
The Ten Coolest Numbers
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This is an attempt to give a count-down of the top ten coolest numbers. Let’s first concede that this is a
highly subjective ordering — one person’s

√
14.38 is another’s π2

6 . The astute (or probably simply “awake”)
reader will notice, for example, a definite bias toward numbers interesting to a number theorist in the below
list. (On the other hand, who better to gauge the coolness of numbers...) Let’s begin by setting down some
ground rules.

What’s in the list?

What makes a number cool? I think a word that sums up the key characteristic of cool numbers is “canon-
icality.” Numbers that appear in this list should be somehow fundamental to the nature of mathematics.
They could represent a fundamental fact or theorem of mathematics, be the first instance of an amazing
class of numbers, be omnipresent in modern mathematics, or simply have an eerily long list of interesting
properties. Perhaps a more appropriate question to ask is the following:

What’s not in the list?

There are some really awesome numbers that I didn’t include in the list. I’ll go through several examples to
get a feel for what sorts of numbers don’t fit the characteristics mentioned above. Shocking as it may seem,
I first disqualify the constants appearing in Euler’s formula eiπ + 1 = 0. This was a tough, and perhaps
absurd, decision. Maybe these five (e, i, π, 1, and 0) belong at the top of the list, or perhaps they’re just too
fundamentally important to be considered exceptionally cool. Or perhaps it’s just they’re just so cliché’d that
we’ll get a significantly more interesting list by excluding them. Or maybe, just maybe, they’re genuinely
less cool than the numbers currently on the list.

Also disqualified are numbers whose primary significance is cultural, rather than mathematical: Despite
being the answer to life, the universe, and everything, 42 is (comparatively) mathematically uninteresting.
Similarly not included in the list were 867-5309, 666, 1337, Colbert numbers, and the first illegal prime
number. Also disqualified were constants of nature like Newton’s g and G, the fine structure constant,
Avogadro’s number, etc. Though these are undeniably numbers of great significance, their values are a) not
precisely known, and b) frequently depend on a (somewhat) arbitrary choice of unit.

Finally, I disqualified numbers that were highly non-canonical in construction. For example, the prime
constant and Champernowne’s constant are both mathematically interesting, but only because they were, at
least in an admittedly vague sense, constructed to be as such. Also along these lines are numbers like G63
and Skewe’s constant, which while mathematically interesting because of roles they’ve played in proofs, are
not inherently interesting in and of themselves.

That said, I felt free to ignore any of these disqualifications when I felt like it. I hope you enjoy the
following list, and I welcome feedback.
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Honorable Mentions

• 65,537 – This number is arguably the number with the most potential. It’s currently the largest Fermat
prime known. If it turns out to be the largest Fermat prime, it might earn itself a place on the list, by
virtue of thus also being the largest prime value of n for which an n-gon is constructible using only a
rule and compass.

• Conway’s constant – The construction of the number can be found here. Though this number has
some remarkable properties (not the least of which is being unexpectedly algebraic), it’s completely
non-canonical construction kept it from overtaking any of our list’s current members.

• 1728 and 1729 – This pair just didn’t have quite enough going for them to make it. 1728 is an important
j-invariant of elliptic curves and a coefficient of the corresponding modular form, and is a perfect cube.
1729 happens to be the third Carmichael number, but the primary motivation for including 1729 is
because of the mathematical folklore associated it to being the first taxicab number, making it more
interesting (math-)historically than mathematically.

• 28 – Aside from being a perfect number, a fairly interesting fact in and of itself, the number 28 has
some extra interesting “aliquot” properties that propel it beyond other perfect numbers. Specifically,
the largest known collection of sociable numbers has cardinality 28, and though this might seem a silly
feat in and of itself, the fact that sociable numbers and perfect numbers are so closely related may
reveal something slightly more profound about 28 than it just being perfect.

• 4 – The problem with 4 is the difficulty in distinguishing between cool properties of 2 and cool properties
of 4. It is unclear, for example, to which of them we attribute the trivial but not uninteresting relations

4 = 22 = 2 · 2 = 2 + 2 = 2 ↑ 2 = 2 ↑↑ 2 = 2 ↑↑↑ 2 = · · · ,

the last few entries using Knuth’s up-arrow notation. More significantly, 4 is of obvious prominence in
the “4-squares theorem” and “4-color theorem.” These are both remarkable results, but of debatable
canonicality (see Waring numbers and chromatic numbers respectively for natural generalizations).
These facts along would probably not merit inclusion even in the honorable mentions section, but 4
does have at least one particularly poignant claim to fame: It is the unique n such that Rn admits more
than one differential structure, and indeed admits uncountably many so. That R4 (and 4-dimensional
geometry in general) seems to persistently crop up as a pathology in differential geometry is certainly
cause for intrigue.

• Chaitin’s Constant Ω ≈ ??? - The question marks themselves form part of the reason this constant
could be included, Ω being an example of a number which is definable but not computable. Chaitin’s
constant can loosely be described as the probability that a Turing machine will halt on a randomly-
provided string. There is no doubt that such a constant would represent something fundamental,
but there are some unfortunate ambiguities in the definition, largely stemming from the ambiguity in
ordering/encoding the set of all Turing machines. Alternate encodings define different constants, and
it’s difficult to say that any particular encoding is more canonical than any other.
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#10) The Golden Ratio, φ

This was a tough one. Yes, it’s cool that it satisfies the property that its reciprocal is one less than it,
but this merely reflects that it’s a root of the wholly generic polynomial x2 − x − 1 = 0. Yes, it’s cool
that it may have an aesthetic quality revered by the Greeks, but this is void from consideration for being
non-mathematical (and quite possibly bogus). Only slightly less canonical is that it gives the limiting ratio of
subsequent Fibonacci numbers. Redeeming it, however, is its appearance in describing all “Fibonacci-like”
sequences, and its being the solution to two sort mildly canonical operations:

φ =

√
1 +

√
1 +
√

1 + · · · and φ =
1

1 + 1
1+ 1

1+ 1

...

.

The latter of these is particularly interesting since the approximability of an irrational number by rationals
is closely tied to the largeness of the coefficients in its continued fractions, earning the golden ratio the
superlative of being the most irrational (in the sense of being least approximable) real number.

#9) 691

The prime number 691 made it on here for a couple of reasons: First, it’s prime, but more importantly, it’s
the first example of an irregular prime, a class of primes of immense importance in algebraic number theory.
(A word of caution: it’s not the smallest irregular prime, but it’s the one that corresponds to the earliest
Bernoulli number, B12, so 691 is only “first” in that sense). It also shows up in the coefficients of every non-
constant Fourier coefficient in the q-expansion of the Eisenstein modular form E12(z), a fact closely related
to Ramanujan’s congruence relations (modulo 691) for the arithmetic function σ11(n) :=

∑
d|n d

11. Further
testimony to its arithmetic significance is its seemingly magical appearance in the algebraic K-theory of the
integers: Soulé has discovered an element of order 691 in the K-group K22(Z), a group whose torsion is
otherwise very mysterious.

#8) 78,557

The number 78,557 is here to represent an amazing class of numbers called Sierpinski numbers, defined to
be numbers k such that 2nk+ 1 is composite for every n ≥ 1. That such numbers exist is flabbergasting...we
know from Dirichlet’s theorem that primes occur infinitely often in non-trivial arithmetic sequences. Though
the sequence formed by 78557 · 2n + 1 isn’t arithmetic, it certainly doesn’t behave multiplicatively either,
and there’s no apparent reason why there shouldn’t be a large (or infinite) number of primes in every such
sequence. This notwithstanding, Sierpinski’s composite number theorem proves there are in fact infinitely
many odd such numbers k. As a small disclaimer, though it’s proven that 78,557 is indeed a Sierpinski
number, it is not quite yet known that it is the smallest. There are exactly 6 numbers smaller than 78,557
not yet known to be non-Sierpinski (for the curious, they are 10223, 21181, 22699, 24737, 55459 and 67607).

#7) π2

6

Perhaps the first striking thing about this number is that it is the sum of the reciprocals of the positive
integer squares:

1 +
1
4

+
1
9

+ · · ·+ 1
n2

+ · · · = π2

6
.

Though the choice of 2 here for the exponent is somewhat non-canonical (i.e. we’ve just noted that
ζ(2) = π2

6 , where ζ stands for the Riemann zeta function), and that this is largely interesting for math-
historical reasons (it was the first sum of this type that Euler computed), we can at least include it here to
represent the amazing array of numbers of the form ζ(n) for n a positive integer at least 2. This class of
numbers incorporates two amazing and seemingly disparate collections, depending on whether n is even (in
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which case ζ(n) is known to be an explicit rational multiple of πn) or odd (in which case extremely little is
known, even for ζ(3)). Finally, there’s something slightly canonical about the fact that its reciprocal, 6

π2 ,
gives the “probability” (in a suitably-defined sense) that two randomly chosen positive integers are relatively
prime.

#6) Feigenbaum’s constant, δ ≈ 4.669201...

This one’s a little technical, but there’s nothing fancy going on. Consider an iterative procedure where you
begin with some real value of x, say between 0 and 1, and you plug it into a logicstic equation f(x) = 2x(1−x).
Then you take the result of that calculation, and plug that back into f(x), to obtain f(f(x)). Now repeat,
computing f(f(f(x))), and f(f(f(f(x)))), etc. Go ahead, pick an x and do it. It may be pleasing, if not
mind-boggling, that your sequence of outputs steadily approached 1

2 , and perhaps only a mild shock (it is
not a hard exercise) that this happens whichever x ∈ (0, 1) you had picked to start with. Now we change the
game a little – by replacing the value “2” in the definition of f(x) and replace it with a parameter ρ which we
will begin to modify. If we increase ρ to anything less than 3, we see roughly the same phenomena – all values
tend, under this iteration, to a common value. When ρ increases past 3, however, so we consider iterating
the function f(x) = 3.2x(1− x), we see something strange and new appear: We find f(0.5130) = .7995 and
f(.7995) = .5130, and that plugging an arbitrary starting value of x eventually leads the sequence of outputs
to bouncing between these two values. Increase ρ by another to .449, we find that all of a sudden orbits can
now oscillate between four distinct values instead of just 2. When we increase ρ by another .095, we begin
to see orbits of 8 values, instead of 4. And this continues, soon hereafter seeing orbits of size 16, 32, etc.

But these critical values of ρ seem pretty random – can we predict when we expect to see the number of
orbits double? Remarkably, yes, at least in the long run – the ratio of increases in ρ needed to double the
number of orbits (e.g., .449

.095 = 4.726) approaches a limit, dubbed Feigenbaum’s constant δ ≈ 4.669.... That
changes in orbit behavior are forseeable is a remarkable fact, and is a crucial step towards being able to
predict the onset of impredictability in dynamical systems. You mild shock from above should be upgraded
to moderate shock at this point.

But wait, there’s more! The real selling point of this number is that this phenomena has almost nothing to do
with our starting function f(x), other than it being quadratic in nature (formally, having a single quadratic
maximum). That all such dynamical systems bifurcate towards chaos at exactly the same is astounding,
making moderate shock rather insufficient. Finally, we mention that though the quadratic assumption on
f(x) seem rather strong, there are different Feigenbaum-type constants for cubics, quadrics, etc. (all equally
remarkable), and so Feigenbaum’s δ constant above is the first in this beautiful class of chaotic numbers.

#5) The Monster, |M | = 808017424794512875886459904961710757005754368000000000

The above integer is the size of the monster group M , the largest of the sporadic groups. This gives it a
relatively high degree of canonicality. It’s unclear (at least to me) why there should be any sporadic groups,
or why, given that they exist, there should only be finitely many. Since there is, however, there must be
something fairly special about the largest possible one.

Also contributing to this number’s rank on this list is the remarkable properties of the monster group
itself, which has been realized (or rather, was constructed as) a group of rotations in 196,883-dimensional
space, representing in some sense a limit to the amount of symmetry such a space can possess.

#4) The Euler-Mascheroni Constant, γ ≈ 0.577215 . . .

One of the most amazing facts from elementary calculus is that the harmonic series diverges, but that if
you put an exponent on the denominators even just a hair above 1, the result is a convergent sequence. A
refined statement says that the partial sums of the harmonic series grow like ln(n), and a further refinement
says that the error of this approximation approaches our constant:

lim
n→∞

1 +
1
2

+
1
3

+ · · ·+ 1
n
− ln(n) = γ.
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This seems to represent something fundamental about the harmonic series, and thus of integers them-
selves. Finally, perhaps due to importance inherited from the crucially important harmonic series, the
Euler-Mascheroni constant appears magically in wondrous formulas spread all throughout modern analysis.
For some idea of γ’s ability to pop up in unforeseen places, see the MathWorld entry on the Euler-Mascheroni
constant.

#3) Khinchin’s constant, K ≈ 2.685252 . . .

For a real number x, we define a “geometric mean function” f(x) by

f(x) = lim
n→∞

(a1 · · · an)1/n,

where the ai are the terms of the simple continued fraction expansion of x. By nothing short of a miracle
of mathematics, this function of x is almost everywhere (i.e. everywhere except for a set of measure 0)
independent of x!!! In other words, except for a “small” number of exceptions, this function f(x) always
outputs the same value, dubbed Khinchin’s constant and denoted by K. It’s hard to impress upon a casual
reader just how astounding this is, but consider the following: Any infinite collection of non-negative integers
a0, a1, . . . forms a continued fraction, and indeed each continued fraction gives an infinite collection of that
form. That the partial geometric means of these sequences is almost everywhere constant tells us a great deal
about the distribution of sequences showing up as continued fraction sequences, in turn revealing something
very fundamental about the structure of real numbers.

#2) The Oddest Prime: 2

This number caused quite a bit of controversy in discussions leading up to the construction of this list. The
question here is canonicality. The first argument of “It’s the only even prime” is merely a re-wording of
“It’s the only prime divisible by 2,” which could uniquely characterizes any prime (e.g. 5 is the only prime
divisible by 5, etc.). Of debatable canonicality is the immensely prevalent notion of “working in binary.”
To a computer scientist, this may seem extremely canonical, but to a mathematician, it may simply be an
(not quite) arbitrary choice of a finite field over which to work. There may even be some merit to a more
philosophical argument based on the (somewhat inane, but also somehow deep) argument that it is the
smallest integer bigger than 1, and thus represents plurality, dichotomy, choice, etc. Leaving these aside, 2
does have some genuinely interesting mathematical features. For instance:

• The (somewhat canonical) field of real numbers R has index 2 in its algebraic closure C. This gives
that the Galois group Gal(C/R) is finite or order 2 – particularly amazing since this is the only possible
order of a finite non-trivial absolute Galois group (by the Artin-Schreier theorem).

• The factor 2π (or more frequently, its inverse 1
2π ) is prevalent enough in complex analysis, plane

geometry, Fourier analysis, and even quantum mechanics (considering the simplicity of formulas using
the reduced Planck’s constant ~ := h/2π) that I’ve heard people lament that π should have been
defined to be twice its current value.

• By Fermat’s Last Theorem, it’s the only prime number p for which xp + yp = zp has any rational
solutions. While this particular Diophantine equation might not be particularly canonical, the extreme
significance of the mathematics behind its proof merited its inclusion in this sub-list.

• Fields of characteristic 2 have the property that all of their elements are their own negatives, a fact
which is simultaneously useful (frequently simplifying calculations) and annoying (frequently messing
up the cleanest statements of a particular theorem). This is part of a general meta-mathematical
observation that the case p = 2 very frequently must be dealt with separately than all other primes. It
is not uncommon to see papers reproving a result for p = 2 that was previously known for all other p.

• It’s the size of the group of units {±1} in the integers Z, and the group of roots of unity in Q, meaning
that (among many other things) the Kummer extensions of Q are exactly the quadratic extensions.

5



• If nothing else, it is certainly the first prime, and should at least be included for being the first
representative of such an amazing class of numbers.

Finally, it is the only number on this list which occupies its own ranking.

#1) 163

Well, we’ve come down to it, this author’s (perhaps not-so-) humble opinion of the coolest number in
existence. Though a seemingly unlikely candidate, I hope to argue that 163 satisfies so many eerily related
properties as to earn this title. I’ll begin with something that most number theorists already know about
this number – it is the largest value of d such that the number field Q(

√
−d) has class number 1, meaning

that its ring of integers is a unique factorization domain. The issue of factorization in quadratic fields, and of
number fields in general, is (or, at least, has historically been) one of the principal driving forces of algebraic
number theory, and to be able to pinpoint the end of perfect factorization in the quadratic imaginary case
like this seems at least arguably fundamental. But even if you don’t care about factorization in number
fields, the above fact has some amazing repercussions to more basic number theory. The two following facts
in particular jump out:

• eπ
√

163 is within 10−13 of an integer.

• The polynomial f(x) = x2 − x + 41, which has discriminant −163, has the property that for integers
0 ≤ x ≤ 40, f(x) is prime.

Both of these are tied intimately (the former using deep properties of the j-function, the latter using
relatively simple arguments concerning the splitting of primes in number fields) to the above quadratic
imaginary number field having class number 1. Further, since Q(

√
−163) is the last such field, the two listed

properties are in some sense the best possible. Along a similar vein, p = 163 is the largest prime such that
there exists an elliptic curve E over Q with an isogeny of degree p, which in turn makes N = 163 the last N
such that the modular curve Y0(N) has Y0(N)(Q) 6= ∅.

Most striking to me, however, is the amazing frequency with which 163 shows up in a wide variety of
class number problems. In addition to being the last value of d such that Q(

√
−d) has class number 1

(the Heegner-Stark theorem, tremendously significant in it own right), it is the first value of p such that
Q(ζp + ζ−1

p ) (the maximal real subfield of the p-th cyclotomic field) has class number greater than 1. That
163 appears as the last instance of a quadratic field having unique factorization, and the first instance of
a real cyclotomic field not having unique factorization, seems too remarkable to be coincidental. This is
(maybe) further substantiated by a couple of other factoids:

• Hasse asked for an example of a prime and an extension such that the prime splits completely into
divisors which do not lie in a cyclic subgroup of the class group. The first such example is any prime
less than 163 which splits completely in the cubic field generated by the polynomial x3 = 11x2+14x+1.
This field has discriminant 1632. (See Shanks’ The Simplest Cubic Fields).

• The maximal conductor of an imaginary abelian number field of class number 1 corresponds to the
field Q(

√
−67,

√
−163), which has conductor 10921 = 67 · 163.

It is unclear the extent to which these additional arithmetical properties reflect deeper properties of the
j-function or other modular forms, and remains a wide open field of study.

Acknowledgments

Many people contributed ideas to the list – I was merely an aggregator. I specifically mention Chris Ras-
mussen, whose idea this list was, and Lisa Berger, Sheldon Joyner, Frederic Leitner, Ben Levitt, Chris
Rasmussen, Nick Rogers, Tommy Occhipinti, and Jordan Ellenberg for inclusions, suggestions, and discus-
sions.

6


