
www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing May/June 1999
80

regression testing (reuse of test cases that the program has
previously passed) of the same area of the program. We
might discover that exploratory testing yielded a much
higher bug-finding rate, and this might affect our choice of
testing strategies.

Leading books on software measurement suggest that we
compute “average reported defects per working day” (Grady
& Caswell, Software Metrics: Establishing a Company-
Wide Program, p. 227) and “tester efficiency” as “number of
faults found per KLOC” (Fenton and Pfleeger, Software Met-
rics: A Rigorous & Practical Approach, p. 36). Should we
apply these measures to individuals?

If (as I believe) the primary function of the test group
is to find bugs, and the primary work product of the indi-
vidual tester is the bug report, then isn’t it obvious that we
should compare the quality (efficiency, productivity, skill,
whatever) of testers by counting their bug reports?

Obvious or not, there are two problems:
1. Bug counts are poor measures of individual perfor-

mance.
2. The side effects of using bug counts as a measure

are serious.
Here are two examples of disconnection between bug

counts and value obtained from a tester.
In the first case, management was overeager to ship an

unreliable product. I assigned one particularly talented
tester to hunt for showstoppers—defects that would block
shipment. He reported as few as four bugs per month, com-
pared to rates of perhaps 25–150 from the other eleven
testers. We held this product for six months past its sched-
uled ship date by finding at least one showstopper per
week. Most weeks, one of those showstoppers (often the
only one) came from our hunter. Was he the most produc-

tive member of our group or the least productive?
In the second case, a project team identified one area

(graphic filters) of a new version of a popular product as
high-risk. If the product shipped with the problems that we
feared, we would be drowned in phone calls. The two
testers assigned to this area found surprisingly few bugs.
The project team (including me) worried that they might
not have gotten a complete handle on the risks. I asked a
senior third tester, who knew a lot about graphic filters, to
assess the testing and the area. Over five weeks, he found
about five bugs. He also reported that the first two testers
had done good work. Partially based on this reassurance,
we shipped the product a day ahead of schedule, sold a
huge number of copies, but got few complaints.

In both of these cases, testers with very low bug counts
did fine work and played a more significant role in the pro-
ject than other testers who found many more bugs. Bug
counts would have seriously mismeasured these testers.

What Do Bug Counts Measure?
“Measurement” is most often defined as assigning numbers
to some attribute of something according to a rule. Unfor-
tunately, we may not have a way of measuring an attribute
(such as tester skill) and so we use something easier (like
bug count). This alternate measure is called a surrogate
measure.

The challenge of using a surrogate measure is that you
need a theory of measurement that tells you (among other
things) the relationship between the surrogate and the
underlying attribute, the confounding relationships
between the surrogate and other attributes or factors, and
the predictable side effects of using this measure. Without

The Last WordThe Last Word

Don’t Use Bug Counts
to Measure Testers
by Cem Kaner

Should we measure the quality of testers—their productivity, efficiency and skill—by counting

how many bugs they find?

Suppose that mid-project we compared the bug counts per day from exploratory testing

with those obtained from

that theory, you have no justification for saying that a num-
ber is a measure of tester goodness (or of code complexity,
or of maintainability, or of reliability, etc.).

So what is the relationship between bug count and tester
quality? Surely, it is subtle and influenced by a wide range of
other factors (such as the reliability of the code being tested
and the difficulty of testing this part of the product). Without
understanding that relationship, how can we say we know
anything about the quality of the tester from the size of the
bug count?

And as to side effects, here are just a few of the things
that can and probably will go wrong if we measure individu-
als by counting their bug reports.
■ People are good at tailoring their behavior to things they

are measured against. (Check out Weinberg and Schul-
man’s classic paper, “Goals and Performance in Comput-
er Programming,” Human Factors, 1974, 16(1), 70-77.)
If you ask a tester for more bugs, you’ll probably get
more bugs. The additional bugs might be minor, or simi-
lar to already reported bugs, or design quibbles. But the
bug count will go up.

■ People know that other people tailor their behavior. Put a
tester under incentive to report more bugs, and program-
mers will become more skeptical of the value of the
reports they receive. Does this tester believe in this bug,
they ask, or is she just inflating her bug count? Bug
counting creates political problems (especially if you also
count bugs per programmer).

■ You can make a tester look good or bad just by choosing
what type of testing she should do (regression testing
often yields fewer bugs than exploratory testing) or what
area she should test (fewer bugs to find in less buggy
code). If raises and promotions are influenced by bug
counts, project assignments will often be seen as unfair.

■ Bug counting creates incentives for superficial testing
(test cases that are quick and easy to create). Bug counts
punish testers who take the time to look for harder-to-
find but more important bugs.

■ Such a system also penalizes testers who support other
testers. It takes time to coach another tester or to help
him build a tool that will make him more effective. The
tester who does this has less time to find bugs.

■ Time spent on any process (such as documenting test
cases) that doesn’t lead to more bugs faster is time that
counts against the tester.

Several measurement advocates warn against measure-
ment of attributes of individuals (e.g., Grady and Caswell in
Software Metrics: Establishing a Company-Wide Pro-
gram) unless the measurement is being done for the bene-
fit of the individual (for genuine coaching or for personal
discovery of trends) and is otherwise kept private (e.g.,
DeMarco, 1995, “Mad About Measurement” in Why Does
Software Cost So Much?).

But We Have to Measure Something,
Don’t We?
When I advise clients against measuring testers by counting
bugs, one response is that they need to measure their staff in
some way. If bug count isn’t the right measure, they ask, what
is?

I don’t have a silver bullet for personnel measurement.
When I compare the quality of testers, I spend a lot of time
looking at the quality of their work. I read bug reports. I
talk with them. I talk with people that they work with. I pay
attention to promises they make, and whether they keep
them. These don’t lend themselves to quick and easy num-
ber crunching, although you can (perhaps with difficulty)
do comparative ranking of testers based on this detailed
qualitative look.

If you really need a simple number to use to rank your
testers, use a random number generator. It is fairer than
bug counting, it probably creates less political infighting,
and it might be more accurate. STQE

Cem Kaner, Ph.D., J.D., is the senior author of Testing
Computer Software and of Bad Software: What to Do When
Software Fails. He consults and teaches courses on soft-
ware testing and practices law, focusing on the law of
software quality. Contact him at kaner@kaner.com,
www.kaner.com, or www.badsoftware.com.

The Last WordThe Last Word

(Continued from page 80)

May/June 1999

