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Abstract

Uplift modeling refers to the set of techniques used to model the incremental impact of an
action or treatment on a customer outcome. Uplift modeling is therefore both a Causal
Inference problem and a Machine Learning one. The literature on uplift is split into 3 main
approaches–the Two-Model approach, the Class Transformation approach and modeling
uplift directly. Unfortunately, in the absence of a common framework of causal inference
and notation, it can be quite di�cult to assess those three methods. In this paper, we
use the Rubin (1974) model of causal inference and its modern “econometrics” notation
to provide a clear comparison of the three approaches and generalize one of them. To our
knowledge, this is the first paper that provides a unified review of the uplift literature.
Moreover, our paper contributes to the literature by showing that, in the limit, minimizing
the Mean Square Error (MSE) formula with respect to a causal e↵ect estimator is equivalent
to minimizing the MSE in which the unobserved treatment e↵ect is replaced by a modified
target variable. Finally, we hope that our paper will be of use to researchers interested in
applying Machine Learning techniques to causal inference problems in a business context
as well as in other fields: medicine, sociology or economics.
Keywords: Uplift Modeling, Causal Inference, Machine Learning

1. Introduction

Uplift modeling refers to the set of techniques that a company may use to estimate customer
uplift, that is, the e↵ect of an action on some customer outcome. For example, a manager
at a telecommunication company could be interested in estimating the e↵ect of sending a
promotional e-mail to di↵erent customer profiles on their propensity to renew their phone
plan in the next period. With that information at hand, the manager is able to e�ciently
target customers.

Estimating customer uplift is both a Causal Inference and a Machine Learning prob-
lem. It is a causal inference problem because one needs to estimate the di↵erence between
two outcomes that are mutually exclusive for an individual (either person i receives a pro-
motional e-mail or does not receive it). To overcome this counter-factual nature, uplift
modeling crucially relies on randomized experiments, i.e. the random assignment of cus-
tomers to either receive the treatment (the treatment group) or not (the control group).
Uplift modeling is also a machine learning problem as one needs to train di↵erent models
and select the one that yields the most reliable uplift prediction according to some per-
formance metrics. This requires sensible cross-validation strategies along with potential
feature engineering.
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The uplift modeling literature proposes three main approaches to combine this Causal
Inference aspect with the Machine Learning one. This gives rise to di↵erent uplift metrics
and evaluation methods that are not easily comparable. We blame this di�culty in com-
parison on the fact that researchers are not using a common framework and notation of
causal inference.

In this paper, we present an overview of the 3 di↵erent approaches–the Two-Model
approach, the Class Transformation approach and modeling uplift directly–using the Rubin
(1974) model of causal inference as a common frame of reference. We also strive to adopt
a methodical “Machine Learning” way of building the predictive models. Our goal in this
paper is to provide a framework that unifies all the di↵erent uplift approaches so as to
make their comparison and evaluation easier. Given the growing interest in using Machine
Learning tools to do causal inference (especially among econometricians, see recent papers
for example Athey and Imbens (2015b)) we hope that our paper will point researchers
interested in that field to resources available in the uplift literature. Finally, our paper
contributes to the literature by showing that, in the limit, the uplift estimator minimizing
the Mean Square Error (MSE) also minimizes the MSE in which the unobserved uplift is
replaced by a modified target variable.

The rest of the paper is organized as follows: Section 2 introduces the causal inference
framework and notations, section 3 describes the di↵erent approaches to Uplift modeling
and section 4 discourses on how to properly evaluate Uplift models. We conclude in section
5.

2. Causal Inference: Basics

We rely on the Rubin (1974) model of causal inference and use the standard notation of the
econometric literature. At the core of the model are the notions of potential outcomes and
causal e↵ects. We consider a framework with N individuals indexed by i. Denoting Y

i

(1)
person i’s outcome when he receives the active treatment and Y

i

(0) person i’s outcome when
he receives the control treatment, the causal e↵ect, ⌧

i

, of the active treatment vis-à-vis the
control treatment is given by:

⌧

i

= Y

i

(1)� Y

i

(0) (1)

Researchers are typically interested in estimating the Conditional Average Treatment E↵ect
(CATE), that is, the expected causal e↵ect of the active treatment for a subgroup in the
population:

CATE : ⌧(X
i

) = E[Y
i

(1)|X
i

]� E[Y
i

(0)|X
i

] (2)

Where X
i

is a L⇥ 1 vector of random variables (features). Of course, we will never observe
both Y

i

(1) and Y

i

(0). Letting W

i

2 0, 1 be a binary variable taking on value 1 if person i

receives the active treatment, and 0 if person i receives the control treatment, person i’s
observed outcome is actually:

Y

obs

i

= W

i

Y

i

(1) + (1�W

i

)Y
i

(0) (3)
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A popular but unfortunately wrong belief is that one can always estimate the CATE from
observational data by simply computing the empirical counterpart of

E[Y obs

i

|X
i

= x,W

i

= 1]� E[Y obs

i

|X
i

= x,W

i

= 0] (4)

This won’t identify the CATE unless one is willing to assume that W
i

is independent of Y (1)
and Y (0) conditional onX

i

. This assumption is the so-called Unconfoundedness Assumption

or the Conditional Independence Assumption (CIA) found in the social sciences and medical
literature. This assumption holds true when treatment assignment is random conditional
on X

i

.
CIA : {Y

i

(1), Y
i

(0)} ?? W

i

|X
i

(5)

Before proceeding to uplift modeling, let us introduce additional useful notation. Let us
define the propensity score, p(X

i

) = P (W
i

= 1|X
i

), i.e. the probability of treatment given
X

i

.

3. Uplift Modeling

Companies (typically in telecommunication or e-business sectors) are interested in uplift
modeling to estimate the e↵ect of an action on some customer outcome. For example, a
gym owner might be interested in estimating the e↵ect of sending a promotional e-mail to
a customer of observed characteristics X

i

on their propensity to renew their membership in
the next period. In other words, uplift modeling amounts to estimating a CATE. Although
companies can easily conduct randomized experiments so as to ensure that the CIA holds,
the fact that we never observe the true ⌧

i

makes it seemingly impossible to use standard
supervised learning algorithms to estimate it. If we suppose for a moment that ⌧

i

was
indeed observed, we would simply split the data into a train and a test set and use one of
the many available algorithms to come up with the approximation of the CATE ⌧̂(X

i

) that
minimizes a loss function on the training data. We would then evaluate our model using
one or more metrics (AUC, F1 score, Accuracy etc) on the test data.

The uplift literature has proposed three main approaches to estimate ⌧(X
i

) despite the
absence of the ground truth. The first one is the Two-Model approach which consists in
building two predictive models, one using the treatment group data and the other using the
control group data, exclusively. The second approach is referred to as the Class Variable
Transformation introduced by Jaskowski and Jaroszewicz (2012) in the case of a binary
outcome variable. The third one is to model uplift directly through the modification of well
known classification machine learning algorithms such as decision tree (Rzepakowski and
Jaroszewicz (2012), Radcli↵e and Surry (2011), Athey and Imbens (2015b)), random forest
(So ltys et al. (2015), Wager and Athey (2015)) or SVM (Support Vector Machines,Zaniewicz
and Jaroszewicz (2013)). We present each approach in turn.

3.1. The Two-Model Approach

The Two-Model approach has been applied in several uplift papers (Radcli↵e (2007), Nassif
et al. (2013)) and is often used as a baseline model. This approach was also introduced
in the more recent branch of the causal inference literature that is experimenting with
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modern machine learning techniques (see the Two Tree (TT) algorithm in Athey and Imbens
(2015b)).

The approach consists in modeling E[Y
i

(1)|X
i

] and E[Y
i

(0)|X
i

] separately, using the
treatment group data and the control group data, respectively. The advantage of the Two-
Model approach resides in its simplicity. Because inference is done separately in the treated
and control group, state-of-the-art machine learning algorithms such as Random Forest
(Breiman (2001)) or XGBoost (Chen and Guestrin (2016)) can be used “as is” whether
it be in a regression setting or a (multi-)classification one. Both models can achieve good
prediction performance, separately. However, for uplift purposes, although the approach
has been seen to perform well, some authors (Zaniewicz and Jaroszewicz (2013), Athey
and Imbens (2015b)) show that it is often outperformed by other methods. One reason
is that the two models focus on predicting the outcome separately and can therefore miss
the “weaker” uplift signal. Radcli↵e and Surry (2011) illustrate this phenomenon in a
simulation study.

The subject of how we can evaluate the performance of uplift models and thus compare
them will be the subject of section 4.

3.2. The Class Transformation Method

The Class Transformation method was introduced by Jaskowski and Jaroszewicz (2012) in
the case of binary outcome variable (Y obs

i

= {0, 1}). The methods consists in creating the
following target variable:

Z

i

= Y

obs

i

W

i

+ (1� Y

obs

i

)(1�W

i

) (6)

The new target, Z
i

, is therefore equal to one in either following cases: 1) the observation
belongs to the treatment group and Y

obs

i

= 1 or 2) the observation belongs to the control
group and Y

obs

i

= 0. In all other cases, the target takes on value zero.
Under the assumption that control and treated groups are balanced across all profiles of

individual (that is, p(X
i

= x) = 1/2 for all x), (Jaskowski and Jaroszewicz (2012)) proved
that:

⌧(X
i

) = 2P (Z
i

= 1|X
i

)� 1 (7)

Uplift modeling thus boils down to modeling P (Z
i

= 1|X
i

), (i.e. E[Z
i

= 1|X
i

]). The
Class Transformation method is popular because it tends to perform better than the Two-
Model approach while still remaining simple; any o↵-the-shelf classifier can be used to model
E[Z

i

= 1|X
i

]. However, the two assumptions (binary outcome variable and balanced dataset
between control and treatments) might seem too restrictive. Fortunately, a generalization
to unbalanced treatment assignment and to regression setups can be borrowed from (Athey
and Imbens (2015b)) who propose to estimate the CATE by applying standard machine
learning algorithms to the following transformed outcome variable, Y ⇤

i

:

Y

⇤
i

= Y

i

(1)
W

i

p̂(X
i

)
� Y

i

(0)
(1�W

i

)

(1� p̂(X
i

))
(8)

Where p̂(x) is a consistent estimator of the propensity score, p(X
i

)1. This transformed
outcome has the key property that, under the CIA, its expectation conditional on X

i

is

1. When the sample size of the train set is large, any o↵-the-shelf ML method will work to estimate p(Xi).
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equal to the CATE (Angrist and Pischke (2008), Athey and Imbens (2015b)):

E[Y ⇤
i

|X
i

] = ⌧(X
i

) (9)

This property means that any consistent estimator of E[Y ⇤
i

|X
i

] is also a consistent estimator
of ⌧(X

i

).
Note that in the case with complete randomization (p(X

i

= x) = 1/2 for all x) and
binary outcome Y

obs

i

, combining Equation 3 with Equation 8 allows us to write Equation 6
as:

Z

i

=
1

2
Y

⇤
i

+ (1�W

i

) (10)

and thus 2E(Z
i

|X
i

) = E(Y ⇤
i

|X
i

) + 1 which is equivalent to Equation 7.

Finally, let us point out that the Class Transformation method was also used in Lai
(2006). Shaar et al. (2016) also proposed a re-weighted uplift formulation by multiplying
the Z

i

estimated probabilities by case proportions.

P (Z
i

= 1)
1

N

hX

i

(
Zi=1

)
i
� P (Z

i

= 0)
1

N

hX

i

(
Zi=0

)
i

(11)

The authors also introduced other class transformation approaches called “Reflective” and
“Pessimistic”.

3.3. Modeling Uplift Directly

The third and last approach consists in modifying existing machine learning algorithms to
directly infer a treatment e↵ect. Lo (2002) proposed a strategy based on logistic regression,
Su et al. (2012) and Guelman et al. (2014) focused on k-nearest neighbors while Zaniewicz
and Jaroszewicz (2013) proposed a modification of the SVM model. The most popular
methods in the literature remain the tree-based ones (see Hansotia and Rukstales (2002),
Radcli↵e and Surry (2011), Rzepakowski and Jaroszewicz (2012) and Athey and Imbens
(2015b)). Finally, So ltys et al. (2015), Wager and Athey (2015) or Guelman et al. (2015)
provided a generalization to ensemble methods. In the following section we focus on tree-
based methods and discuss the principal task for tree generation: the split criterion choice2.

Formally, in the case of a balanced randomized experiment, where the propensity score
p(X

i

= x) = 1/2 for all x, the estimator of the average treatment e↵ect (or uplift) ⌧̂ is given
by:

⌧̂ =

P
i

Y

obs

i

W

iP
i

W

i| {z }
p

�
P

i

Y

obs

i

(1�W

i

)P
i

(1�W

i

)
| {z }

q

(12)

This corresponds to the di↵erence in the sample average outcome between treated and
untreated observations.

The first split criterion, proposed by Hansotia and Rukstales (2002), is the di↵erence of
uplift between the two leaves:

� = |⌧̂
Left

� ⌧̂

Right

| (13)

2. For simplicity of exposition, we focus on binary trees.
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Where the subscripts Left and Right refer to the estimator of equation 12 computed using
observations present in the left and right leaves following the split.

Rzepakowski and Jaroszewicz (2012) then proposed three new criteria based on infor-
mation theory of the form:

�
gain

= D

after split

(P T

, P

C)�D

before split

(P T

, P

C) (14)

Where D(.) is a divergence measure, P T is the probability distribution of the outcome in the
treated group and P

C is the probability distribution of the outcome in the control group.
The criterion is thus the gain in divergence following a split. The authors proposed three
divergence metrics: Kullback, Euclidean and Chi-Squared, defined as:

KL(P : Q) =
X

k=Left,Right

p

k

log

p

k

q

k

E(P : Q) =
X

k=Left,Right

(p
k

� q

k

)2

�

2(P : Q) =
X

k=Left,Right

(p
k

� q

k

)2

q

k

where subscript k indicates in which leaf we compute p and q that were defined in equation
12.

In their “Causal tree model”, Athey and Imbens (2015b) propose the following criterion:

� =
1

#children

#childrenX

k=1

⌧̂

2

k

(15)

It is easy to see that this last criterion boils down (up to a constant) to the Euclidean one
from Rzepakowski and Jaroszewicz (2012) in the case of a binary outcome and randomized
experiment.

It is worth noting the “honest” approach from Athey and Imbens (2015a). Instead of
using the same data to generate the tree and estimate the uplift value inside the leaves,
the authors randomly split the training set into two parts, one to generate the tree and the
other to evaluate the uplift inside the leaves.

Though we have focused here on binary classification, some papers generalize the ap-
proach to other cases. Rzepakowski and Jaroszewicz (2012) proposed a tree method for the
case of multi-treatment. It is also important to note that while Athey and Imbens (2015b)
approach reproduces the traditional uplift criteria in the case of a binary outcome it is the
only one that is generalized to regression settings.

4. Evaluation

In this section, we introduce how to properly evaluate Uplift Models and derive classical
metrics using our “econometrics” notations. Uplift evaluation deserves an entire section
because it di↵ers drastically from the traditional machine learning model evaluation. In
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machine learning, the standard is to use cross-validation: separate the data into a training
and a testing datasets; learn on the training data, predict the target on the test data and
compare to the ground truth. In uplift modeling, cross validation is still a valid idea but
there is no more ground truth because we can never observe the e↵ect of being treated and
not treated on a person at the same time.

To illustrate the di↵erent metrics, we use simulated data from chapter 4.4 of (Kuusisto
(2015)). The data contains 10000 individuals and is split into a treated dataset of 4997
individuals and a control dataset of 5003 individuals. The target is an indicator (0/1) for
churn. There is a strong negative e↵ect since 25 percent of the dataset was simulated to have
a “Sleeping Dog” behavior3. We used 19 categorical features and a 80/20 cross validation
split.

We implemented the three approaches described earlier. For the Two-Model Approach,
we used two gradient boosted trees models, whereas the Class Transformation Approach
was implemented through a random forest algorithm. To test the third method, we used the
random forest and Causal Conditional Inference Forests from the uplift package4as well as a
causal tree from the causalTree R package (found in Susan Athey’s github repository5). We
did not use grid search for any of these models to get the best hyper-parameters. Our goal
in this section is solely to illustrate the di↵erent methods – we are not trying to establish
that one method is better than another.

4.1. Traditional Uplift Metrics

Part of the Uplift literature stumbles with the problem that it is not possible to observe both
the control and the treatment outcomes for an individual, which makes it di�cult to find a
loss measure for each observation. As a result, most of the Uplift literature must resort to
aggregated measures such as uplift bins or uplift curves. For example, Ascarza (2016) uses
bins of uplifts; Rzepakowski and Jaroszewicz (2012), So ltys et al. (2015), Jaskowski and
Jaroszewicz (2012), Jaroszewicz and Rzepakowski (2014) or Nassif et al. (2013) use what
they call “uplift curve” and Radcli↵e (2007) and Radcli↵e (2008) Qini measure. A good
review of these metrics can be found in Naranjo (2012). To visualize the metrics, we show
the corresponding curves in the Appendix.

A common approach to evaluate an uplift model is to first predict uplift for both treated
and control observations and compute the average prediction per decile in both groups.
Then, the di↵erence between those averages is taken for each decile. This di↵erence thus
gives an idea of the uplift gain per decile. For example, as we can see in Appendix Figure
1, the Two-Model Approach gives us an uplift of 0.3 in the first decile whereas the Class
Transformation Approach gives us an uplift of 0.4. Though useful, Figure 1 makes it hard
to e↵ectively compare models. For instance, the second model seems to perform better in
the first decile but not on the second.

To have a clearer idea, we can draw cumulative decile charts like in 2(a). The leftmost
bar corresponds to the uplift in the first 10 percent, the following bar corresponds to the 20
first percent and so on. A well performing model features large values in the first quantiles

3. A Sleeping Dog is an individual who churns when exposed to the active treatment but does not churn if
in the control group. Here, a quarter of the population would thus react negatively to a targeted action.

4. packagehttps://cran.r-project.org/web/packages/uplift/index.html
5. https://github.com/susanathey/causalTree.git
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and decreasing values for larger ones. Finally, we can look at the cumulative gain chart: we
calculate the uplift times the number of individuals taken into account for each bin,

⇣
Y

T

N

T

� Y

C

N

C

⌘
(NT +N

C) (16)

where Y

T (respectively Y

C) and N

T (respectively N

C) are the sum of the treated (re-
spectively control) individual outcomes and the number of treated (respectively control)
observations in the bin.

Figure 2(b) shows an example in the Two-Model approach case. This is useful to mar-
keters because they can easily see if the treatment has a global positive or negative e↵ect
and if they can expect a better gain by targeting part of the population. We can thus choose
the decile that maximizes the gain as the limit of the population to be targeted.

The problem with the charts so far is that they do not provide any metric and hence
cannot be used to compare models accurately. We can nonetheless easily generalize the
cumulative gain chart for each observation of the test set with the following parametric
uplift curve defined for each t as:

f(t) = (
Y

T

t

N

T

t

� Y

C

t

N

C

t

)(NT

t

+N

C

t

) (17)

where the t subscript indicates that the quantity is calculated for the first t observations,
sorted by inferred uplift value.

Figure 3(a) shows an example of such curves and a random line corresponding to the
global e↵ect of the treatment. The positive slope of this random line means that treating
the whole population has an overall beneficial e↵ect. Each point on a curve corresponds to
the inferred uplift gain. The higher this value, the better the model. The continuity of the
uplift curves makes it possible to calculate the area under the curve as a way to evaluate
and compare the di↵erent uplift models. This measure is thus similar to the well-known
AUC (Area under ROC curve) in a binary classification setup. In our case, the Two-Model
approach seems to be consistently better than the other methods. Finally, the bell shape of
the curves shows the strong positive and negative e↵ect present in the dataset. In contrast,
if these e↵ects were absent, the curves would be closer to the random line.

In the literature, uplift curves are often defined by the di↵erence between two lifts
calculated on the treated and control datasets. This might not be ideal because there is no
guarantee that the highest scoring examples in the treatment and control groups are similar.
However, it is said to work well in practice and, in the case of randomized and balanced
experiments, the two methods converge. We prefer our formula because it is closer to the
Qini original definition. The Qini curve is introduced in Radcli↵e (2007) as the parametric
curve with the following equation:

g(t) = Y

T

t

� Y

C

t

N

T

t

N

C

t

(18)

The authors define the Qini coe�cient to be the area under the Qini curve. Examples
of such curves are given in 3(b). There is an obvious parallel with the uplift curve since

f(t) =
g(t)(NT

t

+N

C

t

)

N

T

t

(19)
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In balanced cases, the curves will almost be proportional to a factor of two, as we can see
in figure 3.

Radcli↵e (2007) also introduced a similar formula for regression problems. The formula
is the same except that the count of positive examples in treated and control groups is
replaced by the continuous value of the target.

4.2. Metric Based on Y

⇤

In section 3.2, we introduced Y

⇤
i

, a transformation of the target variable. It is thus natural
to wonder if a loss function (for example the Mean Squared Error (MSE)) between our
estimator (⌧̂) and the real Y ⇤

i

can be used in a cross validation scheme. In this section we
discuss the pertinence of using:

MSE(Y ⇤
i

, ⌧̂) =
nX

i

1

n

(Y ⇤
i

� ⌧̂

i

)2 (20)

as an approximation for

MSE(⌧
i

, ⌧̂

i

) =
nX

i

1

n

(⌧
i

� ⌧̂

i

)2 (21)

Though equation 21 can be calculated for simulated data where we know the true causal
e↵ect, ⌧

i

, it is impossible to derive from observational data, as noted in Athey and Imbens
(2015a). Because the MSE is impossible to calculate, the authors introduce an estimator
that can only be used in a decision tree setting. The estimation approach is mandatory
for uplift evaluation. The advantage of using our metric is that it does not depend on the
chosen machine learning model. Note that in the previous subsection, the curves are also
based on a local estimation of ⌧ .

The goal is to show that we can substitute Y ⇤
i

for the unobserved ⌧

i

in the MSE metrics to
evaluate the performance of our model. Note that by adding and subsequently subtracting
Y

⇤
i

in equation 21, we can write:

MSE =
nX

i

1

n

(⌧
i

� Y

⇤
i

+ Y

⇤
i

� ⌧̂

i

)2

=
nX

i

1

n

[(⌧
i

� Y

⇤
i

)2 + 2((⌧
i

� Y

⇤
i

)(Y ⇤
i

� ⌧̂

i

)) + (Y ⇤
i

� ⌧̂

i

)2]

�!
p

E[(⌧
i

� Y

⇤
i

)2] + 2E[(⌧
i

� Y

⇤
i

)(Y ⇤
i

� ⌧̂

i

)] + E[(Y ⇤
i

� ⌧̂

i

)2] (22)

To minimize the MSE, we can ignore the first term in 22 because it does not depend on
⌧̂

i

. In the second term, notice how ⌧̂

i

?? ⌧

i

|X
i

and ⌧̂

i

?? Y

⇤
i

|X
i

because the estimator is a
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function of X
i

. As a result:

E[(⌧
i

� Y

⇤
i

)(Y ⇤
i

� ⌧̂

i

)] = E[⌧
i

Y

⇤
i

� ⌧

i

⌧̂

i

� (Y ⇤
i

)2 + Y

⇤
i

⌧̂

i

]

= E[E[⌧
i

Y

⇤
i

� ⌧

i

⌧̂

i

� (Y ⇤
i

)2 + Y

⇤
i

⌧̂

i

|X
i

]]

= E[E[⌧
i

Y

⇤
i

|X
i

]]� E[E[⌧
i

⌧̂

i

|X
i

]]� E[E[(Y ⇤
i

)2|X
i

]] + E[E[Y ⇤
i

⌧̂

i

|X
i

]]

= E[E[⌧
i

Y

⇤
i
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?
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i

Y

⇤
i

|X
i

]]� E[E[(Y ⇤
i

)2|X
i

]] (23)

As 23 does not depend on our estimator, we see that in the limit, minimizing MSE(Y ⇤
i

, ⌧̂)
amounts to minimizing MSE(⌧

i

, ⌧̂

i

), which is what we wanted to show.

5. Conclusion

This paper presents an overview of the uplift literature using a common causal inference
framework. The uplift literature proposes three di↵erent approaches to estimate causal
e↵ects. The first one is the Two-Model method consisting in training two separated mod-
els: one on the treatment group and one on the control group. The uplift of a test ob-
servation is then computed as the di↵erence between its prediction in the two models.
Although the Two-Model is easy to implement, the approach can be surpassed by the
Class-Transformation approach which aims at modeling a transformed outcome variable
whose conditional expectation is equal to the true uplift. Traditionally, this second method
has been relying on the assumption of complete treatment randomization. However, a
generalization to the unbalanced case is straightforward. The third approach amounts to
modifying existing Machine Learning models to fit the uplift framework. In this paper, we
restricted our attention to tree-based methods and presented the di↵erent split criteria from
the literature.

As for model evaluation, we saw that in the absence of the true uplift, no loss can easily
be computed to evaluate the performance of a model. One approach consists in sorting
treated and untreated test observations in ascending order of predicted uplift, separately.
Both groups are then binned into deciles and the model performance is evaluated through
the pairwise di↵erence in the uplift average per decile. A variation to the pairwise decile
comparison is to look at the cumulative di↵erence throughout deciles. These two techniques
are useful to gain general sense of how a model is performing, but they remain visual meth-
ods. A more precise evaluation method, which is actually a generalization of the cumulative
decile comparison one, is the uplift curve. Test observations are sorted in ascending order
of predicted uplift. The uplift curve is defined as a parametric function of the number of
observations selected that returns the di↵erence in the average predicted uplift between the
treatment and control groups. The uplift curve typically features a bell shape and the area
under this curve serves as a performance metrics (just like a traditional AUC). Finally, this
paper contributes to the literature by proposing a method that uses a transformed outcome
Y

⇤
i

directly in an MSE equation. We indeed prove that, in the limit, minimizing the MSE
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formula that uses Y ⇤
i

in place of the true treatment e↵ect also minimizes the MSE equation
that uses the true treatment e↵ect.
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Appendix A. Charts

(a) Two-Model approach (b) Class Transformation approach

Figure 1: Uplift decile charts for the Two-Model approach (a) and the Class Transformation
approach (b).

(a) Cumulative uplift (b) Cumulative gain

Figure 2: Cumulative uplift and gain for the Two-Model approach.
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(a) Uplift curves

(b) Qini curves

Figure 3: Uplift curves and Qini curves applied to several uplift approaches.
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