

2 C Fundamentals

One man's constant ls another man's variable.

(

This chapter introduces several basic concepts, including preprocessing directives,

functions, variabJes, and statements, that we'll need in order to write even the sim

plest programs. Later chapters will cover lbese topics in much greater detail.

To start off, Section 2.1 presents a sn1all C program and describes how to com
pile and link it. Section 2.2 then discusses how to generalize lbe program, and Sec

tion 2.3 shows how to add explanatory remarks, kno\.vn as comments. Section 2.4

introduces variables, which store data that may change during the execution of a

program, and Section 2.5 shows how to use the scanf function to read data into

variables. Constanli;-data thal won't change during program execution-can be

given names, as Section 2.6 shows. FinalJy. Section 2. 7 explains C's rules for cre

ating names (identifiers) and Section 2.8 gives the rules for laying out a program.

2.1 Writing a Simple Program

In contrast to programs written in some languages, C programs require little "boil

erplate '"-a complete program can be as short as a few lines.

PROGRAM Printing a Pun

The fi1·st program in Kernighan and Ritchie's classic The C Progra,n,ning lAn

guage is extremely short: it does nothing but write the message hello, world.

Unlike other C authors, I won'L use this program as my frrst example. I will, how

ever, uphold another C tradition: lbe bad pun. 1-:lere 's the pun:

To C, or not to C: that is the question.

9

3 Formatted Input/Output

In seeking the unattainable, simplicity only gets in the way.

scanf and printf, wbjcb support formatted reading and writing, are two of the
most frequently used functions in C. As this chapter shows, both are powerfuJ but
tricky to use properly. Section 3.1 describes printf, and Section 3.2 covers
scanf. Neither section gives complete details, which will have lo wait until Chap

ter 22.

3.1 The printf Function

The printf function is designed to display I.he contents of a string. known as the

format string, with values possibly inserted at specified points in the string. When

it's called, printf must be supplied witb tbe foro1at string. followed by any val

ues that are to be inserted into tbe string during printing:

printf (string, expr1, expr2, ...) ;

The values clisplayed can be constants, variables, or more complicated expressions.

There's no limit on the number of values that can be printed by a single call of

printf.

The format string may contain both ordinary characters and co11versio11 speci

fications, which begin with the % character. A conversion specification is a place
holder representing a value to be filled in during printing. The information that
follows the % character specifies bow the value is converted fi-on1 its internal form
(binary) to printed form (characters)-Lhal's where the term •'conversion specifica

tion" comes fron1. For example, the conversion specification %d specifies that

print£ is Lo convert an int value Crom binary to a string of decimal digils, while

% f does the same for a f 1 oat value.

37

38 Chapter 3 Formatted Input/Output

Ordinary characters in a format string are printed exaclly as Lhey appear in the

string; conversion specifications are replaced by the values lo be printed. Consider

the fol1owing example:

inti, j;
float x, y;

.

10; l. -
.

20; J -

X - 43.2892f;

y - 5527.0f;

printf(''i "' %d, j = %d, x = %f, y = %f\n", i, J, x, y);

This call of printf produces the following oulput:

i = 10, j = 20, X = 43.289200, y = 5527.000000

The ordinary characters in the format string are sin1ply copied to the output line.

The four conversion specifications are repJaced by tbe values of Lhe variables i. j.

x. and y, i11 that order.

C compilers area 't required to check that Lhe number of conversion specifications
i11 -a format string matches the number of output items. The following call of
printf has more conversion specifications than values lo be printed:

printf{ 11%d %d\n 11 , i); /*** WRONG ***/

printf will print the value of i correctly, then print a second (meaningless) inte
ger value. A caU with too few conversion specifications has sio1ilar problerns:

printf { 11 %d\n 11 , i, j); /*** WRONG ***/

In this case. printf prints the value of i buc doesn't show Lhe value of j.
Furthermore, compilers aren't required to check that a conversion specifica

tion is appropriate for the type of ite1n being printed. If the programn1er uses an
incorrect specification, Lhe program wiU simply produce meaningless output. Con
sider Lhe following call of printf, in which the int variable i and the float
variable x are in the wrong order:

printf("%f %d\n", i, x); /***WRONG ***/

Since printf must obey the formal string, it will dutifully display a float
value, followed by an int value. Uofortunately, both will be meaningless.

Conversion Specifications

Conversion specifications give lhe programmer a great deal of control over the

appearance of output. On the other l1and, they can be complicated and hard to read.

In fact, describing conversion speciJications in complete detail is too arduous a

5 Selection Statements

Programmers are not to be measured by their ingenuity and
their logic but by the completeness of their case analysis.

Although C has many operators, it has relatively few statements. We've encoun
returns1e1emen1 ►2.2 tered just LWO so far: the return statement and the expression staten1enL Most of

expression sr.itemen1 ►4.5 c· s remaining statements f al I i 11to three categories, depending on how they affect
the order in which state1nents are executed:

■ Selectio11 state11ze11ts. The if and switch statements allow a program to
select a particular execution path from a set of alternatives.

■ Jteratwn stale111.ents. The while. do, and for staLen,ents support iteration
(looping).

■ Jump state11ie11ts. The break. continue, and goto statements cause an

unconditional jun1p to some other place in the program. (The return state
ment belongs in this category, as well.)

The only other statements in C are the compound statement. which groups several
statements into a single statement. and the null statement, which performs no
action.

This chapter discusses the selection statements and the compound staten1enl.
(Chapter 6 covers the iteration staten1encs. the jump statements, and lhe null state-
1nent.) Before we can write if staten1ents, we'll need logical expressions: condi

tions that if statements can test. Section 5. I explains how logical expressions are
built from the relational operators(<. <=, >, and >=), the equality operaLor.s (==

and ! =), and the logical operators(&&, 11, and !). Section 5.2 covers the if state

ment and compound statement, us well as introducing the conditional operator
(?:). which can test a condilioa within an expression. Section 5.3 describes the
switch statement.

73

6 Loops

A program without a loop and a structured
variable isn't worth writing.

Chapter 5 covered C's selection statements, if and switch. This chapter intro

duces C's iteration statements, which allow us to set up loops.

A loop is a statement whose job is to repeatedly execute some other statement

(the loop body). fn C. every loop has a co11trolli1ig expression. Each time the loop
body is executed (an iteration of the loop), the controlling expression is evaluated;

if the expression is true-bas a vaJue that's not zero-the loop continues to exe

cute.

C provides three iteration statements: while, do, and for, \Vhich are cov

ered in Sections 6. J, 6.2, and 6.3, respectively. The while state1ne11t is used for

loops whose controlling expression is tested before the loop body is executed. The

do statement is used if the expression is tested after the loop body is executed. The

for statement is convenient for loops that incren1ent or decrement a counting vari

able. Section 6.3 aJso introduces lhe comma operator, which is used primarily in

for statements.

The Last two sections of this chapter are devoted to C features that are used in
conjunction with loops. Section 6.4 describes the break, continue, and goto

statements. break jumps out of a loop and rransfers control to the next tatement

after the loop
1

continue skips the rest of a loop iteration, and goto jumps lo

any statement within a function. Section 6.5 covers the nulJ statement, which can

be used to create loops with en1pty bodies.

6.1 The while Statement

Of all the ways to set up loops in C. the while state1nent is the simplest and most

fundamental. The while statement has the form

99

7 Basic Types

Make no mistake about It: Computers process numbers
not symbols. We measure our understanding (and control)

by the extent to which we can arithmetize an activity.

So far, we've use<l only two of C's basic (bu.ill-in) types: int and float. (We've
also seen _Bool. which is a basic type in C99.) This chapter describes the rest of
Lhe ba.c;ic types and discu ses impo1tant issues about types in general. Section 7.1

reveals the full range of integer types, which include long integers, short in1e12:ers.
and unsigned integers. Section 7.? inu·oduces the double and long double

types, which provide a larger range of values and greater precision than float.

Section 7. 3 covers the char type, which we' LI need in order to work with charac
ter data. Section 7.4 tackles the thorny topic of converting a value of one type to an
equivalent value of another. Section 7.5 shows how lo use typedef ro define new
type names. Finally, Section 7.6 describes the sizeof operator, which 1neasures

Lhe an1ount of storage required for a type.

7.1 Integer Types

C supports two fu□darnenlally differe11t kinds of numeric Lypes: integer types and
floating types. Values of an i11teger type are whole nun1bers. wl1ile values of a

floating type cau have a fTac1ional part as well. The i_nteger types. in turn. are

divided into two categories: signed and unsigned.

Signed and Unsig,zed Integers

The leftmost bit of a signed integer (known as the sign bit) is O if the number is
positive or zero, 1 if it's negative. Thus, the largest 16-bit integer has the binary rep
resentation

125

	Cover
	Preface
	Brief Contents
	Contents
	1 Introducing C
	ch2-C Fundamentals
	ch3- Formatted Input/Output
	ch4-More on Expressions
	ch5- Selection Statements
	ch6-Loops
	ch7-Primitives | Sizes | More applications to ch6
	ch8-Arrays
	ch9-Functions
	ch10-Program Organizations
	C Operators
	Standard Library Functions
	ASCII Character Set

