
1Software Testing as a Social Science Copyright © 2004, Cem Kaner

Software Testing as a Social Science

Cem Kaner

Florida
Institute of
Technology

IFIP
Working

Group 10.4

Software
Dependability

Siena, Italy July, 2004

CENTER FOR SOFTWARE TESTING
EDUCATION AND RESEARCH

2Software Testing as a Social Science Copyright © 2004, Cem Kaner

About Cem Kaner
My current job titles are Professor of Software Engineering at the Florida Institute of
Technology, and Research Fellow at Satisfice, Inc. I’m also an attorney, whose work focuses on
same theme as the rest of my career: satisfaction and safety of software customers and workers.

I’ve worked as a programmer, tester, writer, teacher, user
interface designer, software salesperson, organization
development consultant, as a manager of user documentation,
software testing, and software development, and as an attorney
focusing on the law of software quality. These have provided
many insights into relationships between computers, software,
developers, and customers.
I’m the senior author of three books:
– Lessons Learned in Software Testing (with James & Bret

Pettichord)
– Bad Software (with David Pels)
– Testing Computer Software (with Jack Falk & Hung Quoc

Nguyen).
I studied Experimental Psychology for my Ph.D., with a
dissertation on Psychophysics (essentially perceptual
measurement). This field nurtured my interest in human factors
(and thus the usability of computer systems) and in measurement
theory (and thus, the development of valid software metrics.)

3Software Testing as a Social Science Copyright © 2004, Cem Kaner

Welcome to Testing

What is Testing?

A technical investigation
done to expose

quality-related information
about the product

under test

4Software Testing as a Social Science Copyright © 2004, Cem Kaner

Defining Testing
• A technical

– We use technical means, including experimentation,
logic, mathematics, models, tools (testing-support
programs), and tools (measuring instruments, event
generators, etc.)

• investigation
– an organized and thorough search for information
– this is an active process of inquiry. We ask hard

questions (aka run hard test cases) and look carefully
at the results

• done to expose quality-related information
– see the next slide

• about the product under test

5Software Testing as a Social Science Copyright © 2004, Cem Kaner

Information Objectives
• Find defects
• Maximize bug count
• Block premature product releases
• Help managers make ship / no-ship decisions
• Minimize technical support costs
• Assess conformance to specification
• Conform to regulations
• Minimize safety-related lawsuit risk
• Find safe scenarios for use of the product
• Assess quality
• Verify correctness of the product

Different
objectives

require
different
testing

strategies and
will yield

different tests,
different test

documentation
and different
test results.

6Software Testing as a Social Science Copyright © 2004, Cem Kaner

Software Testing as a Social Science
• The social sciences study humans in society.
• Software testers operate on technical products (computer

programs--creations dominated by human thought).
• And testers use technical products (measuring instruments,

test tools, etc.) and might even create technical products.
• But their core questions are often more human-focused than

technological. For example
– The tester's most common task is to find other people's

mistakes, simplify the method of discovery, and
persuasively present a report of the discovery to someone
else, who will apply an economic model to determine
whether to fix it.

– The (probably) hardest to learn and hardest to teach testing
skill is stretching your imagination to find new potential
ways a program could fail. This skill is the essence of test
design.

– Measures of test-related variables are often of human
performance variables

7Software Testing as a Social Science Copyright © 2004, Cem Kaner

Software Testing as a Social Science
• The talk today explores two questions:

– What are some of the human issues in the core work of
software testers?

– How does thinking about these issues give us insight into
the possibility of testing for human-error-related
undependability?

8Software Testing as a Social Science Copyright © 2004, Cem Kaner

Let's Start with a Myth
Programmers Can't Find Their Own Bugs (?)

• Independent testing is often "justified" on the basis of an
assertion that testers can't find their own bugs, just like writers
can't (allegedly) find faults in their own writings.

• But competent writers do a lot of editing of their own work,
correcting plenty of bugs.

• So do programmers:
– Boris Beizer estimated that programmers make 150 bugs per

100 lines of code. We deliver about 0.5 to 5 bugs per 100
lines, so we (including our compilers, LINT, and other tools)
apparently find / fix between 96.7% and 99.7% of our bugs.

» Capers Jones provided some compatible data.

» I found confirming results in an informal (unpublished) 2-week self-
study by about 10 programmers at Telenova in 1986.

• So what is it that testers are really looking for?

9Software Testing as a Social Science Copyright © 2004, Cem Kaner

We aren't just
 looking for bugs.

We're looking for
the bugs that hide
in programmers'

blind spots.

How do we find the
bugs that are left?

10Software Testing as a Social Science Copyright © 2004, Cem Kaner

Programmers' Blind Spots?
• Testers work from collections of anecdotes about mistakes

programmers make.
– Some collections are published, like Whittaker's How to

Break Software.
– Some studies of programmers' errors have been done.

• They'd be more useful if subjects were production programmers
rather than undergraduates.

• Even so, the questions of what mistakes do humans make, why do
they make them, and why don't they find and correct them, are
interesting psychological questions--of great benefit to testers.

– Some statistical work on faults in real software has been
done, especially Orthogonal Defect Classification.

• But ODC pushes things into very broad categories. It tells us little
about the mental causes or patterns. As a result, it provides testers
with almost no guidance. (It may provide managerial guidance--but
not what-faults-to-look-for or how-to-test-it guidance.)

11Software Testing as a Social Science Copyright © 2004, Cem Kaner

Let's Consider One Root Cause
• "It's a feature"

– The programmer (include here the designer who wrote
the spec) learned UI design somewhere, somewhen
(maybe from someone who likes UNIX)

– He intentionally wrote code that creates an unintended
inconsistency:

• E.G. the Gutenberg F-L, F-W, F-S; D-L, D-W, D-S.

– Report the problem.
• Response = "Don't do that."

• What's the solution?

12Software Testing as a Social Science Copyright © 2004, Cem Kaner

Scenario testing
• The ideal scenario has several characteristics:

– The test is based on a story about how the program is used,
including information about the motivations of the people
involved.

– The story is motivating. A stakeholder with influence would
push to fix a program that failed this test.

– The story is credible. It not only could happen in the real
world; stakeholders would believe that something like it
probably will happen.

– The story involves a complex use of the program or a
complex environment or a complex set of data.

– The test results are easy to evaluate. This is valuable for all
tests, but is especially important for scenarios because they
are complex.

13Software Testing as a Social Science Copyright © 2004, Cem Kaner

Sixteen ways to create good scenarios
1. Write life histories for objects in the system. How was the object created, what

happens to it, how is it used or modified, what does it interact with, when is it
destroyed or discarded?

2. List possible users, analyze their interests and objectives.
3. Consider disfavored users: how do they want to abuse your system?
4. List system events. How does the system handle them?
5. List special events. What accommodations does the system make for these?
6. List benefits and create end-to-end tasks to check them.
7. Look at specific transactions that people try to complete, such as opening a bank

account or sending a message. List all the steps, data items, outputs, displays, etc.?
8. What forms do the users work with? Work with them (read, write, modify, etc.)
9. Interview users about famous challenges and failures of the old system.
10. Work alongside users to see how they work and what they do.
11. Read about what systems like this are supposed to do. Play with competing systems.
12. Study complaints about the predecessor to this system or its competitors.
13. Create a mock business. Treat it as real and process its data.
14. Try converting real-life data from a competing or predecessor application.
15. Look at the output that competing applications can create. How would you create

these reports / objects / whatever in your application?
16. Look for sequences: People (or the system) typically do task X in an order. What are

the most common orders (sequences) of subtasks in achieving X?

14Software Testing as a Social Science Copyright © 2004, Cem Kaner

Scenarios
• Designing scenario tests is much like doing a requirements

analysis, but is not requirements analysis. They rely on similar
information but use it differently.
– The requirements analyst tries to foster agreement about the

system to be built. The tester exploits disagreements to
predict problems with the system.

– The tester doesn’t have to reach conclusions or make
recommendations about how the product should work. Her
task is to expose credible concerns to the stakeholders.

– The tester doesn’t have to make the product design
tradeoffs. She exposes the consequences of those tradeoffs,
especially unanticipated or more serious consequences than
expected.

– The tester doesn’t have to respect prior agreements.
(Caution: testers who belabor the wrong issues lose
credibility.)

– The scenario tester’s work need not be exhaustive, just
useful.

15Software Testing as a Social Science Copyright © 2004, Cem Kaner

Let's Play with Another Myth:
We Can(?) Measure Project Status Using Bug Counts

What Is This Curve?

Week

B
u

g
s

 P
e

r
W

e
e

k
Time Pattern of Bugs Found Per Week

This curve is used to predict ship dates and to signal when a
milestone has or has not been met. The predictions are based
on fitting bug counts to a Weibull curve. What's the rationale?

16Software Testing as a Social Science Copyright © 2004, Cem Kaner

The Weibull Model--Absurd Assumptions
1 The rate of defect detection is proportional to the current defect content of

the software.

2 The rate of defect detection remains constant over the intervals between
defect arrivals.

3 Defects are corrected instantaneously, without introducing additional
defects.

4 Testing occurs in a way that is similar to the way the software will be
operated.

5 All defects are equally likely to be encountered.

6 All defects are independent.

7 There is a fixed, finite number of defects in the software at the start of
testing.

8 The time to arrival of a defect follows a Weibull distribution.

9 The number of defects detected in a testing interval is independent of the
number detected in other testing intervals for any finite collection of
intervals.

Based on Lyu, 1995; From Simmons, 2000

17Software Testing as a Social Science Copyright © 2004, Cem Kaner

Side effects of bug curves
• The problem with metrics that are only loosely tied to the

attribute that they allegedly measure is that it is too easy to
change the measured number without improving the underlying
attribute.

• As a result, we get measurement distortion or dysfunction.

• Earlier in testing: (Pressure is to increase bug counts)
– Run tests of features known to be broken or incomplete.
– Run multiple related tests to find multiple related bugs.
– Look for easy bugs in high quantities rather than hard bugs.
– Less emphasis on infrastructure, automation architecture,

tools and more emphasis of bug finding. (Short term payoff
but long term inefficiency.)

» For more, see Hoffman's Dark Side of Metrics, and Austin's
Measuring & Managing Performance in Organizations

18Software Testing as a Social Science Copyright © 2004, Cem Kaner

Side effects of bug curves
• Later in testing: Pressure is to decrease new bug rate

– Run lots of already-run regression tests
– Don’t look as hard for new bugs.
– Shift focus to appraisal, status reporting.
– Classify unrelated bugs as duplicates
– Class related bugs as duplicates (and closed), hiding key

data about the symptoms / causes of the problem.
– Postpone bug reporting until after the measurement

checkpoint (milestone). (Some bugs are lost.)
– Report bugs informally, keep them out of the tracking system
– Testers get sent to the movies before measurement

checkpoints.
– Programmers ignore bugs they find until testers report them.
– Bugs are taken personally.
– More bugs are rejected.

19Software Testing as a Social Science Copyright © 2004, Cem Kaner

Rather than accepting the declining find rate, the Generic Test
Strategy (end of the slides) says, when the find rate drops, change
your focus or change your technique. That way, you pull the find
rate back up.
As a measure of progress, quality, or effectiveness, bug counts are
oversimplified, overused, and untrustworthy.

Shouldn't We Strive For

This ?

Week

B
u

g
s
 P

e
r

W
e
e
k

20Software Testing as a Social Science Copyright © 2004, Cem Kaner

A Traditional Vision of Software Testing
• We start with an agreed product definition.

– The "definition" includes the set of requirements,
design, data, interoperability (and maybe some other)
specifications

– We may have helped shape the definition during
reviews of requirements and specifications.

• We will base system testing on this definition. Therefore:
– Analysis of assertions included in the documents is an

important skill, and an interesting area for automation.
– Traceability of tests back to the definition is important.

Tools that support traceability have significant value.
– Authoritative specifications are vital. If they are

unavailable, it is the task of the test group to engage in
"political" activities to motivate creation of suitable
documents.

21Software Testing as a Social Science Copyright © 2004, Cem Kaner

A Traditional Vision of Software Testing
• The goal of system testing is verification of the product against

authoritative specifications.
– Our test population is a portion of the infinite population of

potential tests. We select a minimally sufficient set of tests via
analysis of the specifications.

– Coverage is achieved by having tests for every specification item.
An alternative type of coverage includes all length-N subpaths,
where paths are from operational mode (observable state) to mode.

– Testing progress is measurable in terms of % of planned tests
coded and passed.

– System testing is labor intensive. To the maximum extent possible,
we automate our tests, enabling efficient reuse.

– If test execution is expensive for a given project, we need selection
algorithms (and tools) that help us choose the regression test
subset most relevant for testing the program in the context of the
latest change.

22Software Testing as a Social Science Copyright © 2004, Cem Kaner

• error anticipation and
control (e.g. missing or
wrong boundary value)

• packaging of outgoing
data

• coding of a possibly
complex logical
relationship

• interpretation of
incoming data

• syntax
• branching (to missing

or wrong place)
• interrupt handling

A Traditional Vision of Software Testing
• In addition to system testing, we have programmer testing

(aka "unit testing", though it is not restricted to true units)
• The traditional goal of programmer testing is detection of

misimplementations, such as errors in:

• hand-coded unit testing and more heavily automated
mutation tests and protocol tests typify this work.

• Coverage is achieved structurally (test all lines, branches,
or logical conditions) or by testing all 1st through Nth
order data flows.

23Software Testing as a Social Science Copyright © 2004, Cem Kaner

I Live in a Slightly Different World From This
• The reference definition is:

• The reference has to please multiple stakeholders
– collectively they want more than time/budget possible
– they have conflicting interests and needs
– they turn over and are replaced by new people with different

agendas, interests, and needs, and who don't consider
themselves as parties to earlier compromises

• The reference assumptions and decisions are challenged by
– implementation difficulties
– usability problems ("it seemed to make sense on paper")
– emergent properties that create unexpected almost-

consistencies and other confusions, user frustration, or new
almost-there usage opportunities

•not correct
•not frozen

•not complete
•not authoritative

24Software Testing as a Social Science Copyright © 2004, Cem Kaner

I Live in a Slightly Different World From This
• Because the reference definition (if it exists) is non-

authoritative, testing is not fully derived from the
reference definition and test design might not rely on it at
all.

• In addition, the same specified-item can be tested in many
ways
– with different data (data variation we intend)
– in context of different paths (prior tasks may have

changed data, resource availability, timing or other
things we had not intended to change)

• The program can fail in many different ways, and our tests
cannot practically address all possibilities

25Software Testing as a Social Science Copyright © 2004, Cem Kaner

The Program Can Fail in Many Ways

System
under

test

Program state

Intended inputs

System state

Configuration and
system resources

From other cooperating
processes, clients or servers

Monitored outputs

Program state

System state

Impacts on connected
devices / system resources

To other cooperating
processes, clients or servers

Based on notes from Doug Hoffman

26Software Testing as a Social Science Copyright © 2004, Cem Kaner

The Program Can Fail in Many Ways
• The phenomenon of inattentional blindness

– humans (often) don't see what they don't pay attention to
– programs (always) don't see what they haven't been told to

pay attention to
• This is often the cause of irreproducible failures. We paid

attention to the wrong conditions.
– But we can't pay attention to all the conditions

• The 1100 embedded diagnostics
– Even if we coded checks for each of these, the side effects

(data, resources, and timing) would provide us a new context
for the Heisenberg principle

Our Tests Cannot Practically Address
All of the Possibilities

27Software Testing as a Social Science Copyright © 2004, Cem Kaner

And Even If We Demonstrate a Failure
That Doesn't Mean Anyone Will Fix It

• The comments on Sunday,
• "Why didn't they find that?"

were amusing because
• "They" probably did find it!

• What distinguishes better and worse software publishers
is not whether they try to fix all their bugs but rather:
– the quality of the cost / benefit analysis they use to

decide what to (not) fix, and
– the extent to which they accept responsibility for their

failures, rather than externalizing their failure costs
• Of course, the quality of the bug description will influence

the should-we-fix-it analysis

28Software Testing as a Social Science Copyright © 2004, Cem Kaner

Testers Operate Under Uncertainty
• Testers have to learn, for each new product:

– What are the goals and quality criteria for the project
– What is in the product
– How it could fail
– What the consequences of potential failures could be
– Who might care about which consequence of what failure
– How to trigger a fault that generates the failure we're seeking
– How to recognize failure
– How to decide what result variables to pay attention to
– How to decide what other result variables to pay attention to in the

event of intermittent failure
– How to troubleshoot and simplify a failure, so as to better

• (a) motivate a stakeholder who might advocate for a fix
• (b) enable a fixer to identify and stomp the bug more quickly

– How to expose, and who to expose to, undelivered benefits,
unsatisfied implications, traps, and missed opportunities.

29Software Testing as a Social Science Copyright © 2004, Cem Kaner

Bach's Test Strategy Model

• Failure modes.
Example--time-out in
transferring data to a
server causes failed
transaction.

• Common faults:
Example--boundary
miscoded (see
Whittaker's attacks in
How to Break
Software)

• Project risks:
Example:
Programmer of a
given component has
a substance abuse
problem at work

• Customers of the
product

• Customers of the
testing effort

• Project
stakeholders

• Test-useful
information

• Equipment & tools

• Test artifacts from
prior projects

• Required
deliverables

• Logistics

• Budget

• etc

• The physical
product (code,
interfaces, other
files, etc.)

• Functions

• Data (input,
output, preset,
persistent)

• Platform (external
hardware and
software_

• Temporal
relationships

• Operations: how
it is used, who
uses it, usage
profiles

• etc

• Capability

• Reliability

• Security

• Safety

• Usability

– Error induction

– Error recovery

• Performance

• Concurrency

• Scalability

• Maintainability

• Installability

• Compatibility

• etc

Potential
vulnerabilities

Project
Environment

Product
Elements

Quality Factors

30Software Testing as a Social Science Copyright © 2004, Cem Kaner

Making Time for Usability Testing / Fixing
• Complete testing requires infinite time, so we prioritize.
• We prioritize according to the interest levels we expect from our

stakeholders.
– We don't want to spend much time looking for bugs that none of

them care about, and none of them will fix.
• One reason stakeholders are resistant to usability testing--

especially user error reduction--is these issues can be externalized.
– It's YOUR fault. YOU made the mistake. YOU pay for the

consequences.
• In addition, new users are gradually trained into learned

helplessness, by the press and by appalling technical support.
• To advocate for change, at the tester level, is to find compelling

examples of failures caused by the class of problem. Normally, we
cast these as scenarios. Compelling scenarios get stuff fixed, and
justify time spent looking for more.

• From a systems-level point of view, I think that if you want these
problems addressed systematically, you have to create
accountability. That's a legal issue, though, not a testing issue, so
it's out of scope for today's talk.

31Software Testing as a Social Science Copyright © 2004, Cem Kaner

Software Testing as a Social Science

Cem Kaner

Florida
Institute of
Technology

IFIP
Working

Group 10.4

Software
Dependability

Siena, Italy July, 2004

CENTER FOR SOFTWARE TESTING
EDUCATION AND RESEARCH

32Software Testing as a Social Science Copyright © 2004, Cem Kaner

What’s a test case?
• Focus on procedure?

– “A set of test inputs, execution conditions, and
expected results developed for a particular objective,
such as to exercise a particular program path or to
verify compliance with a specific requirement.” (IEEE)

• Focus on the test idea?
– “A test idea is a brief statement of something that

should be tested. For example, if you're testing a
square root function, one idea for a test would be ‘test
a number less than zero’. The idea is to check if the
code handles an error case.” (Marick)

These are NOT part of the main talk, but they tie
into it and some readers might find them useful.

33Software Testing as a Social Science Copyright © 2004, Cem Kaner

Test cases
• In my view,

• The point of running the test is to gain information, for example
whether the program will pass or fail the test.

• Implications of this approach:
– The test must be CAPABLE of revealing valuable information
– The SCOPE of a test changes over time, because the

information value of tests changes as the program matures
– The METRICS that count test cases are essentially

meaningless because test cases merge or are abandoned as
their information value diminishes.

 A test case is a question
 you ask of the program.

34Software Testing as a Social Science Copyright © 2004, Cem Kaner

A Generic Strategy for Testing
Fallible Advice for Newcomers

• When you start testing a new program, start with sympathetic
tests (tests intended to help you understand what the program
is designed to do.) Test every function, using mainstream
values rather than boundaries. Keep it simple and broad.

• When the program can pass the elementary tests, use boundary
tests on every input / output / intermediate calculation variable
you can find. Then test 2-variable or 3-variable combinations of
boundaries of related and allegedly unrelated variables.

Books on testing often present this as the only test design
technique, or the only design technique they spell out. But look
at how narrow its scope is--one variable, or a few (2, 3 or 4).
Contrast this with what we know about the multidimensionality

of the failures we reviewed on Sunday.

This technique marks a start, not an end.

35Software Testing as a Social Science Copyright © 2004, Cem Kaner

A Generic Strategy for Testing
Fallible Advice for Newcomers

• When the program can pass boundary tests, start serious
testing. Your next steps depend on your context:
– If you have an influential specification, start with

specification testing.
– If you have good lists of failure modes (from customer

complaint records, other products, or a failure mode
analysis), start with risk-based testing, designing tests to
check the failure modes.

– If you have an expert user at hand, good descriptions of the
ways people use the product, or UML specifications, start
with scenario testing.

– If you want to assess the competence of the programming
team and potentially find a large number of bugs in a hurry,
start with Whittaker and Jorgenson's attacks (see
Whittaker's how to break software).

• There are more contingent recommendations, but these give the
flavor.

36Software Testing as a Social Science Copyright © 2004, Cem Kaner

A Generic Strategy for Testing
Fallible Advice for Newcomers

• As you test with a given style, you will find problems at a
satisfactory rate or not.
– If not, switch the focus of your tests or switch to a new

technique.
• As you test more, test with more complex combinations. These

might simulate experienced users' tasks or they might involve
complex sequences (probably automated) to check for tough
faults like wild pointers, memory leaks, or races.

• The more stable the program gets, the harder you can push it.
Keep pushing until you run out of good test ideas. Bring in new
people with new skills. At the point that your best ideas are
ineffective, stop testing and ship the product.

37Software Testing as a Social Science Copyright © 2004, Cem Kaner

A Generic Strategy for Testing
Fallible Advice for Newcomers

• Under this strategy, last week's tests are boring. We must set up
some regression testing (e.g. smoke testing) but if your
company practices source control and if the code is not
fundamentally unmaintainable, then the less repetition of
previous tests that we do, the better.

• This doesn't mean that we don't go back to old areas. It means
that we spiral through them. The bottom of the spiral are the
single-function tests. Cover every feature. Spiral through all the
features again with boundary tests. And again with each new
technique. Higher spirals combine many features / many areas /
many variables in the same test case.

• If changes destabilize existing code, run simpler tests of that
code until it restabilizes. As it regains credibility, go back to
tests that are harsh and complex enough to provide information
(reduce uncertainty).

38Software Testing as a Social Science Copyright © 2004, Cem Kaner

Test design
• Differentiating between

– User testing
• We run tests with representatives of the user community.

– The term "user testing" tells us nothing about the scope or intent or coverage of the tests, the
way the tests will be run, the bugs you're looking for (the risks you're mitigating), or how you
will recognize a bug.

– User interface testing
• We test the user interface elements, such as the various controls. "Complete" testing would cover all

the elements.

– We know what we're testing, but not how, what bugs we're looking for, how to recognize a
bug, or who will do the testing.

– Usability testing
• We test the product for anything that makes it less usable. This includes traps, aspects of the user

interface that lead a person to error. It also includes poor recovery from user error.

These notes are based on our discussion in Lessons Learned in Software
Testing. The relevance to this talk is my comment that different test
objectives cause you to use a different mix of techniques. OK, so what are
techniques? All three of the examples on this page have been called
techniques. What do they tell us?

39Software Testing as a Social Science Copyright © 2004, Cem Kaner

Test Design
The act of testing involves doing something that resolves:
– Tester: who does the testing.
– Coverage: what gets tested.
– Potential problems: why you're testing (what risk you're

testing for).
– Activities: how you test.
– Evaluation: how to tell whether the test passed or failed.

All testing involves
all five dimensions.

40Software Testing as a Social Science Copyright © 2004, Cem Kaner

Test Techniques
1. A test technique is a plane in the 5-dimensional space. It

specifies values on one or more dimensions
• (e.g. user testing specifies who tests, but nothing on the other

dimensions)
• (e.g. input-boundary-value testing specifies what you test (input

variables) and a risk (for some values of the variable, the program
will halt or branch to the wrong place)

• A test technique is a heuristic.
• There are a couple hundred (at least) named test

techniques.
• They are useful at different times, for different things.
• Some are taught more widely than others, some are

Officially Recognized (e.g. SWEBOK), but they are all
just tools that are sometimes helpful.

41Software Testing as a Social Science Copyright © 2004, Cem Kaner

Heuristics
Billy V. Koen, Definition of the Engineering Method, ASEE, 1985
• A heuristic is anything that provides a plausible aid or direction

in the solution of a problem but is in the final analysis
unjustified, incapable of justification, and fallible. It is used to
guide, to discover, and to reveal.

• Heuristics do not guarantee a solution
• Two heuristics may contradict or give different answers to the

same question and still be useful
• Heuristics permit the solving of unsolvable problems or reduce

the search time to a satisfactory solution
• The heuristic depends on the immediate context instead of

absolute truth as a standard of validity.
Koen offers an interesting definition of engineering

– The engineering method is the use of heuristics to cause the
best change in a poorly understood situation within the
available resources (p. 70).

