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Abstract

The Actor model of concurrent computation uni�es the functional and object-oriented pro-

gramming language paradigms. The model provides a 
exible basis for concurrent program-

ming. It supports local state, dynamic creation and con�guration, and inherent parallelism.

Because of the 
uidity of Actors, specifying and debugging actor systems is often considered

di�cult. We believe visual programming techniques are of fundamental importance in ad-

dressing powerful concurrent systems of this nature. Not surprisingly, a number of methods to

visualize actor programs have been proposed. We give an outline of visualization techniques

and their relation to actors. We then discuss one such proposal, namely the use of Predicate

Transition nets, to visualize actor programs.

1 Introduction

The problem of developing suitable visual representation to support speci�cation and debugging of

concurrent systems is a fundamental one. We are particularly interested in dynamically evolving
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scalable concurrent systems open to interaction with their environment. Our research in visual

formalisms has three broad objectives: visual speci�cation, program visualization, and visual

interaction with the system. The objectives may be described as follows:

Visual Speci�cation: A programming environment should permit the visual speci�cation of

both the structure and the dynamic process 
ow in a concurrent system.

System Visualization: A programming environment should allow observation of program ex-

ecution in terms of the high-level visual notation which is used to specify a program. In

other words, a user should be able to receive feedback about her/his program's execution

behavior at the same level at which she/he provides a speci�cation for the program.

Visual Interaction: A user should be able to dynamically modify and debug the visual repre-

sentation of an executing program without stopping the entire system.

In this paper, we focus on a system for observing the behavior of actor programs in terms

of a visual speci�cation language. We are continuing to study methods for incremental system

construction and debugging using the visual formalism. Visual representation of concurrent sys-

tems is far more complex than that of sequential ones. In a conventional sequential program,

only transformations of the state of a single process need to be represented. By contrast, in a

concurrent system, state transitions within a number of processes can occur in parallel. It is not

su�cient to simply represent all processes that are executing in parallel { inter-process interaction

must be represented in a visually meaningful manner.

A visual programming environment which required the explicit speci�cation of all processes

would not be very useful in a large-scale system. Explicitly representing a very large number

of processes would compromise the ability to use the system as a visualization tool: despite the

relatively high bandwidth of visual perception in humans, it is not possible to visually track

the execution of a very large number of processes. Our goal is to develop abstractions which can

represent the behavior of concurrent systems at a high-level. An example of this kind of abstraction

is the ability to provide the similar visual representation to systems which have identical structure

but distinct dynamics. It is important to provide a visual denotation of programs which allows

composition of the visual representation of constituent expressions of a program to determine

the visual representation of the entire program. In particular, the representation should use

expressions in the source program, not the interpretation of the expressions at a lower level.

A di�culty in developing a general visual notation for concurrent systems is the fact that

there is no single universal model of concurrency. For example, an analysis of available parallel

architectures suggests at least three distinct models of parallel computation: data parallelism,

shared memory, and distributed memory. The corresponding programming models have di�erent
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kinds of support for abstraction and di�erent measures of complexity. It is not clear that a single

general visual model is the best approach for supporting all models of parallel computation.

Because it is the most scalable architecture, we have chosen to focus on a distributed memory

model { namely that of multicomputers. A multicomputer is an ensemble of computers (processors

with local memory) connected by a global (virtual) network.

The actor model combines procedural and data abstraction with concurrency. Thus, Actors

provide a powerful programming model for multicomputers [AS88, Dal86]. Actors were originally

proposed in the mid 70's by Carl Hewitt [Hew77]. The concept has continued to evolve and has

recently generated increasing interest. The actor model has been formally characterized by means

of power domain semantics [Cli81], by a transition system [Agh86], by term rewriting and category

theoretic constructs [Mes90] and by Petri Nets and related models [SVN91, ELR90, JR89]. Actors

have been proposed as a universal model for parallel complexity [BVN91]. The model has also

been proposed as a basis for multiparadigm programming [Agh89] and variants of it have been

used to support concurrent object-oriented programming [Agh90b, Yon90].

We use a net-theoretic model, namely Predicate Transition net (PrT-net), to provide a visual

representation of actor systems. PrT-nets are a high-level extension of the Petri Net model

of concurrency. Under certain �niteness restrictions, PrT-nets can be mapped to equivalent

Petri nets. Net theory is a well-studied model of concurrency. In particular, a number of net

theoretic techniques have been developed to formally verify properties of concurrent systems such

as reachability, deadlock, livelock, etc. (see, for example, [GL81, Vau87, Rei85]).

Note that Predicate Transition nets are formally equivalent to Colored Petri Nets used by Sami

and Vidal-Naquet to model actors. In fact, our model is similar to the Sami and Vidal-Naquet

approach; the main di�erence between the two representations is that we represent actor behaviors

de�ned in the source program as encapsulated visual objects, while in the CPN approach, actor

behaviors are interpreted in terms of their primitive actions. One way to look at the di�erence

is that we provide a layer of abstraction for ease of visualization, while the work of Sami and

Vidal-Naquet provides a formal justi�cation for the use of Predicate Nets. In particular, the

latter work shows that CPN's can emulate important aspects of arbitrary actor programs de�ned

in Agha's semantics [Agh86].

Our interest is a more practical one { we have implemented and experimented with the system

we describe. We have also developed a number of important generalizations and specializations

which simplify the visual descriptions of unserialized actors, enabledness conditions, multiparty

interactions, hierarchical abstractions, and meta-level architectures.

The outline of this paper is as follows. Section 2 discusses related research in visual formalisms

for concurrent systems. Section 3 describes the actor model. Section 4 provides a basic introduc-

tion to Predicate Transition nets. Section 5 builds on the previous two sections by means of an

3



example illustrating the use of PrT-nets for representing a class of actor systems. Section 6 gives

transformation rules for deriving PrT-nets from actor programs. Section 7 presents a comparison

between the work presented in this paper and the Sami and Vidal-Naquet approach to modeling

of actor programs. Section 8 describes a prototype implementation and our experience in using

it. The �nal section outlines directions for future research.

2 Related Work

A number of visual representations for specifying or observing the execution of concurrent pro-

grams have been proposed. The representations include the speci�cation language G-Lotos,

Roman's shared dataspace visualization system, event diagrams, graph grammars, actor gram-

mars, and net theoretic models. In particular, a number of visual models, including GARP,

Augmented Event Diagrams, and various net models, have been used to specify the structure or

behavior of actor systems. We describe some of these systems and their applicability to developing

representations for actor-like dynamic systems.

G-LOTOS

Graphic-LOTOS (G-Lotos) [BLP88] is a visual notation for the LOTOS speci�cation language.

LOTOS is closely related to Milner's Calculus of Concurrent Systems { it allows synchronous

communication between agents whose interconnection pattern is �xed at compile time. In G-

Lotos, each basic element of a program is mapped to a pictorial representation. In particular,

behavior expressions (in process de�nitions) and process instantiations are given di�erent syntactic

representations.

A basic goal of G-Lotos is to provide unambiguous speci�cations which serve as a sound

basis for the analysis and implementation of concurrent programs. The pictorial syntax is meant

to improve the readability of behavior expressions and to highlight aspects such as sequentiality,

parallelism, synchronization and choice. However, because of limitations in the underlying LOTOS

language, G-Lotos models only a static interconnection topology of processes. This makes it

unsuitable for a number of applications such as fault-tolerant computing.

Roman's Visualization System

Roman proposes a declarative approach to visualization and applies the methodology to a shared

dataspace model of concurrency [RC89]. In the shared dataspace model, concurrent processes

communicate via addressable data structures. Roman's visualization approach is to require a

formal mapping between computational states of a program and their rendering in terms of

graphical objects. This is in contrast to conventional algorithm animation systems which require
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that explicit directives to the visual rendering system be issued within programs. The directives

are to be used to a�ect the visual representation of the state during the execution of the program.

Roman argues that visualizing the state of concurrent programs makes it easier to infer their

correctness: deadlock is lack of activity, repetitious cyclical patterns represent livelock, and so on.

While the declarative approach is in principle superior to explicit directives, the current state of

the art requires specifying a rendering function on a per system basis. Further work is required

to provide a basis for building reusable abstractions.

GARP

In GARP (Graphical Abstraction for concurRent Processing) [Goe90], a running program consists

of a set of processes which communicate by message passing. Internal behavior of each process

is de�ned structurally using text and communication between processes is speci�ed graphically.

GARP uses 4-grammar rewrite rules to expand complex nodes into simpler subgraphs [KGC89].

GARP provides an interleaving model of concurrency: computation may be carried out by

repeatedly choosing a production from a set of rewrite rules, and applying it to transform the

graph. The speci�cations inside the internal nodes take care of evaluating expressions, sending and

analyzing messages and making decisions to control the computation [Goe90]. Although GARP

e�ectively represents the potential primitive actions of an actor, it does not provide a mechanism

for representing complex multiparty interaction patterns as a single visual abstraction.

Actor Grammars

Actor grammars are a formalization of �nitary actor systems in terms of a graph grammar model

[JR89]. The actor grammars framework is particularly suitable for representing con�gurations

(distributed snapshots) of actor systems. Corresponding to each con�guration of an actor system,

there is a graph and, corresponding to each transition in an actor system, there is a graph trans-

formation. The execution of an actor system is controlled by con�guration graph transformations

based on actor grammars. The actor grammar representation is somewhat more abstract than

the 4 representation. Productions in actor grammars handle an entire event whereas in 4 se-

mantics a combination of productions is needed to handle a single event. On the other hand, the

4 approach uses fewer production rules than actor grammars to derive graph transformations.

Event Diagrams

In event diagrams, an actor is represented by a vertical line which marks the local order of events

at an actor, where an event is the (atomic) processing of a communication. A communication

between two actors is represented by an arrow from the lifeline of the sender to the lifeline of

the recipient. The origin of an arrow is the event that caused a communication to be sent while
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the destination is the event that represents the processing of the communication. Each lifeline

is augmented with a box like structure to represent pending events, i.e., communications which

have been sent but not processed.

Augmented Event Diagrams were used by Manning in the Traveler observatory to support

the debugging of actor programs [Man87]. A signi�cant source of complexity in event diagrams is

that they contain every event, and in any realistic concurrent systems, there are simply too many

events. Manning addresses this di�culty by structuring computations into sets of events which

causally connect a response to a request (much like a transaction). Traveler allows the selective

unfolding of event diagrams to visualize �ner grains of activity.

Although the Traveler has proved to be a useful debugging tool, it su�ers from a number of

problems as a visualization tool. First, it does not provide a visual representation of the internal

state (behavior) of an actor. In particular, it does not abstract over groups of actors which are

instances of the same behavior. Second, traveler maintains the entire history of the computation

distributed over large numbers of actors. While saving the history allows retrospective analysis,

it is space ine�cient and masks some of the higher-order static relations between actors. Finally,

Traveler has no inherent ability to abstract over groups of actors and events representing some

interaction pattern { its grouping mechanism is in terms of events rather than actors. Traveler is

an evolving system and some of these de�ciencies may be addressed by ongoing research.

Net Theoretic Approaches

Net theoretic models have been used in visual programming for a number of applications. For

example, the Trellis Hypertext system [SF90] uses timed petri nets for temporal hyperprogram-

ming. At least two distinct net theoretic approaches have been proposed to model actor-based

systems: the Parallel Object-Based Transition System (Pots) and Colored Petri Nets (CPN). In

fact, the model we use is closely related to CPN.

Engelfriet, Leih and Rozenberg [ELR90] developed the Pots formalism to represent parallel

object-based systems. Pots is a Petri net model augmented by an additional annotation used

to indicate the acquaintances of an object (acquaintances are objects an object knows about).

An actor A is known as an acquaintance of actor B if B knows the mail address of A. The

terminology comes from actor literature where an actor's acquaintances represent its local state

and the acquaintance relations determine the interconnection topology. Traditional Petri nets

are used to specify the execution behavior of a system; speci�cally, objects are represented by

places and events by transitions. The annotations allow reasoning about the evolution of the

interconnection topology of objects. Actor systems are de�ned as a special subset of object-based

transition systems. Note that the Petri net model is static; in order to represent the behavior of

actor systems, the set of actors which may be potentially created, must be pre-determined. The
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number of such actors can be quite large { providing a visual representation to each of them may

make it harder to visualize large systems. On the other hand, Pots was not designed to be a

visualization system: it simply provides a basis for understanding the behavior of actor systems

in terms of another fundamental model of concurrency.

Sami and Vidal-Naquet proposed the use of a high-level net, namely Colored Petri Net (CPN),

to model actors [SVN91]. The transformation from actor programs to a CPN is based on the

actor commands within a behavior de�nition. Additional places for address generator and com-

munication are introduced in the transformation.

3 The Actor Model

The actor model, �rst proposed by Carl Hewitt [Hew77] and later developed by one of the au-

thors [Agh86], captures the essence of concurrent computation in distributed systems at an ab-

stract level. In the model, the universe contains computational agents, called actors, which are

distributed in time and space. Each actor has a conceptual location (its mail address) and a

behavior.

The only way one actor can in
uence the actions of another actor is to send the latter a

communication. An actor can send another actor (or itself) a communication only if it knows the

mail address of the recipient. Because information is localized the mail address of the target actor

must be locally accessible to the sender before the latter can send a message to the target actor.

Laws of locality restrict which actors are locally accessible when an actor receives a communication

to the following: acquaintances of the actor processing the message, mail addresses contained in

the message itself, and new actors created as a result of processing the message. Mail addresses

can be used to send a message, they can be communicated in messages, and they can become

acquaintances of actors which process such messages.

If more than one actor sends a message to the same actor, the messages are interleaved; in

particular, this implies that the communications between actors are bu�ered. By contrast, in

a synchronous communication model, a sender is required to wait until the recipient is free to

accept a communication. The recipient is blocked from accepting any other communications until

after it has �nished accepting the �rst communication. One can think of each actor as having a

mailbox which is always available to receive messages. Furthermore, mail addresses can be freely

communicated. This assumption implies that the interconnection network topology of actors is

dynamic. A dynamic topology provides generality, for example, it allows resource management

decisions such as object to processor mapping to be programmed.

Process models assume that each process carries out one action at a time. By contrast, the

behavior of actors is inherently concurrent. Actors support local state: an actor computes its

replacement behavior in order to account for changes in its responses subsequent to the commu-
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nication it has just processed. A program in an actor language consists of [Agh86]:

� behavior de�nitions which associate a behavior schema with an identi�er, without actually

creating an actor.

� new expressions which create new actors and return their mail addresses. A new expression

is wrapped in a let command to bind the mail address it returns to local variables.

� send commands which create communications. A speci�c, known actor to which the com-

munication is sent (called the target actor) must be speci�ed. Communications may contain

mail addresses of other actors, thus changing the interconnection network topology of actors.

� become commands speci�es how the behavior of an actor is to be changed. A become

command must be embedded in a behavior de�nition and it will be used to determine the

new behavior of an actor whose de�nition is speci�ed using the behavior schema.

The behavior de�nition for checking accounts below illustrates programs in Rosette, an Actor

language developed at MCC [TSS89]. A behavior de�nition is used in a new command to create

individual actors with speci�c initial parameters. In this case, a number giving the initial value

of balance and my-savings would be speci�ed for creating a check-acc actor. Note that the

behavior of a checking account changes over time as a function of the balance in the account. The

checking account can process deposit, show-balance and withdraw requests. A request to deposit

some amount causes an update of the balance in the checking account. A show-balance request

sends a message to a customer indicating his/her balance. A withdraw request results in either

updating the checking balance and sending some money to the customer or sending a withdrawal

request to the savings account or sending a message to the customer and teller indicating that the

transaction could not be processed depending on the balance in the checking and savings account.
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(defActor check-acc (slots& balance my-savings)

(deposit [amount]

(become check-acc (+ balance amount) my-savings))

(show-balance []

(send customer (display balance)))

(withdraw [amount]

(if (>= balance amount)

((become check-acc (- balance amount) my-savings)

(send customer amount))

((let [[b = amount - balance]]

(if (>= b my-savings)

((withdraw savings-acc b customer)

(become check-acc 0 (- my-savings b)))

((send customer 'cannot-process-request)

(send bank-teller 'cannot-process-request)

(become insens-acc balance b ))))))))

An insu�cient amount in the savings account results in not being able to carry out the

requested transaction. The customer and bank-teller are informed that the request cannot be

processed and the checking account becomes insensitive. The checking account remains insensitive

till a certain amount is deposited or there is a withdrawal request for a lesser amount. We have

not shown the behavior de�nition of an insensitive account.

Because actors may be created and mail addresses may be communicated, the Actor model

does not require the structure or shape of a computational problem to be statically determined,

or that the number of actors participating in the computation be �xed. Furthermore, with the

help of the behavior changing primitive, it is possible to delineate critical sections and support

synchronization. Note that actors can process communications concurrently as long as synchro-

nization requirements have not been speci�ed by the structure of an actor system. the Actor

model guarantees delivery of a communication { a form of weak fairness . The guarantee of deliv-

ery is useful for proving liveness properties in actor systems. In our visual speci�cation of actor

systems, we do not directly address fairness issues but assume that the underlying implementation

provides fairness.

4 Predicate Transition Nets

Petri Nets were proposed thirty years ago to model distributed systems. To model increasingly

large and complex systems, models of high-level nets, such as Predicate Transition Nets and

Colored Petri Nets, have been developed. We �rst present a brief introduction to Petri nets and

then describe Predicate Transition Nets. A Petri net structure consists of three components: a set
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thinking(P)

<P><P>

<P> <P>

<P>

down–forks(P) up–forks(P)

dining(P)

available(F)

<F>

<l(P)> + 
<r(P)>

<l(P)> + 
<r(P)>

Figure 1: A predicate transition net for dining philosophers: thinking(P) represents the state

of the thinking philosophers. dining(P) represents the dining philosophers. The transition up-

forks(P) indicates that the philosopher moves from thinking to dining state after receiving the

required forks. The transition down-forks(P) indicates that after dining, a philosopher puts down

his forks and enters the thinking state (�gure adapted from [Rei85])

.

of places, a set of transitions, and a set of arcs. The arcs are represented by arrows from places to

transitions and from transitions to places known as input and output arcs respectively. The place

from which an input arc originates is known as an input place. The destination of an output arc

is called an output place. A Petri net is executed by �ring one or more of its transitions, i.e., by

removing tokens from its input places and creating new tokens in its output places. A transition

is �reable if each input arc has a token at its input place. On receiving a token, a place may

�re any one of the transitions to which it has an outgoing arc.

1

Synchronization is automatically

provided for in the �ring condition for transitions. The places and transitions that participate in

a Petri net come from prede�ned sets.

A Predicate Transition net (PrT-net) is a high-level Petri net. Tokens in a PrT-net are

structured objects carrying values. A set of places with identical functions is replaced by a single

1

In actor systems, di�erent actors with the same behavior, may accept communications concurrently. Thus, it

is necessary to modify the classical one-transition-at-a-time semantics of Petri nets. Transitions in the net may be

�red concurrently for all available sets of tokens.
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place and a predicate. Similarly, a set of transitions is represented by a single transition and a

predicate wherever possible. Incoming and outgoing arcs are annotated by symbolic sums { i.e., by

linear combinations { of tokens with non-negative integer coe�cients. Each token is represented

as an n-tuples < v

1

; : : : ; v

n

> of terms where a term is a constant or a variable, or a function

of terms. The integer coe�cient of an n-tuple indicates the number of identical tokens. The

symbolic sum annotating an arc then indicates the number of tokens of each kind that are needed

to cause a �ring.

Transition �ring in a PrT-net is controlled by using predicates to impose conditions on the

token values of the transition's input arcs. Note that transition �ring is demand driven: a

transition �res when the predicates annotating the incoming places evaluate to true. A transition

�res by moving the tokens from its input places to its output places. The annotation on the input

and output arcs of a transition determine this transfer of tokens. Note that deadlock conditions

may be avoided by ensuring that token access is atomic. Thus nets provide high-level speci�cations

of systems which may need to be executed using more primitive constructs. By contrast, observe

that actors are a lower-level model which represents point to point asynchronous communication

inherent in distributed architectures.

The working of a PrT-net is best understood through an example. Consider the dining philoso-

phers problem modeled in Fig. 1 (from [Rei85]). A collection of philosophers is sitting around a

table. Each philosopher has a plate in front of him. Between any two neighboring plates lies a

fork. Whenever a philosopher eats he uses both forks, the one to the right and the other to the left

of his plate. When a philosopher has �nished eating he replaces both his forks and starts thinking.

The predicate thinking(P) annotates the philosophers in the thinking state. The predicate avail-

able(F) represents the forks that are available. The predicates up-forks(P) and down-forks(P)

represent the state of a philosopher when he is waiting for his left and right fork and the state

when he is ready to release his forks respectively. The annotations on the incoming arcs and

outgoing arcs of the net represent the values or functions of values 
owing through them. The

annotation < l(P )+ r(P ) > on the arc to the available(F) state, indicates that philosopher P has

released his left and right forks. The annotation < P > on the arc to the up-forks(P) indicates

that a philosopher P moves from thinking(P) to dining(P) state when all the conditions are met.

Let us assume there are three philosophers p

1

,p

2

and p

3

who enter the system. Their forks are

f

1

,f

2

and f

3

. Since P is a variable for a philosopher, the predicates annotating the places are

thinking(p

1

), thinking(p

2

) and thinking(p

3

). We also have f

1

= l(p

1

) = r(p

2

), f

2

= l(p

2

) = r(p

3

),

and f

3

= l(p

3

) = r(p

1

).

It should be noted that the value for the tokens in a PrT-net come from a �nite set of

values. This limits the instantiation of the predicates in the PrT-net. Since the predicates are

an annotation for places and transitions, the number of places and transitions that participate in
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a net are �nite. This assumption is made to support reducibility to Petri nets which represent

decidable functions. Since we are more interested in PrT-net's as a visual notation, we can weaken

this assumption when we want to.

A PrT-net can be de�ned as a directed graph with �ve components: a set of places, a set

of transitions, input arcs, output arcs and annotations on places, transitions and arcs. Places

and transitions are annotated using predicates, while arcs are annotated by symbolic sums. In

a PrT-net, a place is represented by 
 and a transition is represented by 2. Annotation of a

place/transition is a mapping from a set of places to a set of predicates. In Fig. 1 thinking(P),

dining(P), and available(F) are the annotations for places. The annotations for transitions are

up-forks(P) and down-forks(P). The annotations for incoming and outgoing arcs is a mapping

from a set of arcs to a set of symbolic sums of tuples of terms.

An initial marking of a net assigns to each place a symbolic sum of constants. The marking

is such that it can allow �ring of some transition and thereby cause the 
ow of tokens within the

system. Consider the following initial marking for the dining philosophers problem. Philosophers

p

2

and p

1

are in thinking state, and philosopher p

3

is in the dining state. This will be indicated by

the symbolic sums < p

1

> + < p

2

> and < p

3

> marking places thinking and dining respectively.

After philosopher p

3

has dined, he releases his forks and any of the other philosophers can enter

the dining state.

Following Genrich [Gen87], the basic form of a PrT-net, PN , is de�ned as (N;A;M

0

), where

1. N is a directed net, N = (S; T; F ) where S is a set of places, T is a set of transition nodes

and F is a set of arcs.

2. A is the annotation of N , A = (A

N

; A

S

; A

T

; A

F

) where

� A

N

is the set of all predicates that are true.

� A

S

is a bijection between places, S, and the set of predicates.

� A

T

is a mapping of the set of transitions, T , into the set of predicates.

� A

F

is a mapping of the set of arcs F , into the set of symbolic sums of tuples of terms.

3. M

0

is a (consistent) marking of the places: it is a mapping that assigns to each place s in S

a symbolic sum of tuples of constants such that if n is the index of the predicate annotating

s, then M

0

is in S

(n)

.

In the following section, we discuss how PrT-nets provide an abstract representation for actor

programs as modeled in [Agh86]. The behavior de�nitions of an actor program are captured by

the static places and transitions, while the dynamic parts of an actor program { namely, actors

and messages are mapped to the tokens of a PrT-net. Such a mapping works provided that the

two assumptions noted below hold.
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� Fixed behavioral interconnections. Consider the interconnection topology induced on behav-

ior de�nitions corresponding to the actors, i.e., two behaviors are linked if any actor using

the �rst de�nition may know an actor using the second. We require that this induced topol-

ogy is static. Although this assumption is somewhat restrictive, it is less so than requiring

a �xed topology on actors themselves. Because a �xed topology on behavior templates

only requires the predetermination of which behaviors may relate to which others { it holds

whenever the conceptualization of the problem is clear.

� No behavior creation. The actor system modeled by a PrT-net does not cause new behavior

de�nitions to be added to the system during its evolution. In particular, this means that

re
ective actor architectures may not be modelled. Such architectures allow the system

level actors implementing an application to be dynamically accessible to the application

5 Modeling Actor programs with Predicate Transition nets

Colored Petri nets (CPN's) have been used by Sami and Vidal-Naquet [SVN91] to formalize the

behavior of actors. We will call their algorithm for transforming actors programs into CPN's the

SV-N algorithm. Internal concurrency is depicted in the SV-N algorithm by interpreting actor

program in terms of its primitive actions. Our algorithm for deriving a PrT-net from an actor

program is a variant of the SV-N method. In particular, we simplify the visual aspects of the

pictorial representation by folding collections of atomic actions. Instead of associating separate

places for address generation in each behavior, we assume a tagging scheme on message tokens

which allows extension of the tags to locally generate globally unique mail addresses and new

tags (as in the semantic operational model in [Agh86]). As a simpli�cation, we simply ignore the

details of an address generation scheme. We assume that the underlying actor execution system

generates unique actor mail addresses which appear in the appropriate tokens. Recall that our

purpose in transforming an actor program to a PrT-net is primarily to visualize its execution.

As discussed in Section 3, an actor program consists of behavior de�nitions and initializations.

Within each behavior de�nition, the response of an actor to a communication is de�ned by a

method. A behavior de�nition is thus composed of di�erent methods. In turn, a method may

be a combination of any of the primitive actor commands { provided that there is exactly one

executable become command in the body of a method. The topology of behavior de�nitions {

de�ned by the possibility of replacing one behavior by another { is static, although the intercon-

nection topology of individual actors is dynamic. Note that this model of actors precludes passing

behaviors as �rst-class objects.

A place in our PrT-net representation corresponds to an actor behavior, and a transition

to a method. Corresponding to each method of a behavior de�nition, there is an incoming arc
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from the place representing the behavior de�nition to the transition representing the method.

Intuitively, a transition is a function which receives a message on its incoming arc, acts on it,

and sends out a message on its outgoing arc. However, the formula annotating a transition may

contain free variables. These variables can be bound to existential quanti�ers. Thus free variables

provide a mechanism for explicitly representing data encapsulation in PrT-net's. Our current

implementation does use this feature of PrT-net's.

The tokens in a PrT-net represent actors and messages (we will refer to them as actor tokens

and a message tokens, respectively). The value of an actor token is the address of an actor and

its acquaintances. The value of a message token consists of the address of the target to which

a message is to be sent and the communication itself. An actor token is created when a new

expression is evaluated. Upon creation, an actor token is located at the place which represents

its initial behavior.

A message token is created when a send command is executed. The value of the message

token is the method name

2

which represents the name of the function to be invoked in the target

actor, its parameter list and the address of the target actor. A message token is placed at the

behavior de�nition corresponding to the target's current behavior. In the initial program, this can

be statically deduced from the new expression creating the program. In an executing program,

the token is sent down an arc as described below.

A transition is �red when an actor token and a (corresponding) message token arrive at a

place. Note that the target mail address �eld in the message token must correspond to the mail

address �eld in the actor token. Thus behavior execution in an actor program corresponds to the

�ring of a transition in a PrT-net. A send or become command in a method is represented by

outgoing arcs from the corresponding transition to places. In case of a message send, the place

corresponds to the current behavior of the target actor. A message token is simply moved from

the transition to the place. In case of a become command, there is an arc from the transition

which points back to the place corresponding to the behavior the actor is adopting. An actor

token will be passed along this arc together with the values of its current acquaintances. This

provides the necessary synchronization for executing any communications pending to the actor.

Upon executing one of its methods, if an actor changes the behavior de�nition it is using,

the situation is somewhat complicated. It is possible to de�ne synchronization tokens and new

transitions to keep the places corresponding to di�erent behavior de�nitions distinct. We take

a more direct approach: the places representing all the behavior de�nitions an actor may use

are connected to a master place which sends messages to the place corresponding to the current

behavior. Thus, if the behavior representing a given actor is not known at compile time, the

transition executing the become command sends the actor token to the master place together

2

In actor literature, a method name is often called a communication handler.
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with its acquaintances. The master place will �re a transition to forward the actor token to its

current behavior. However, if the behavior de�nition to which the actor changes is known at

compile time, a direct approach is adopted. The actor and its acquaintances are moved directly

to the place that represents the current behvaior of the actor.

5.1 A Simple Example

We present an example to demonstrate the modeling of actor programs using Predicate Transition

nets. We have chosen the canonical bank account example to illustrate the intuition behind the

formal modeling of actors with PrT-nets. Consider a bank which employs two managers and

three tellers (M

1

, M

2

and T

1

, T

2

, T

3

respectively). A bank manager services customer requests

for opening checking and savings accounts. On processing a request, the manager informs the

tellers the account numbers of the newly created accounts.

A teller receives the account numbers and maintains the checking and savings accounts sepa-

rately. In Figure 2, places are used to represent the behavior templates for the bank managers,

tellers, checking and savings accounts. Transitions are used to represent the requests that can be

processed by the manager and the teller. The two managersM

1

and M

2

are represented as tokens

located at the place bank-manager. Similarly tokens T

1

, T

2

and T

3

mark the place bank-teller(T).

A customer approaches manager M

1

with a request to open a bank account (create-acc(A,M

1

)).

Manager M

1

creates the checking and savings accounts a1 and b1 respectively. Upon receiving

the tokens, the tellers �re a transition that moves these tokens to the part of the net representing

the checking and savings account. Once a checking or the savings account is created, a teller may

receive requests for transactions from the customers for whichever accounts have been created.

In Figure 2 the teller T

1

receives a request to deposit some amount into the checking account a1

from a customer.

In Section 3, we provided the Rosette code for a checking account. The behavior de�nition

for the checking account corresponds to the place check-acc in Figure 3, and each method in

the behavior de�nition corresponds to one of the transitions { namely, deposit , show-balance ,

or withdraw . The behavior given below is expressed Figure 3 is a portion of a net representing

this behavior. In Figure 3, depending on the amount in the savings account the transition su�(),

or insu�() is �red.

The PrT-nets which describe the bank account, process two types of tokens: tokens which

represent actors (a1; b1;M

1

;M

2

; T

1

; T

2

; T

3

) and tokens which represent messages (create-acc and

checking requests). Message tokens represent the communications received by actors. The predi-

cate bank-manager captures the behavior of all bank managers in the bank and is represented by a

single place and a set of predicates. Places in a net are OR-nodes and transitions are AND-nodes.

Firing a transition in the net is driven by the values of the message tokens and actor tokens. A
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.

.

.

.

.

.

M1 M2

<checking(deposit,
                   amount, a1, T1)>

checking(c)

b1a1

<(create-acc(A, M1)>

T1

T2

T3

checking(c) savings(s)

create-acc
   (c, s)

bank-manager(M)

bank-teller(T)

check-acc(my-savings,
                   balance,...)

savings-acc(my-savings,
                      balance,...)

Figure 2: A PrT-net illustrating the creation of a checking and savings accounts of a customer A.
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a1

deposit(P,
 amount)

withdraw(P,
  balance)

show-
balance(P)

suff(P) insuff(P)

test(P,balance,...)

customer(P,...)

.

.

.

<withdraw(b)>

b1

suff(P) insuff(P)

bank-teller(P,...) customer(P,...)

test(my-savings)

savings-acc(my-savings,
                       balance)

check-acc(my-savings,balance,
 <communication-parameters>)

insens-acc(P,  ...)

Figure 3: A PrT-net representing overdraft from a checking account. Some of the behaviors, such

as that of customers and savings accounts, are not shown.
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message token with a mail address equal to the mail address of an actor token causes a transition

to �re. Synchronization constraints in actor programs are imposed by replacement behaviors. In

a PrT-net this is depicted by moving a token from one part of the net to another, where each

part of the net represents a behavior.

6 Deriving a PrT-net from an Actor Program

This section discusses the formal modeling of actors using PrT-nets. We illustrate the modeling

process by a simple algorithm and then provide an algorithm for deriving a PrT-net from an actor

program is given.

6.1 A Simple Recursive Program

Consider the code for a factorial program based on the actor language Rosette [TSS89]. Note that

we have modi�ed the syntax slightly for readability.

(defActor Toplevel()

[val [k]

(return k)])

(defActor Factorial

(fact [n,cust]

(if (= n 0)

((send cust val 1))

((let [[ c = new Customer(n,cust)]] )

(send self [fact (- n 1) c])))))

(defActor Customer(n,cust1)

(val [k]

(send cust1 [val (* n k)]))))

(define ft (new Factorial()))

(define tl (new Toplevel()))

(send ft [fact 3 tl])

In the above code, the Toplevel actor receives the result and returns it to the user. A

Factorial actor, such as ft delegates the task of calculating the product of n and factorial of

n-1 to a new actor created using the Customer behavior de�nition and sends a message to itself

to calculate the factorial of n-1 . The new actor waits for a value to arrive which it will multiply

with n and send the result to the original customer.
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a(P)

b(P)

c(P)

t  (P)
e t  (P)

f

ft

tl

<P> + <P,fact(n,cust)>

<P> + <P,val(K)>

<P>+<P,fact(n-1,c)>
<P> + <P, fact(n, cust)>

fact(P, n, cust)

Customer(P,n,cust1)

<P> + <P, fact(0, cust)>

<cust, val(1)>

<cust, val(1)><cust, val(1)>

<cust, val(1)>

<t1>

val(P, K)
val(P, K)

<cust, val(1)>

<cust1, val(K)>

<cust1, val(k)>

<ft + ft, fact(3, tl)>

Factorial(P)

<c, (n, cust)>

Toplevel(P)
<P, (n, cust1)>
+ <P, val(K)>

a
t  (P) t  (P)b

t  (P)
dt  (P)

c

Figure 4: A PrT-net representing the factorial program. The variables used in the labelling of

the arcs, places and transitions are obtained from the Rosette code for the factorial program.

For example, c is an actor token created by the fact method. The conditional places and

transitions are shaded in the above �gure for clarity. Note that after execution of the val

method, a Customer actor should be moved back to the place Customer . We have omitted this

in the �gure for simplicity.
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Algorithm to transform actor programs

We �rst de�ne some terms which represent the components of an Actor program. We then present

an algorithm to transform an Actor program into its syntactic constituents.

� B is the set of behaviors de�ned in an actor program. Note that in Rosette behaviors are

de�ned using defActor . For the factorial program given above, B = fToplevel ,Customer ,

Factorialg. We will represent the elements of B by b; b

1

; b

2

; : : : below.

� B

�

is the set of behaviors augmented with the corresponding formal parameters for acquain-

tances of actors. Thus, B

�

= f (b; b

s

) j b 2 B, and b

s

are the formals associated with bg. For

the factorial program B

�

= f(Toplevel,() ),(Factorial,()),(Customer,(n,cust1))g.

� M represents the structure of the methods. M = f(b;m;ml) jm is a method in b and ml is

the parameter list for the methodg. For the factorial program,M = f(Toplevel,val,(k) ),

( Customer, val, (k) ), ( Factorial,fact, (n,cust) )g.

� C represents the structure of the set of commands an actor program. C = f(b;m; St) j

St is the set of commands associated with the method m in behavior bg. For the fac-

torial program, C = f(Toplevel, val, return k ), (Customer, val, send cust1 (val

(* n k)) ), (Factorial, fact, if (= n 0) then (send cust (val 1)) ((let [[c =

new Customer(n,cust)]]) (send self fact(- n 1) c)) )g.

� I represents the initial environment. I = hI

b

,I

m

i, where I

b

= f(a; b; a

s

) j a is an actor

created with behavior b command and a

s

as acquaintancesg, and I

m

= f(a;m;ml) j a

is an actor in I

b

to which a message with method m and ml are sentg. For the factorial

program, I = hf(ft,Factorial,() ), (tl,Toplevel,() )g,f (ft,fact,(3,tl) )gi.

The algorithm for deriving a PrT-net PN , from an actor program AP uses the structural

relations between actors with the same behavior de�nition. A PN such that, PN

�

=

AP is

de�ned as PN = (N;A;M

0

), where N = (S; T; F ) and A = (A

N

; A

S

; A

T

; A

F

). From a given

actor program AP , PN is derived in the following way:

1. For each behavior in the actor program there is a place in the PrT-net. For the factorial

program, S = B[S

b

, where S

b

is a set of conditional places which is created during the

transformation process. Step 6 discusses conditional places and transitions.

2. 8 b 2 B, A

S

(b) = b(P; args) where (b; args) 2B

�

and P is a variable which gets instantiated

with the value of an actor token (i.e., its mail address). For the factorial program:

A

S

(s) = fToplevel(P ); Factorial(P ); Customer(P; n; cust1)g
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3. T = T

m

[T

b

, where T

m

= f m j 8(b;m;ml) 2Mg and T

b

is the set of conditional transitions

created during the transformation process. For the factorial program T

m

= fval; val; factg.

4. A

T

(t) = f t(P;ml) j 8t 2 T

m

; (b; t;ml) 2M. For the factorial program,

A

T

(t) = ffact(P; n; cust); val(P; k); val(P; k)g

5. We di�erentiate between the incoming and outgoing arcs in F . An incoming arc f

i

is an arc

from a place to a transition, and an outgoing arc f

o

is an arc from a transition to a place. For

every behavior b, 8m 2M, there is an incoming arc from b to the transition m represents,

s.t (b;m;ml) 2M. The annotation of this arc f

i

is A

Fi

=< P; al > + < P;m(ml) >, where

P is the variable representing the address of an actor token, and al is its acquaintance list.

For the factorial program A

Fi

= f(< P > + < P; fact(n; cust) >); (< P; (n; cust1) > + <

P; val(K)>); (< P > + < P; val(K) >)g.

6. The outgoing arcs in a PrT-net are determined by the send and become commands in

the method represented by a transition. A syntactic analysis of the actor program will

determine the places in S to which there are outgoing arc from the transitions. Let A

Fo

be the annotation of this outgoing arc. We determine the set A

Fo

by a case analysis of the

primitive actor commands that constitute the actor program.

� If the script St of a transition t 2 T

m

has a become command, then there is a outgoing

arc (t; s), from t to s, s.t. s is an identi�er that syntactically follows the become

command, and s 2 S. < P; al > is added to the symbolic sum in A

Fo

. If s is an

expression, the behavior de�nition to which an actor is to be moved is determined

at run time. Then there is an outgoing arc from t to the master place. Recall that

all the behavior de�nitions an actor may use are connected to this master place via

transitions.

� If there is no become command in the script St of a transition t 2 T , then there is an

outgoing arc (t; s), where s is a place in all the incoming arcs (s; t). The symbolic sum

< P; al > is then added to the annotation of the outgoing arc.

� If the script St of a transition t 2 T

m

has a send command, then there is a outgoing arc

from t to s, s.t s 2 S and s is the behavior for the actor identi�er s

a

that syntactically

follows the send command. Thus if send s

a

m ml is the command, then the symbolic

sum added to the annotation of the outgoing arc will be < s

a

; m(ml) >.

� A cond and an if command with send commands in the body is represented by a

single conditional place and as many conditional transitions as there are tests in the

conditional command. When a condition is satis�ed the corresponding conditional
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transition is �red. For example in Figure 4 place a and transitions t

a

and t

b

have been

added after the transition fact. The execution of the script of the method fact is

delayed. The transitions t

a

and t

b

represent the evaluation of the if condition. One of

the transition is then enabled and �red.

� If the script St of a transition t 2 T

m

has a new command, then there is a outgoing arc

from t to s , s.t, s 2 S^ s is the behavior for the actor identi�er s

a

that is created by

the new command. Thus the token corresponding to actor s

a

is created at transition t

and sent to the place s. Thus the mail address of s

a

is available at s.

� In an actor program the address of the target actor of a communication is often de-

termined at run time. To represent this communication in the PrT-net a semantic

analysis of the program is required. All the potential behaviors that may execute as a

result of this communication are determined. Conditional Transitions are introduced

to show the potential communications.

For example, in the code of the factorial program, the command send cust val 1 in

the script of the method fact , does not reveal the identity of the actor cust . But

we know that since it is a Toplevel actor which �rst sent the message to calculate the

factorial, it will at some point receive a message either from Customer or from Factorial

depending on the value of n . Therefore there are arcs from fact to both Customer and

Toplevel through the conditional places and transitions in Figure 4.

Each conditional place is an element of the set S

b

and each conditional transition is

an element of the set T

b

. For each s 2 S

b

, A(s) = s(P ), and for each t 2 T

b

, A(t) =

t(P ). The annotation of the arc (t; s

b

) where t 2 T and s

b

2 S

b

is equivalent to the

annotation of the incoming arc to t. The annotation of the arcs (s

b

; t

b

) where t

b

2 T

b

,

is equivalent to the annotation of the arc to the place s

b

. The annotation of the arcs

(t

b

; s) where s 2 S, is determined by the send commands in the script of the method

as indicated above.

7. The initial marking of the PrT-net is determined from the initial environment I of the

actor program. For each (a; s; a

s

) 2 I

b

, there is an actor token ha(a

s

)i in place s. For each

(a

s

; m;ml) 2I

m

there is a message token < a;m(ml)> in place b, where (a; b; a

s

) 2I

b

.

A better understanding of how this algorithm helps in visualizing the execution of an actor

program using PrT-nets can be obtained by playing the token game for the factorial example

discussed above. Figure 5 depicts the important execution steps in the token game for the

factorial example which calculates the factorial of 3. Step 1 shows the execution of the method

fact . This is depicted by the �ring of the transition fact, t

a

and creation of a new actor token

c3 with acquaintances 3 and tl and sending the message token to calculate factorial of 2 to ft.
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Step 1 Step 2 Step 3

Step 4 Step 5

Factorial
Factorial Factorial

Customer

ft ft

<c2, (2, c3)>

ft

<c1, (1, c2)>

Customer
Customer

<c1>

c1

<c2>

<c
2,

 v
al

(1
)>

c2

<c3> <c
3,

 v
al

(2
)>

c3

Toplevel

<f
t>

 +

<f
t, 

fa
ct(

2,
 c3

)>

<tl, val(6)>

<c3, (3, tl)>

<f
t>

 +
<f

t, 
fa

ct
(1

, c
2)

>

<f
t>

 +
<f

t, 
fa

ct
(0

, c
1)

>

<c
1,

 v
al

(1
)>

Step 6

c2
c3

c3

<c2, val(1)>

<c3, val(2)>

t f
t f

t e

ta
ta

ta

fact fact fact

val val val

Figure 5: The steps involved in a token game for the factorial example. Only necessary places

and transitions are shown in the above steps.
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The actor token ft is moved back to the Factorial place as its behavior de�nition is not changed.

Step 2 shows the execution of the fact method by the actor token ft to calculate factorial of

2. This time the actor token c2 is created after �ring transition t

a

. The actor token ft and a

message token to calculate factorial of 1 are moved to Factorial. Eventually when the ft actor

token receives a message to evaluate factorial of 0, it �res the transition t

b

and causes the message

token < c1; val(1) > to be sent to the place Customer. Step 4 shows the execution of the val

method by the actor token c1. c1 has a value of 1, and receives a value 1, in the argument of the

message. It evaluates the product and sends the result in a message token to c2 (< c2; val(1)>).

Step 5 shows the execution of the val method by the actor token c2. Finally in Step 6, the actor

token c3 evaluates the product of the value 2 received in the message to it, and the value 3 in its

acquaintance, and sends the result to tl by �ring transition t

e

.

An important feature of the actor system is its recon�gurability. During the execution of

an actor program it is possible to create a new behavior de�nition as a result of processing a

communication. In a PrT-net this would correspond to creating new places and transitions. It is

not possible to represent an actor program with this capability through a single PrT-net. However,

if properly implemented a sequence of PrT-nets can be used to depict or visualize the execution

of such actor programs.

Note that variations on the basic algorithm described are possible. In particular, actor tokens

are super
uous for behaviors which do not change over time and do not admit formal parameters

for acquaintances; in this case, a place in a PrT-net can represent an actor. In particular, the

arrival of a message token would then be su�cient to �re a transition. For example, in the above

factorial program, Factorial place has no possible acquaintances; a factorial actor could replace

the predicate Factorial. This results in a simpli�ed PrT-net for the factorial program. On the

other hand, requiring explicit creation of actor tokens for synchronization provides a mechanism

for controlling the exact number of actors { in this case factorials { which may be active at a time.

In either case, observe that actor tokens are still required to depict the customers (continuations).

An important issue in actor based systems is the problem of synchronization constraints,

i.e., conditions limiting the communications an actor in a given state is able to process[Agh90a].

For example, a bounded bu�er which is empty cannot service requests to dequeue. Di�erent

approaches to selectively process external communications may be taken (see [Agh90b]). One

solution used by actor systems is to let an actor explicitly bu�er incoming communications which

it is not ready to process (insensitive actors). In the Rosette language, Tomlinson and Singh

[TSS89] proposed a mechanism which associates to each potential state of actor an enabled set

specifying the particular methods the actor is willing to invoke. The actor then processes the

�rst message in its queue which invokes a method in its current enabled set. Synchronization

constraints speci�ed using enabled sets may be incorporated in our PrT-net representation by
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simply adding another type of token, called enabledness token which controls the processing of

incoming communications as follows. We require that a transition �re only when the following

conditions are satis�ed:

� an actor token, a message token, and an enabled token are all available at a place from

which there is an incoming arcs to the transition;

� the address of an actor in the message token is equal to the address speci�ed in the actor

token; and,

� the value of the enabled token is equal to the method name speci�ed in the message token.

7 Comparison with the SV-N algorithm

We will refer to the SV-N algorithm as the CPN approach and our transformation method as

PrT-net approach. The current trend in the �eld of net-theory is to translate an analysis method

developed for one kind of net to another. When PrT-nets were �rst introduced by Genrich

and Lautenbach [GL81], generalizing place invariants and transition invariants in the net seemed

di�cult. The invariants contain free variables and to interpret these invariants, it is necessary

to bind these variables by a complex set of substitution rules. This made the interpretation of

invariants di�cult. To solve this problem a �rst version of CPN was introduced by Jensen [Jen81].

The main ideas are similar to PrT-nets, but the relation between an occurrence element and

token colors involved in the occurrence is de�ned by functions instead of expressions. However,

the functions attached to arcs in a CPN are more di�cult to read and understand than the

expressions attached to arcs in PrT-nets. This led to an improved model of CPN called a high-

level net [Jen83].

The modeling of actors by CPN and PrT-net can be divided into two stages. The �rst consists

of deriving some information from the given actor program to be used in modeling. This stage is

identical in both the approaches. The second stage consists of transforming the actor program to a

net. The similarities and di�erences in this transformation process will be illustrated here. In both

the approaches, actors and messages are represented by tokens, and behaviors are represented by

the graph of the net. The use of tokens in a PrT-net and colors in CPN do not correspond to the

de�nitions in [Gen87] and [Jen90] respectively. Because the address and state of the actors to be

generated are not known at compile time, the set of tokens in a PrT-net and, correspondingly,

colors in a CPN, are not �xed at the beginning of execution. Furthermore, the creation of new

behaviors that are not in the given actor program is not allowed. The di�erences between the two

approaches are:
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� In contrast to the CPN approach, commands associated with a message are not represented

by di�erent transitions in the PrT-net approach.

� The generation of addresses is not handled directly in the derived PrT-net. This eliminates

the need for an additional place like the address-generator.

� A variation of the SV-N algorithm models a version of Actors known as SAL, that is de-

scribed in Chapter 3 of [Agh86]. Transition of actor tokens when a become command is

executed, is handled by an additional place called `a�cionados.' The execution of become

B2 by an actor is interpreted by putting the associated actor token in the a�cionado place.

The name of B2 is included as the �rst component of the structure of the actor token.

The presence of this token in the a�cionado place enables the �ring of a transition. The

a�cionado place then puts the actor token in the place associated with B2 . The PrT-net

approach, models a more complete version of actors based on the Rosette actor-language.

The execution of the become command is achieved in two ways. Corresponding to the a�-

cionado place, is the master place. When the value of B2 is known at compile time (not an

expression), the routing through the master place is bypassed. The actor token is directly

moved to the place that represents the behavior of B2 . However, if the value of B2 is

not known at compile time, the actor token is moved to the master place and then to the

corresponding place representing the behavior of B2 .

� In the CPN approach the role of a communication place is much like that of a mailbox for

each actor in an actor system. A communication place forwards the message tokens to the

corresponding behavior causing a transition to �re. In the PrT-net approach, the task of

choosing a transition to �re is performed by a place and the conditional place associated

with it.

� In the PrT-net approach, a change in the behavior of a given actor, causes both its associated

actor token and message tokens to be moved to the place that represents the new behavior.

However, in the CPN approach all message tokens are contained in the communication place.

Although PrT-nets and CPN's are considered two di�erent dialects of the same language

[Jen90], we think that PrT-nets provides a than CPN's to model actors. Because our primary

goal is to visualize actor programs rather than to apply analysis methods of Petri nets, we chose

to use PrT-nets.

8 A Prototype Implementation

We discuss a prototype implementation of a tool which uses PrT-nets to specify, execute and

visualize actor programs. The visual tool has two components: a visual editor and an actor system.
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The visual editor is used to specify and visualize actor execution. The visual editor is based on

InterViews; a toolkit built using the C++ language and X-window system protocols. The visual

editor provides icons that help in building the visual representation of the actor program. The

actor system used by the tool is the Rosette system. To visualize the actor execution the Rosette

system needs to communicate to the visual editor the state of actor con�gurations. Similarly, the

visual editor communicates with Rosette to specify the actor behaviors and actor commands that

need to be executed. We use the UNIX system calls to carry out this communication. Currently

the tool runs on SUN3 workstations.

8.1 The Visual Notation

Our visual language is a Predicate Transition net which consists of a place, a transition, and an

arc connecting a place to a transition. The de�nitions of place, transition and arc are given in

the earlier section.

� a place is represented by a 
 and a predicate annotating it. In Figure 4, Factorial(P) is

an annotation of a place representing the Factorial behavior.

� a transition is represented by a 2 and an annotation. In Figure 4, fact(P,n,cust) is the

annotation for a transition representing a method of the Factorial behavior.

� an arc from the place annotated by Factorial(P) to the transition annotated by fact(P,n,cust)

is represented by the symbolic sum < P > + < P; fact(n; cust) > in Figure 4.

� an actor token is depicted by a circle, located at the place that represents its behavior.

Figure 4 shows an actor token ft, whose behavior is represented by the place Factorial(P).

� a message token is not explicitly shown. Messages 
owing through the system are visible

only when the ShowMessages menu bar is selected. A texteditor displays a list of messages

starting from the most recent communications in the system. The information displayed

gives the source behavior predicate and the destination behavior predicate of the commu-

nication. This indicates that a communication to an actor belonging to the destination

behavior class, has been created as a result of executing the source behavior. Currently

we do not display the message parameter list and the actual mail addresses of the actors

participating in the communication.

8.2 Features of the Visual tool

A given actor program is transformed to a PrT-net using the transformation rules given in the

previous section. The user constructs the derived PrT-net with the help of the icons provided
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in the visual editor. Commands are sent to the actor system by clicking on a menu bar. The

execution of the program speci�ed is visualized with the help of the constructed PrT-net, actor

tokens and message tokens. Some of the important features of the visual tool are listed below.

� communication from Rosette system to the visual editor: The Rosette system noti�es to

the visual editor the new actors and communications it creates. If an actor is created, the

behavior to which the actor token belongs, is indicated to the visual editor. When a message

is created, it informs the editor the behavior identi�ers of the source and destination of the

message. The visual editor communicates to the Rosette system the behavior de�nitions

and actor commands that the system has to execute.

� create behavior: is an icon in the visual editor which enables the user to draw a place, mark

its annotation and also specify a behavior for it. A dialogbox is popped up to provide the

annotation for the place. Following that a text editor is provided to type in the script for

the behavior of an actor represented by the new place. The script provided should be in

Rosette.

� create place: is an icon identical to the create behavior icon, except that it does not pop up

a text editor to specify the script of the behavior. The script of all the behaviors are written

using an external text editor into one single �le.

� create transition: is an icon that allows the user to create a transition in the PrT-net and

provide its annotations.

� arcs: An arc of a PrT-net is drawn by clicking on a line icon and choosing the brush menu

to be an arc.

� annotations of arcs: Arc annotations can be written using a text icon that allows the user

to annotate an arc in the form of text.

� send: is a menu which is used to send Rosette system commands from the visual editor.

� show messages: is a menu bar which when chosen provides the user with a list of all current

messages. With the most recent messages as the �rst element of the list.

A sample session of the visual tool is given in Figure 6. We are working on an extension of

the implementation to provide the state information of actors by clicking on the actor tokens.

An important point to note here is that in the visualization of an actor program, the order in

which the transitions are �red should be identical to the order of execution of the methods in the

underlying actor system. The implementation should take care to preserve this required order

with the help of a manager or enabled sets which will ensure the execution of a next method only

after visualization of the previous method is realized.
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Figure 6: A snapshot of the visual editor used in the prototype implementation.
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9 Conclusion and Research Directions

The approach we have outlined has several weaknesses. First, the behavior of an actor is encoded

in a place of a PrT-net. However, in unrestricted actor systems, an actor may compute a replace-

ment behavior as a result of processing a communication. In our current transformation, to derive

a PrT-net for such an actor, we would have to identify the new behavior and move the actor token

to the place that encodes this new behavior. This implies that we may not dynamically create

behavior de�nitions. One approach to overcoming this di�culty is dynamically recomputing the

predicate net { essentially, this is equivalent to recompilation. We do not have an algorithm

for incremental compilation; such an algorithm would appear to require some restrictions on the

otherwise arbitrary modi�cations which may be made on the arcs.

Visualization of actor programs with the help of PrT-nets can be used in debugging. Here

a provision for real-time intervention is necessary. One way of doing this is to slow down the

execution of the system with the help of a synchronous message passing protocol. A better

alternative for a distributed implementation is to use a time-warp mechanism with roll-back[Jef85],

where the o�cial global clock corresponds to the display of the tokens.

Specifying and visualizing large concurrent systems with Predicate Transitions nets is cum-

bersome and thus error prone. A mechanism to add further layers of abstraction is to break the

net into smaller subnets. Jensen [Jen90] describes hierarchical nets to model large systems. A

hierarchical net is composed of smaller divisions called pages. Each page is a net in itself and can

be used to represent a subsystem. The concept of hierarchical nets could be extended to visualize

execution of large actor programs. Pages of interest can be expanded when necessary.

A high-level pictorial speci�cation language needs to be developed to provide the data spec-

i�cation for systems modeled using PrT-nets. Currently, the data speci�cations for concurrent

systems is only textual (i.e., Rosette code). Such textual notations may be replaced by pictures.

However, Predicate Transition nets are not suitable for this purpose.

The actor model for concurrent computation allows us to program systems without any speci�c

assumptions about the underlying concurrent hardware. With the use of tools that allow actor

programs to be executed on any parallel or distributed computers, the visual model mentioned here

can be used for visualization of programs executed on di�erent parallel and distributed systems.

Our studies in this are still at a preliminary stage. By relating Actors, which provide both a

rich set of primitives and abstraction building tools, and Predicate Nets, which provide a visual

syntax with a relatively well-explored formal semantics, we hope to understand the structure and

dynamics of concurrent systems.
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