trials. Statistics in Medicine 2003; 22: 995-1007. 

16. Waksman A J. Assessment of the Gould-Shih procedure for sample size re-

estimation. Pharmaceutical Statistics 2007; 6: 53-65. 

17. Xing B, Ganju J. A method to estimate the variance of an endpoint from an on-going 

blinded trial. Statistics in Medicine 2005; 24: 1807-1814. 

18. Miller F, Friede T, Kieser T. Blinded assessment of treatment effects utilizing 

information about randomization block length. Statistics in Medicine 2009; 28: 1690-

1706. 



56 

 

19. Xie J, Quan H, Zhang J. Blinded assessment of treatment effects for survival endpoint 

in an ongoing trial. Pharmaceutical Statistics 2012. 

20. Guidance for industry: Adaptive design clinical trials for drugs and biologics. 

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guid

ances/ucm201790.pdf 

21. ICH E9. Statistical principles for clinical trials. 

http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/

WC500002928. 

22. Demitrienko A., Tamhane A., Bretz F. Multiple testing problems in pharmaceutical 

statistics 2010; Chapman&Hall/CRC Biostatistics Series. 

23. Gilks WR, Richardson S, Spiegelhalter DJ. Markov chain Monte Carlo in practice 

1996; Chapman&Hall/CRC Interdisciplinary Statistics. 

24. Andrieu C, De Freitas N, Doucet A, Jordan MI. An introduction to MCMC for 

machine learning. Machine Learning 2003; 50: 5-43. 

25. Gelman A, Carlin JB, Stern HS, Rubin D. Bayesian Data Analysis 2004; 

Chapman&Hall/CRC Interdisciplinary Mathematics. 

26. Ibrahim J, Chen MH. Power prior distributions for regression models. Statistical 

Science 2000; 15:46-60. 

27. Duan Y, Ye K, Smith EP. Evaluating water quality using power priors to incorporate 

historical information. Environmetrics 2006; 17: 95-106.  

28. Hobbs BP, Carlin BP, Mandrekar S, and Sargent DJ. Hierarchical commensurate and 

power prior models for adaptive incorporation of historical information in clinical trials. 

Biometrics, 2011; 67:1047-1056. 

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm201790.pdf
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm201790.pdf
http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002928
http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002928


57 

 

29. Spiegelhalter DJ, Best NG, Carlin BP, Linde A. Bayesian measures of model 

complexity and fit (with discussion). Journal of the Royal Statistics Society, Series B 

(Statistical Methodology) 2002; 64: 583–639. 

30. Diebolt J, Robert CP. Estimation of finite mixture distributions by Bayesian 

Sampling. Journal of Royal Statistics Society, Series B 1994; 56: 363-375. 

31. Celeux G, Hurn M, Robert CP. Computational and inferential difficulties with 

mixture posterior distributions. Journal of the American Statistical Association 2000; 

95:957-970. 

32. Tirney, L. Markov Chains for exploring posterior distributions. The Annals of 

Statistics 1994; 22:1701-1728. 

33. Chib, S. and Greenberg, E. Understanding the Metropolis–Hasting Algorithm. The 

American Statistician 1995; 49: 327-335. 

34. Pandina JG, Revicki AD, Kleinman L, Turkoz I, Wu HJ, Kujawa JM, Mahmoud R, 

Gharabawi GM. Patient-rated troubling symptoms of depression instrument results 

correlate with traditional clinician- and patient-rated measures: A secondary analysis of a 

randomized, double-blind, placebo-controlled trial. Journal of Affective Disorders 2009; 

118: 139–146. 

35. Pourahmadi M, Daniels MJ. Dynamic Conditionally Linear Mixed Models for 

Longitudinal Data. Biometrics March 2002; 58:225-231. 



58 

 

APPENDICES 

 

APPENDIX A 

SIMULATION DETAILS 

Scenario 1: 1 2 3 0.5;   N=170d d d    

Scenario 2: 1 2 30.8 0.5 0.3;   N=170d d d    
 

Scenario 3: 1 2 31 0.5 0;   N=170d d d    
 

Scenario 4: 1 2 31 0.5 0;   N=72d d d    
 

Scenario 5: 1 2 31 0.5 0;   N=468d d d    
 

 Two arm trials with a 1:1 treatment assignment ratio are considered. For each 

case, three random variables are created, so that the difference between the control 

distribution and an experimental distribution corresponds to one of the suggested effect 

size cases given in the first bullet point.  

 Notation: 0( , )k l , ( , )k l , and 
2( , )k l are the parameters associated with prior 

 (1,2,3)k and data set number  (1,...20)l . We always assume that 1,..., nz z  are iid binary 

with probability 0.5 of being 0 or 1.  

 Generate data sets including continuous response variables with 
2

0,  , , z    

according to 

2 2 2
0 01 01 1 0 11 11 1 1

2 2 2
0 02 02 1 0 12 12 2 2

2 2
0 03 03 1 0 13 13

(1, ) ~ ( , );    (1, ) (1, ) (1, ) ~ ( , ); ~ ( , ),

(2, ) ~ ( , );    (2, ) (2, ) (2, ) ~ ( , ); ~ ( , ),

(3, ) ~ ( , );    (3, ) (3, ) (3, ) ~ ( , );

l N Y s l l l N Y s IG b

l N Y s l l l N Y s IG b

l N Y s l l l N Y s

     

     

   

 

 

  2
3 3~ ( , ).IG b 
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These three distributions above satisfy the condition for each endpoint that 0 0( )E Y  , 

1 1( )E Y  , and 
2

0 1( ) ( )Var Y Var Y   . 

 Each true input clinical trial data set is based on 0 ~ (10,10)N  and 1 with 

normal distribution with variance 
210 and corresponding mean value to generate effect 

sizes for a given case.  

 Initial values of 
2

0( ,  ,  )    for simulations are based on the true input data set 

parameters and the initial power parameter estimate 0  is given as 0.25 and 0.5.  

 Posterior inferences are based on 1000 iterations. The first 200 iterations are 

considered to be the burn-in period for both EM and Bayesian algorithms. Every 4
th

 point 

after the burn-in period is stored for the Bayesian simulations to reduce correlations to 

emulate thinning process. Eight hundred simulation results in EM and 200 results in 

Bayesian methods are summarized. 

 In addition to posterior parameter estimates, the empirical probability of each 

triplet combination of effect size ordering is examined. In each case for a given data set, 

the last 20 simulation results are kept for effect size orderings. For each of the study data 

sets and three effect sizes, a total of 20×20×20=8000 possible combinations are available. 

When this exercise is repeated for 20 different study data sets, then a total of 160,000 

possible orderings are available.  
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Figure 5. Sample Size and Power Computations using a Two-Sample t-test with Two-

Sided Type I Error=0.05  
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APPENDIX B 

SIMULATION RESULTS, SCENARIO 1  

Table 3. Scenario 1, Input Data Set Parameter Characteristics 

 

Parameter 

 

Variable 

 Statistics 

N Mean (SD) Median 95% CI 

Placebo 

Mean 

y1 20 10.2 (0.95) 10.2 8.54; 12.32 

y2 20 10.1 (0.91) 9.9 8.68; 11.89 

y3 20 10.1 (0.91) 10.1 8.27; 12.04 

      

Sigma 

(STD) 

y1 20 10.2 (0.64) 10.2 9.15; 11.13 

y2 20 10.0 (0.53) 10.0 9.09; 10.94 

y3 20 10.0 (0.47) 10.0 9.30; 11.02 

      

Delta 

y1 20 5.1 (0.29) 5.0 4.63; 5.52 

y2 20 5.0 (0.27) 5.0 4.42; 5.49 

y3 20 5.0 (0.27) 5.0 4.51; 5.52 

      

Effect Size, 

d 

y1 20 0.50 (0.01) 0.50 0.48; 0.52 

y2 20 0.50 (0.01) 0.50 0.48; 0.52 

y3 20 0.50 (0.01) 0.50 0.48; 0.52 
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The proportion of six different variations of effect size orderings using input data sets are 

listed in Table 1. These effect sizes with 20 data sets produce a total of 8000 possibilities. 

Each ordering condition is expected to have a 16.7% chance of occurring in given that 

each condition is equally likely. 

 

Table 4. Scenario 1, Effect Size Ordering of Input Data Sets 

    Order Condition Count Percent (%) 

1 d1>d2>d3 1212 15.2 

2 d1>d3>d2 2053 25.7 

3 d2>d1>d3 1455 18.2 

4 d2>d3>d1 1293 16.2 

5 d3>d1>d2 1395 17.4 

6 d3>d2>d1 592  7.4 
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Figure 6. Scenario 1, Simulated Effect Size Ordering Using Last 20 Iterations 
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Figure 7. Scenario1, Summary of Posterior Means of Effect Size Over 20 Data Sets 

 

 

 

 

 

 

 

 

 
 

Figure 8. Scenario1, Summary of Posterior Means of Delta Over 20 Data Sets 
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Table 5. Scenario 1, Summary of Posterior Means of Parameters Over 20 Data Sets 

Analysis 

Type 

Parameter 

 

Variable 

 Statistics 

N Mean (SD) Median 95% CI 

EM      

Sigma  

y1 15 9.00 (2.055) 10.07 2.9 ; 10.8 

y2 18 8.49 (1.518) 8.87 6.1 ; 11.2 

y3 15 8.88 (2.016) 9.77  4.6 ; 11.2 

Delta 

y1 15 2.63 (4.996) 3.26  -8.1 ; 8.7 

y2 18 3.07 (5.893) 5.81 -9.2 ; 9.0 

y3 15 4.42 (3.651) 4.42  -0.9 ; 9.0 

Effect Size 

d* 

y1 15 81.45 (314.5) 0.31  -1.0 ; 1218.2 

y2 18 0.35 (0.836) 0.67  -1.5 ; 1.3 

y3 15 0.69 (0.618) 0.60  -0.1 ; 1.8 

Bayesian      

Sigma  

y1 20 10.44 (0.665) 10.47  9.4 ; 11.5 

y2 20 10.28 (0.490) 10.30  9.4 ; 11.2 

y3 20 10.31 (0.518) 10.27  9.6 ; 11.4 

Delta 

y1 20 11.19 (1.051) 10.75  9.8 ; 12.8 

y2 20 11.43 (0.984) 11.32  10.0 ; 13.7 

y3 20 11.53 (0.953) 11.36  10.1 ; 13.6 

Effect Size 

d* 

y1 20 1.08 (0.086) 1.08  0.9 ; 1.2 

y2 20 1.12 (0.078) 1.10 1.0 ; 1.3 

y3 20 1.12 (0.084) 1.13  1.0 ; 1.3 

CI= Credible Interval; Sigma= Pooled variance; Delta= Difference between treatment arms. 
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Table 5 Continued.  

Bayesian with Strata 

Sigma  

y1 20 10.62 (0.728) 10.68  9.5 ; 11.7 

y2 20 10.39 (0.497) 10.37  9.5 ; 11.3 

y3 20 10.48 (0.527) 10.47  9.7 ; 11.6 

Delta 

y1 20 13.30 (1.253) 12.82 11.5 ; 15.7 

y2 20 13.64 (1.137) 13.59  11.3 ; 15.8 

y3 20 13.64 (1.073) 13.66  11.6 ; 15.9 

Effect Size 

d* 

y1 20 1.26 (0.093) 1.28  1.1 ; 1.4 

y2 20 1.32 (0.098) 1.30  1.1 ; 1.5 

y3 20 1.31 (0.082) 1.34  1.2 ; 1.4 

Bayesian with Strata and Power Prior 0.25 

Sigma  

y1 20 10.45 (0.677) 10.53 9.4 ; 11.5 

y2 20 10.26 (0.504) 10.26  9.4 ; 11.1 

y3 20 10.33 (0.526) 10.28  9.6 ; 11.5 

Delta 

y1 20 11.94 (1.250) 11.42  9.9 ; 14.5 

y2 20 12.14 (1.113) 12.03  10.2 ; 14.7 

y3 20 12.29 (1.087) 12.05  10.6 ; 14.5 

Effect Size 

d* 

y1 20 1.15 (0.099) 1.16  1.0 ; 1.4 

y2 20 1.19 (0.086) 1.18  1.0 ; 1.3 

y3 20 1.20 (0.091) 1.23  1.1 ; 1.3 

Bayesian with Strata and Power Prior 0.5 

Sigma  

y1 20 10.47 (0.68) 10.49  9.3 ; 11.5 

y2 20 10.27 (0.52) 10.27  9.4 ; 11.2 

y3 20 10.32 (0.51) 10.34  9.6 ; 11.4 

Delta 

y1 20 11.97 (1.21) 11.48 10.1 ; 14.2 

y2 20 12.10 (1.11) 11.93  10.1 ; 14.6 

y3 20 12.30 (1.07) 12.01  10.6 ; 14.5 

Effect Size 

d* 

y1 20 1.15 (0.09) 1.17  1.0 ; 1.3 

y2 20 1.18 (0.09) 1.18  1.0 ; 1.3 

y3 20 1.20 (0.09) 1.22 1.1 ; 1.3 

CI= Credible Interval; Sigma= Pooled variance; Delta= Difference between treatment arms.  
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APPENDIX C 

SIMULATION RESULTS, SCENARIO 2 

 

Table 6. Scenario 2, Input Data Set Parameter Characteristics 

 

Parameter 

 

Variable 

 Statistics 

N Mean (SD) Median 95% CI 

Placebo Mean 

y1 20 10.5 (0.61) 10.5 9.47; 12.02 

y2 20 10.1 (0.82) 10.3 8.54; 11.82 

y3 20 9.7 (1.09) 9.7 6.54; 11.84 

      

Sigma (STD) 

y1 20 10.2 (0.52) 10.4 9.08; 11.08 

y2 20 10.0 (0.52) 10.0 9.13; 11.29 

y3 20 9.9 (0.49) 9.8 9.17; 10.95 

      

Delta 

y1 20 8.8 (0.91) 8.8 7.09; 11.37 

y2 20 5.3 (0.68) 5.3 4.12; 6.25 

y3 20 2.3 (1.15) 2.2 -0.65; 3.77 

      

Effect Size, d 

y1 20 0.9 (0.01) 0.9 0.71; 1.09 

y2 20 0.5 (0.06) 0.5 0.42; 0.61 

y3 20 0.2 (0.11) 0.2 -0.06; 0.36 

 

 

Table 7. Scenario 2, Effect Size Ordering of Input Data Sets 
Order Condition Count Percent (%) 

1 d1>d2>d3 8000 100.0 
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Figure 9. Scenario 2, Simulated Effect Size Ordering using Last 20 Iterations 
 

 

 

 

 
 

Figure 10. Scenario 2, Summary of Posterior Means of Effect Size Over 20 Data Sets 
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Figure 11. Scenario 2, Summary of Posterior Means of Delta Over 20 Data Sets 
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Table 8. Scenario 2, Summary of Posterior Means of Parameters Over 20 Data Sets 

Analysis 

Type 

Parameter 

 

Variable 

 Statistics 

N Mean (SD) Median 95% CI 

EM      

Sigma  

y1 17 9.99 (1.445) 10.55 7.8 ; 11.6 

y2 16 8.75 (1.782) 9.32 5.1 ; 10.8 

y3 18 9.07 (1.474) 9.31 3.8 ; 10.5 

Delta 

y1 17 0.48 (5.360) -0.04 -9.5 ; 8.5 

y2 16 1.78 (5.961) 3.64  -8.9 ; 9.0 

y3 18 2.40 (4.413) 1.84  -9.3 ; 8.2 

Effect Size 

d* 

y1 17 0.06 (0.673) -0.00 -1.2 ; 1.3 

y2 16 0.23 (0.862) 0.36  -1.7 ; 1.6 

y3 18 0.33 (0.638) 0.18  -1.1 ; 2.0 

Bayesian      

Sigma  

y1 20 11.18 (0.508) 11.18  10.2 ; 11.9 

y2 20 10.43 (0.582) 10.32  9.5 ; 11.7 

y3 20 10.08 (0.479) 10.02  9.4 ; 11.0 

Delta 

y1 20 12.07 (0.890) 11.97 10.5 ; 14.4 

y2 20 11.31 (1.134) 11.51  9.5 ; 13.8 

y3 20 10.29 (1.214) 10.28  8.4 ; 12.8 

Effect Size 

d* 

y1 20 1.09 (0.092) 1.09  1.0 ; 1.3 

y2 20 1.09 (0.091) 1.12  0.9 ; 1.2 

y3 20 1.03 (0.103) 1.03 0.8 ; 1.2 

CI= Credible Interval; Sigma= Pooled variance; Delta= Difference between treatment arms. 
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Table 8 Continued. 

Bayesian with Strata 

Sigma  

y1 20 11.41 (0.521) 11.42  10.3 ; 12.1 

y2 20 10.60 (0.573) 10.58 9.8 ; 11.8 

y3 20 10.25 (0.492) 10.19  9.5 ; 11.2 

Delta 

y1 20 14.45 (0.990) 14.30  13.0 ; 16.8 

y2 20 13.41 (1.180) 13.36  11.4 ; 15.9 

y3 20 12.31 (1.210) 12.10 10.6 ; 14.9 

Effect Size 

d* 

y1 20 1.27 (0.089) 1.27 1.1 ; 1.4 

y2 20 1.27 (0.082) 1.29 1.1 ; 1.4 

y3 20 1.21 (0.092) 1.20  1.1 ; 1.3 

Bayesian with Strata and Power Prior 0.25 

Sigma  

y1 20 11.20 (0.509) 11.22  10.1 ; 11.9 

y2 20 10.45 (0.574) 10.41 9.6 ; 11.6 

y3 20 10.09 (0.479) 9.99  9.4 ; 11.1 

Delta 

y1 20 12.81 (0.828) 12.84 11.5 ; 14.7 

y2 20 12.03 (1.259) 12.14  10.0 ; 14.7 

y3 20 11.08 (1.301) 10.92 9.0 ; 13.8 

Effect Size 

d* 

y1 20 1.15 (0.089) 1.14  1.0 ; 1.3 

y2 20 1.16 (0.096) 1.19  0.9 ; 1.3 

y3 20 1.10 (0.109) 1.10  0.9 ; 1.3 

Bayesian with Strata and Power Prior 0.5 

Sigma  

y1 20 11.10 (0.507) 11.09  10.1 ; 11.8 

y2 20 10.34 (0.559) 10.25  9.6 ; 11.5 

y3 20 10.02 (0.497) 9.98 9.3 ; 11.0 

Delta 

y1 20 13.27 (0.868) 13.24  11.8 ; 15.0 

y2 20 12.44 (1.300) 12.51 10.3 ; 15.3 

y3 20 11.46 (1.375) 11.22  9.2 ; 14.2 

Effect Size 

d* 

y1 20 1.20 (0.090) 1.20 1.1 ; 1.4 

y2 20 1.21 (0.103) 1.23  1.0 ; 1.4 

y3 20 1.15 (0.118) 1.14 0.9 ; 1.3 

CI= Credible Interval; Sigma= Pooled variance; Delta= Difference between treatment arms.  



72 

 

APPENDIX D 

SIMULATION RESULTS, SCENARIO 3 

 

Table 9. Scenario 3, Input Data Set Parameter Characteristics 

 

Parameter 

 

Variable 

 Statistics 

N Mean (SD) Median 95% CI 

Placebo Mean 

y1 20 10.3 (0.74) 10.3 9.12; 11.81 

y2 20 10.4 (0.79) 10.5 8.54; 11.82 

y3 20 10.1 (0.74) 10.0 9.17; 11.84 

      

Sigma (STD) 

y1 20 10.1 (0.50) 10.0 9.06; 11.08 

y2 20 10.1 (0.57) 10.1 9.13; 10.90 

y3 20 10.0 (0.47) 9.9 9.17; 10.82 

      

Delta 

y1 20 10.5 (0.97) 10.8 8.39; 11.86 

y2 20 5.2 (0.84) 5.2 3.50; 6.69 

y3 20 0.1 (0.97) 0.3 -1.24; 1.43 

      

Effect Size, d 

 

y1 20 1.0 (0.10) 1.1 0.86; 1.21 

y2 20 0.5 (0.08) 0.5 0.36; 0.62 

y3 20 0.0 (0.10) 0.0 -0.12; 0.14 

 

 

Table 10.Scenario 3, Effect Size Ordering of Input Data Sets 
Order Condition Count Percent (%) 

1 d1>d2>d3 8000 100.0 
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Figure 12. Scenario 3, Simulated Effect Size Ordering using Last 20 Iterations 
 

 

 

 

 
 

Figure 13. Scenario 3, Summary of Posterior Means of Effect Size Over 20 Data Sets  
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Figure 14. Scenario 3, Summary of Posterior Means of Delta Over 20 Data Sets 
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Table 11. Scenario 3, Summary of Posterior Means of Parameters Over 20 Data Sets 

Analysis 

Type 

Parameter 

 

Variable 

 Statistics 

N Mean (SD) Median 95% CI 

EM      

Sigma  

y1 19 8.91 (2.763) 9.27 0.2 ; 11.9 

y2 16 9.29 (1.650) 9.59 5.7 ; 11.2 

y3 17 9.04 (1.003) 9.29 7.4 ; 10.3 

Delta 

y1 19 1.39 (6.891) 2.34 -11.1 ; 8.5 

y2 16 2.68 (4.948) 2.20  -8.9 ; 9.0 

y3 17 0.72 (5.280) -0.12 -9.5 ; 9.3 

Effect Size 

d* 

y1 19 1.41 (5.760) 0.55 -2.1 ; 24.9 

y2 16 0.38 (0.659) 0.21  -0.9 ; 1.6 

y3 17 0.11 (0.705) -0.01 -1.2 ; 1.7 

Bayesian      

Sigma  

y1 20 11.42 (0.531) 11.53 10.6 ; 12.2 

y2 20 10.44 (0.670) 10.33 9.5 ; 11.5 

y3 20 10.02 (0.478) 10.02 9.2 ; 10.9 

Delta 

y1 20 12.51 (0.794) 12.32 11.3 ; 14.8 

y2 20 11.18 (1.037) 11.50 9.4 ; 12.6 

y3 20 9.98 (1.220) 9.76 8.1 ; 12.2 

Effect Size 

d* 

y1 20 1.10 (0.074) 1.11 1.0 ; 1.3 

y2 20 1.08 (0.100) 1.10 0.9 ; 1.3 

y3 20 1.00 (0.112) 1.03 0.8 ; 1.2 

CI= Credible Interval; Sigma= Pooled variance; Delta= Difference between treatment arms. 
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Table 11 Continued. 

Bayesian with Strata 

Sigma  

y1 20 11.63 (0.579) 11.71  10.7 ; 12.4 

y2 20 10.66 (0.661) 10.65 9.7 ; 11.9 

y3 20 10.19 (0.499) 10.23 9.3 ; 11.2 

Delta 

y1 20 14.87 (0.880) 14.66 13.6 ; 17.0 

y2 20 13.42 (1.077) 13.39 11.2 ; 15.4 

y3 20 11.96 (1.321) 12.10 9.5 ; 14.1 

Effect Size 

d* 

y1 20 1.29 (0.076) 1.30 1.2 ; 1.4 

y2 20 1.27 (0.082) 1.29 1.1 ; 1.4 

y3 20 1.18 (0.109) 1.17 0.9 ; 1.4 

Bayesian with Strata and Power Prior 0.25 

Sigma  

y1 20 11.32 (0.556) 11.39 10.3 ; 12.1 

y2 20 10.39 (0.674) 10.32 9.4 ; 11.6 

y3 20 10.01 (0.489) 10.04 9.2 ; 10.9 

Delta 

y1 20 13.73 (0.749) 13.54 12.8 ; 15.6 

y2 20 12.33 (1.181) 12.40 10.3 ; 14.0 

y3 20 11.30 (1.460) 11.43 8.5 ; 13.6 

Effect Size 

d* 

y1 20 1.22 (0.072) 1.24 1.1 ; 1.4 

y2 20 1.19 (0.104) 1.22 1.0 ; 1.4 

y3 20 1.14 (0.135) 1.14  0.8 ; 1.4 

Bayesian with Strata and Power Prior 0.5 

Sigma  

y1 20 11.33 (0.530) 11.43 10.5 ; 12.1 

y2 20 10.41 (0.683) 10.35 9.5 ; 11.6 

y3 20 10.01 (0.492) 10.03 9.1 ; 10.9 

Delta 

y1 20 13.74 (0.743) 13.49 12.9 ; 15.6 

y2 20 12.30 (1.156) 12.52 10.3 ; 14.0 

y3 20 11.27 (1.465) 11.33 8.7 ; 13.6 

Effect Size 

d* 

y1 20 1.22 (0.070) 1.23 1.1 ; 1.4 

y2 20 1.19 (0.104) 1.21 1.0 ; 1.4 

y3 20 1.13 (0.134) 1.12 0.8 ; 1.4 

CI= Credible Interval; Sigma= Pooled variance; Delta= Difference between treatment arms.  
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APPENDIX E 

SIMULATION RESULTS, SCENARIO 4 

 

Table 12. Scenario 4, Input Data Set Parameter Characteristics 

 

Parameter 

 

Variable 

 Statistics 

N Mean (SD) Median 95% CI 

Placebo Mean 

y1 20 10.7 (1.73) 10.7 7.19; 14.03 

y2 20 10.4 (1.42) 10.9 8.12; 13.07 

y3 20 10.0 (1.21) 9.7 8.13; 12.73 

      

Sigma (STD) 

y1 20 9.9 (0.95) 10.1 8.50; 11.64 

y2 20 10.0 (0.84) 10.0 8.62; 11.66 

y3 20 9.9 (0.96) 9.9 8.38; 11.56 

      

Delta 

y1 20 11.3 (1.92) 11.1 8.12; 14.1 

y2 20 5.0 (1.09) 4.8 3.48; 7.28 

y3 20 0.0 (0.60) 0.1 -1.02; 0.87 

      

Effect Size, d 

 

y1 20 1.1 (0.20) 1.1 0.89;1.6 

y2 20 0.5 (0.09) 0.5 0.36; 0.64 

y3 20 0.00 (0.06) 0.0 -0.11; 0.09 

 

 

Table 13. Scenario 4, Effect Size Ordering of Input Data Sets 
Order Condition Count Percent (%) 

1 d1>d2>d3 8000 100.0 
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Figure 15. Scenario 4, Simulated Effect Size Ordering using Last 20 Iterations 
 

 

 

 

 
 

Figure 16. Scenario 4, Summary of Posterior Means of Effect Size Over 20 Data Sets 
  



79 

 

 
Figure 17. Scenario 4, Summary of Posterior Means of Delta Over 20 Data Sets 
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Table 14. Scenario 4, Summary of Posterior Means of Parameters Over 20 Data Sets 

Analysis 

Type 

Parameter 

 

Variable 

 Statistics 

N Mean (SD) Median 95% CI 

EM      

Sigma  

y1 6 8.02 (2.305) 8.04 4.7 ; 11.8 

y2 5 7.87 (2.224) 7.33 4.9 ; 10.8 

y3 8 6.62 (1.170) 6.50 5.1 ; 8.2 

Delta 

y1 6 7.87 (2.137) 7.31 5.6 ; 10.8 

y2 5 3.12 (7.209) 6.12 -8.1 ; 10.0 

y3 8 3.86 (7.058) 7.66 -7.5 ; 8.8 

Effect Size 

d* 

y1 6 1.08 (0.466) 1.06 0.5 ; 1.6 

y2 5 0.48 (1.081) 0.67 -1.1 ; 1.5 

y3 8 0.78 (1.292) 1.06 -1.2 ; 2.5 

Bayesian      

Sigma  

y1 20 12.44 (1.985) 12.08 10.2 ; 18.8 

y2 20 11.26 (1.302) 10.99 9.5 ; 14.8 

y3 20 10.31 (1.149) 10.23 8.2 ; 12.6 

Delta 

y1 20 21.49 (6.312) 19.94 13.8 ; 41.1 

y2 20 19.95 (4.254) 18.97 14.7 ; 33.1 

y3 20 17.49 (2.519) 17.71 14.0 ; 23.9 

Effect Size 

d* 

y1 20 1.72 (0.239) 1.67 1.3 ; 2.2 

y2 20 1.78 (0.213) 1.76 1.5 ; 2.3 

y3 20 1.72 (0.149) 1.73 1.4 ; 1.9 

CI= Credible Interval; Sigma= Pooled variance; Delta= Difference between treatment arms. 
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Table 14 Continued. 

Bayesian with Strata 

Sigma  

y1 20 16.06 (4.498) 14.07 11.1 ; 24.0 

y2 20 15.19 (3.860) 13.89 11.0 ; 21.0 

y3 20 13.94 (3.939) 11.97 9.0 ; 21.3 

Delta 

y1 20 37.00 (18.54) 27.05  16.8 ; 65.7 

y2 20 36.45 (17.54) 27.02 18.7 ; 61.8 

y3 20 32.79 (16.53) 24.33 16.7 ; 60.4 

Effect Size 

d* 

y1 20 2.19 (0.502) 2.00 1.5 ; 2.9 

y2 20 2.30 (0.519) 2.06 1.7 ; 3.1 

y3 20 2.25 (0.476) 2.09 1.6 ; 3.0 

Bayesian with Strata and Power Prior 0.25 

Sigma  

y1 20 15.34 (6.310) 12.17 10.4 ; 29.7 

y2 20 13.40 (4.908) 11.24 9.4 ; 25.8 

y3 20 12.56 (5.190) 10.94 8.4 ; 29.9 

Delta 

y1 20 33.27 (24.89) 21.02 14.1 ; 87.6 

y2 20 27.55 (17.12) 20.60 14.8 ; 69.3 

y3 20 26.81 (20.66) 20.56 14.8 ; 101.6 

Effect Size 

d* 

y1 20 1.97 (0.594) 1.72 1.3 ; 3.2 

y2 20 1.95 (0.385) 1.79 1.6 ; 2.9 

y3 20 2.00 (0.430) 1.99 1.5 ; 3.4 

Bayesian with Strata and Power Prior 0.5 

Sigma  

y1 20 15.28 (6.230) 12.20 10.3 ; 29.7 

y2 20 14.10 (5.532) 11.76 9.5 ; 26.3 

y3 20 11.92 (3.635) 10.89 8.7 ; 25.8 

Delta 

y1 20 32.88 (24.21) 20.46 14.3 ; 87.2 

y2 20 30.15 (20.32) 19.83 15.0 ; 78.6 

y3 20 23.81 (11.83) 21.32 14.9 ; 69.5 

Effect Size 

d* 

y1 20 1.96 (0.574) 1.70 1.3 ; 3.0 

y2 20 1.99 (0.451) 1.81 1.6 ; 3.0 

y3 20 1.95 (0.273) 1.99 1.5 ; 2.7 

CI= Credible Interval; Sigma= Pooled variance; Delta= Difference between treatment arms.  
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APPENDIX F 

SIMULATION RESULTS, SCENARIO 5 

 

Table 15. Scenario 5, Input Data Set Parameter Characteristics 

 

Parameter 

 

Variable 

 Statistics 

N Mean (SD) Median 95% CI 

Placebo Mean 

y1 20 10.1 (0.44) 10.1 8.97; 10.96 

y2 20 10.0 (0.49) 10.1 9.13; 10.87 

y3 20 10.1 (0.30) 10.0 9.61; 10.57 

      

Sigma (STD) 

y1 20 10.1 (0.31) 10.1 9.54; 10.76 

y2 20 10.0 (0.36) 10.0 9.29; 10.70 

y3 20 9.9 (0.40) 9.8 9.11; 10.70 

      

Delta 

y1 20 10.1 (0.78) 10.0 9.05; 11.41 

y2 20 4.8 (0.73) 4.9 3.79; 6.49 

y3 20 0.1 (0.71) -0.3 -1.23; 1.42 

      

Effect Size, d 

 

y1 20 1.0 (0.08) 1.0 0.86; 1.17 

y2 20 0.5 (0.08) 0.5 0.35; 0.64 

y3 20 -0.0 (0.07) -0.0 -0.13; 0.14 

 

 

Table 16.Scenario 5, Effect Size Ordering of Input Data Sets 
Order Condition Count Percent (%) 

1 d1>d2>d3 8000 100.0 
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Figure 18. Scenario 5, Simulated Effect Size Ordering using Last 20 Iterations 
 

 

 

 

 

 
 

Figure 19. Scenario 5, Summary of Posterior Means of Effect Size Over 20 Data Sets 
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Figure 20. Scenario 5, Summary of Posterior Means of Delta Over 20 Data Sets 
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Table 17. Scenario 5, Summary of Posterior Means of Parameters Over 20 Data Sets 

Analysis 

Type 

Parameter 

 

Variable 

 Statistics 

N Mean (SD) Median 95% CI 

EM      

Sigma  

y1 16 9.54 (1.688) 10.01 5.2 ; 11.4 

y2 15 9.19 (1.580) 9.47 4.0 ; 10.5 

y3 18 8.99 (1.163) 9.58 6.1 ; 10.1 

Delta 

y1 16 4.85 (4.493) 6.36 -6.4 ; 9.3 

y2 15 3.61 (3.460) 3.52 -4.6 ; 8.4 

y3 18 2.90 (3.969) 2.65 -6.1 ; 8.2 

Effect Size 

d* 

y1 16 0.60 (0.580) 0.63 -0.6 ; 1.7 

y2 15 0.54 (0.755) 0.34 -0.5 ; 2.9 

y3 18 0.37 (0.527) 0.27 -0.7 ; 1.3 

Bayesian      

Sigma  

y1 20 8.96 (0.465) 8.90 8.1 ; 9.8 

y2 20 8.20 (0.340) 8.21 7.3 ; 8.8 

y3 20 8.03 (0.446) 7.92 7.1 ; 9.1 

Delta 

y1 20 17.16 (1.003) 17.03 15.8 ; 19.3 

y2 20 15.36 (0.897) 15.44 12.9 ; 17.0 

y3 20 14.33 (1.124) 14.11 12.6 ; 16.7 

Effect Size 

d* 

y1 20 1.93 (0.175) 1.92 1.6 ; 2.3 

y2 20 1.88 (0.146) 1.89 1.6 ; 2.1 

y3 20 1.80 (0.185) 1.82 1.4 ; 2.0 

CI= Credible Interval; Sigma= Pooled variance; Delta= Difference between treatment arms. 
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Table 17 Continued. 

Bayesian with Strata 

Sigma  

y1 20 8.89 (0.443) 8.69 8.1 ; 9.7 

y2 20 8.11 (0.307) 8.16 7.3 ; 8.7 

y3 20 7.94 (0.386) 7.85 7.0 ; 8.7 

Delta 

y1 20 18.35 (0.976) 18.51 16.9 ; 20.3 

y2 20 16.36 (0.820) 16.44 14.0 ; 17.7 

y3 20 15.38 (0.907) 15.21 14.3 ; 17.7 

Effect Size 

d* 

y1 20 2.07 (0.163) 2.06 1.7 ; 2.4 

y2 20 2.02 (0.131) 2.02 1.7 ; 2.3 

y3 20 1.95 (0.134) 1.94 1.7 ; 2.2 

Bayesian with Strata and Power Prior 0.25 

Sigma  

y1 20 8.90 (0.466) 8.73 8.1 ; 9.8 

y2 20 8.13 (0.297) 8.14 7.3 ; 8.7 

y3 20 7.96 (0.397) 7.89 7.0 ; 8.6 

Delta 

y1 20 18.00 (1.038) 18.24 16.4 ; 20.1 

y2 20 16.11 (0.855) 16.19 13.7 ; 17.5 

y3 20 15.19 (0.937) 14.98 13.8 ; 17.5 

Effect Size 

d* 

y1 20 2.03 (0.176) 2.03 1.7 ; 2.4 

y2 20 1.99 (0.131) 2.00 1.7 ; 2.2 

y3 20 1.92 (0.142) 1.93 1.7 ; 2.1 

Bayesian with Strata and Power Prior 0.5 

Sigma  

y1 20 8.92 (0.467) 8.75 8.1 ; 9.8 

y2 20 8.13 (0.301) 8.16 7.3 ; 8.7 

y3 20 7.95 (0.395) 7.89 7.0 ; 8.7 

Delta 

y1 20 17.99 (1.025) 18.23 16.5 ; 20.1 

y2 20 16.12 (0.851) 16.17 13.7 ; 17.6 

y3 20 15.20 (0.943) 15.03 13.9 ; 17.6 

Effect Size 

d* 

y1 20 2.03 (0.174) 2.02 1.7 ; 2.4 

y2 20 1.99 (0.131) 1.99 1.7 ; 2.2 

y3 20 1.92 (0.145) 1.94 1.7 ; 2.2 

CI= Credible Interval; Sigma= Pooled variance; Delta= Difference between treatment arms. 
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APPENDIX G 

MDD STUDY RESULTS 

 

 
 

Figure 21. EM – Posterior Inferences on Effect Size, HRSD-17 
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Figure 22. Bayesian – Posterior Inferences on Effect Size, HRSD-17 
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Figure 23. Bayesian with Strata – Posterior Inferences on Effect Size, HRSD-17 
 

 



90 

 

 
 

Figure 24. Bayesian with Strata at Week 4 – Posterior Inferences on Each Stratum on 

Mean Difference, HRSD-17 
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Figure 25. Bayesian with Strata at Week 6 – Posterior Inferences on Each Stratum on 

Mean Difference, HRSD-17 
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Figure 26. Bayesian with Strata and Power Prior 0.25 – Posterior Inferences on Effect 

Size, HRSD-17 
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Figure 27. Bayesian with Strata and Power Prior 0.25 – Posterior Inferences on Power 

Parameter 
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Figure 28. Bayesian with Strata and Power Prior 0.5 – Posterior Inferences on Effect 

Size, HRSD-17 
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Figure 29. Bayesian with Strata and Power Prior 0.5 – Posterior Inferences on Power 

Parameter 
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Figure 30. EM – Posterior Inferences on SD 
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Figure 31. Bayesian – Posterior Inferences on SD 
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Figure 32. Bayesian with Strata – Posterior Inferences on SD 
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Figure 33. Bayesian with Strata and Power Prior 0.25 – Posterior Inferences on SD 
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Figure 34. Bayesian with Strata and Power Prior 0.5 – Posterior Inferences on SD 
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Figure 35. PaRTS-D Effect Size Using EM Algorithm 
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Figure 36. PaRTS-D Effect Size Using Bayesian Approach 
 


