A Taxonomy for Test Oracles

Douglas Hoffman
Software Quality Methods, LLC.
Phone 408-741-4830
Fax 408-867-4550

doug.hoffman@acm.org

Keywords. Automated Testing, Mode of Testing, Software Under Test, Test Oracles, Test
Verification, Test Vdidation

Abstract

Software test autometion is often adifficult and complex process. The most familiar aspects of test
autometion are organizing and running of test cases and capturing and verifying test results. A set of
expected results are needed for each test case in order to check the test results. Generation of these
expected results is often done using a mechanism called atest oracle. This paper describes classes of
oracles for various types of automated software verification and vaidation. Severd relevant
characteristics of oracles are included and the advantages and disadvantages for each class covered.

Background

Software testing is a process of providing inputs to software under test (SUT) and evauating the
results. In software testing, the mechanism used to generate expected resultsis called an oracle. (In this
paper, thefirgt letter will be capitalized when referring to an Oracle for a specific test.) Many different
approaches can be used to generate, capture, and compare test results. The author, for example, at one
time or another has used the following methods for generating expected results:

Manud verification of results (human oracle)

Separate program implementing the same agorithm

Simulator of the software system to produce pardld results

Debugged hardware smulator to emulate hardware and software operations
Earlier verson of the software

Same verson of software on adifferent hardware platform

Check of specific values for known responses

Verification of consstency of generated values and end points

Sampling of vaues againgt independently generated expected results

Test automation usually requires incorporation of Oracles into the testing process so test outcomes
can be evaduated. Automating the verification of results has Sgnificant implications on both the test case
and Oracle design. Because of the current high machine speeds and low cost of memory, test cases can
generate very large amounts of data, with corresponding amounts of Oracle data needed for
comparison. One or both sets of data can be generated and stored for comparison and then discarded if

Quality Week 1998 Douglas Hoffman Page 1 3/30/98

no differences are found. When data comparison is incorporated into test cases, effort is required to
design each test to include error handling, reporting differences, and capturing error results. When the
comparisons are done separately the effort is not repeated, but standards must be employed for
formatting and storing inputs and results.

Many organizations today depend on a human oracle to verify test results. The tester is expected to
know how the software will work, and they are expected to know when the software misbehaves. This
often happens by default for manud testing, and is usudly the case for GUI testing. A human oracleis
not satisfactory for saveral reasons when test cases are automated. The volume of data from automated
tests is often overwhelming. A person may not keep up with andyzing displayed information before the
system changes it. Not al effects of atest case are available and displayed for a person to observe. The
automated testing process is tedious and requires concentration for arbitrarily long periods. A person
as0 becomes quickly trained on what to expect, and once trained is likely to overlook minor deviations
(errors).

A worse Stuation occurs with automated tests when tests run without benefit of any verification. The
result from merdly running atest is nearly dways the same whether or not a fault is encountered —
program termination. Based on experience, very few errors cause noticegble abnormd test termination.
Unlesstest results are verified it requires a spectacular event to show that an error has occurred. When
abatch of automated testsis run with only cursory checks, we may only learn that something went
wrong somewhere, without a clue about the likely cause. Some automated mechanism is needed to
check the results from automated tests.

Creeting an oracle to verify vaues for amathematica subroutine may be straightforward by using a
different dgorithm, language, compiler, etc. At the other extreme, an Oracle for the interrupt handling of
an operaing system kernd isfar more difficult to create. Hardware and system emulators need to be
created, and pardlel mechanisams for causng specific events need to be put in place for both the SUT
and the Oracle. Timing and synchronization between the SUT and Oracle are aso extremely difficult to
manage to correctly verify software operation.

The difficulty in creating most test oracles falls somewhere between the two extremes. It is often
impractica to generate complete sets of expected results. It is particularly difficult to generate expected
information for file directories, machine registers, system tables, memory, etc. Usudly these aspects and
sde-effects of the SUT are ignored when tests are verified unless there is a gross, obvious problem.
Thisis dso true when the tests are manualy run.

A Simple Modd for Automated Tests

Figure 1 shows an Input-Process-Output model for black box testing. The test caseis a set of
inputs and verification is done by observing the results. SUT’ s very seldom fit this modd, however, as
they have multiple, complex inputs and results. We need to know the vaues for dl of the inputs and
check dl of the resultsin order to know whether the SUT responds properly. Also, some of the results
from software execution are only indirectly related to the functions we are exercising in our test. Test

Quality Week 1998 Douglas Hoffman Page 2 3/30/98

results include such things as resdud vaues left in memory, program states for the SUT and other
software, instrument control Sgnas, and data base vaues.

System Under

Test Inputs ——» Test

— Test Reaults

Figurel: 1-P-O Testing Model

Figure 2 shows a more complete model for software testing, including more categories of inputs to
and results from atest. To determine whether the SUT responds properly, we need to know or st all
of the inputs and check dl of the results. Because of the vast possible outcomes from running a
program, test designers select what they consider are relevant inputs and results, and then choose a
subset of theseto usein predicting and verifying program behavior. The test case input vaues are only
one part of the simulus for atest, and even thorough test plansidentify only some of the test case
preconditions. The environmenta inputs are sadom spelled out in detall.

Test Inputs Test Results
Precondition DA /ovstcondition Data

o System Under o
Precondition Test Postcondition
Program State Program State
Environmental Environmental

Inputs Results

Figure 2: Expanded Testing Model

Quality Week 1998 Douglas Hoffman Page 3 3/30/98

Severd observations can be made when introducing an oracle into the model. Different types of
oracles are needed for different types of software. The domain, range, and form of input and output
data varies subgtantialy between programs. Most software has multiple forms of inputs and results so
severd oracles may be needed for a single software program. Different characteristicsin a program may
require separate oracles. For example, a program’s results may include computed functions, screen
navigations, and asynchronous event handling. Severa oracles may need to work together because of
interactions of common inputs. In the case of aword processor, pagination changes are based upon
characterigtics such as the font and font size, while the test case may be about color compatibility. An
oracle for pagination has to factor in fonts even when atest case is about color. Although an oracle may
be excdlent a predicting certain results, only the SUT running in the target environment will process al
of theinputs and provide dl of the results. No matter how meticulous we are in creating an oracle, we
will not achieve both independence and completeness.

Because using asingle oracle may be impractical to modd al syslem behaviors for the SUT, this
paper will assume that oracles are created for specific purposes. This smplifying assumption holds since
an oracle that completely models SUT behavior can be considered to be composed of severa specid
purpose oracles focusing on specific SUT behaviors. The specid purpose oracle can then completely
predict SUT behaviors for which it is designed. We can add other oracles to predict other behaviors
and results from the SUT. (In practice, most test oracles focus on modeling straightforward behaviors,
and we gpply different oracles at different times to check program behaviors such as functiondity,
screen navigations, or memory use,) The characteristics of these focused oracles can be at the extremes
of our measurements.

Characteristics of Oracles

There are severa characteristics we might measure relating an oracle to the SUT. Table 1 provides
alist of some useful measures for oracles. Each of these characteristics describe a correspondence
between an oracle and the SUT and messures can range from no relaionship to exact duplication.
Completeness, for example, can range from no predictions (which is not very useful) to exact
duplication in al results categories (a second implementation of the SUT).

Completeness of informeation from oracle
Accuracy of information from oracle
Independence of oracle from SUT
Algorithms
Sub-programs and libraries
System platform
Operating environment
Speed of predictions
Time of execution of oracle
Usability of results
Correspondence (currency) of oracle through changesin the SUT

Quality Week 1998 Douglas Hoffman Page 4 3/30/98

Table 1: Oracle Characteristics

It is easy to see that the more complete and accurate an oracleis, the more complex it hasto be.
Indeed, if the oracle exactly predicts al results from the SUT it will be at least as complex. Thisalso
means that the better an oracleis at providing expected results, the more likely that detected differences
are dueto faultsin the oracle rather than the SUT. Likewise, the more an oracle predicts about program
gtate and environment conditions, the more dependent the oracle is on the SUT and operating
environment. This dependence makes the oracle more complex and more difficult to maintain. It dso
means that faults may be missed because both the SUT and the oracle may contain the fault.

Software tests themsdves can be classified in many different ways. Manud testing brings up images
of ahuman providing input and interpreting results as the means of testing. Y &, humans sometimes need
books, tables, caculators, or even programs (an Oracle) to know the expected result. Automated
testing does not mean mechanica reproduction of manua tests. Automated tests that include evauation
of results need some kind of oracle regardless of the type or purpose of the tests. Y e, the mechanism
for evaluation of results ranges from none (the program or system didn’t crash) to exact (al vaues,
displays, files, etc., are verified). Various leves of effort and exactness are gppropriate under different
circumstances. The nature and complexity of an oracle is dso dependent upon those circumstances.

Types of Oracles

Red world oracles vary widdly in thelr characterigtics. Although the mechanics of various oracles
may be vadily different, afew classes can be identified which correspond with automated test
approaches. These types of oracles are categorized based upon the outputs from the oracle rather than
the method of generation of the results. Thus, an oracle that uses alookup table to derive vaues may be
the same type of oracle as one that implements an dternate adgorithm to compute the vaues. The type
descriptions define the purpose of the oracle and its method of use. Five types are identified and defined
below. They are labeled True, Stochagtic, Heurigtic, Sampling, and Consistent oracles.

A “True orade’ faithfully reproduces dl relevant results for a SUT using independent platform,
agorithms, processes, compilers, code, etc. The same values are fed to the SUT and the Oracle for
results comparison. The Oracle for an dgorithm or subroutine can be straightforward enough for this
type of oracle to be considered. The sin() function, for example, can be implemented separatdly usng
different dgorithms and the results compared to exhaudtively test the results (assuming the availability of
sufficient machine cycles). For agiven test case dl vauesinput to the SUT are verified to be “ correct”
using the Oracl€ s separate dgorithm. The less the SUT hasin common with the Oracle, the more
confidence in the correctness of the results (Snce common hardware, compilers, operating systems,
agorithms, etc., may inject errors that effect both the SUT and Oracle the same way). Test cases
employing atrue oracle are usudly limited by available machine time and system resources.

Quality Week 1998 Douglas Hoffman Page 5 3/30/98

A “Stochagtic” gpproach focuses on verifying a datistically selected sample of vaues. Thisis most
useful when resources are limited and only ardatively smal amount of inputs will be included in the
tests. For dl inputs and ranges for the inputs, values are sdlected which are equally likely. For the sin()
example, a pseudo-random number generator may be used to sdect the input values. The same vaues
arefed to the SUT and the Oracle for results comparison. The statistically random input selection results
in atest case that has no bias from the data chosen. It aso means that suspect or error prone areas of
the software are no more or less likely to be encountered than any other area. Either the Oracle hasto
be substantial enough to be able to accept arbitrary inputs or the pseudo-random sequence needs to be
known in advance and an Oracle created for those particular values.

A “Heurigtic oracle’ reproduces selected results for the SUT and the remaining values can be
checked using smpler agorithms or consistency checks based on a heurigtic. For the sin() function, a
Heurigtic Oracle might generate only the specific vauesfor sin(1t/2), sin(t), sin(37t/2), Sin(21t)
[whoseresultsare 1, O, -1, 0]. The test can then give vaues between the four points a very small
incrementsto the SUT. A heuridtic is gpplied to verify that the SUT returns vaues that are progressively
greater (or less) than the last vaue. Although the heurigtic gpproach will accept many functions that are
incorrect, the Oracleis very easy to implement (especially when compared to a True Oracle), runs
much fasgter, and will find most faults.

The “Sampling” approach uses a selected set of values. The values are sdlected because of some
criteria other than statistical randomness. Boundary values, specific integers, midpoints, minima, and
maxima are examples often chosen when testing. Often, vaues are selected because they are easy to
generate, recognize, or recall. (These are dl selected samplesthat are not statisticaly random.) Once
the values are sdlected, an Oracle can be created that provides the expected redults. Software testing
usudly includes some effort based on Sampling to focus on aress likely to have faults and critical
functions and features. The key difference between the Stochastic oracle and Sampling oracleisin the
method of selection of input and result values.

A “Congstent” oracle uses the results from one test run as the Oracle for subsequent tests. Thisis
particularly useful for evauating the effects of changes from one revision to another. The Oraclein this
gtuation comes from asmulator, equivalent product, software from an dternate platform, or an early
verson of the SUT. The vaues being compared can include intermediate results, cal trees, data values,
or any other data extracted from the SUT automatically. The Oracle-generated datais usudly too
voluminous to be thoroughly or exhaugtively verified. The vaue in comparing results from the SUT and
the Oracleis from evauating and explaining any differences. Because very large volumes of data can be
stored and compared, the test cases can cover large input and result ranges. Although historic faults may
remain when thistechnique is used, new faults and sde-effects are often exposed and fixes are
confirmed.

Table 2 summarizes the five types of oracles and some of their characterigtics.

Quality Week 1998 Douglas Hoffman Page 6 3/30/98

TrueOracle Stochastic Heuristic Sampling Consistent
Definition Independent Verify arandomly | Verify selected Verify aspecially | Comparerun
generation of selected sample points, use a selected sample n results with
expected results heuristic for n-1
remainder
Example of Algorithm Operational Algorithm Boundary Regression
use Validation Verification Verification Testing Test
Advantages Possibility for Can automate Easier than True | Very fast Fastest; Can
exhaustivetesting | testswitha Oracle verification generate and
simple Oracle possible with verify large
simple Oracle amounts of
data
Dis- Expensive May miss Can miss May Miss Origina run
advantages implementation. systematic and systematic errors | Systematic or may include
Possibly long specific errors. and incorrect Specific Errors unknown
execution times Canbetime agorithms errors
consuming to
verify

Table 2: Five Types of Oracles
Other Remarks on Oracles

Data from the Oracle can be generated before, pardld to, or after the test caseisrun. If the Oracle
datais generated before the tet, the inputs for the test case need to be known and the expected results
must be stored in suitable form for comparison during or after testing. Early Oracle data generation is
useful when the Oracleisdow, and it is required for the consstency approach. When the test case
performs comparisons with expected results the Oracle has to run before or in pardld with the test
cae. Pardld running of an Oracle presumes that the Oracle runs quickly enough to be practica. When
test results are stored and checked after test execution, the timing of Oracle data generation can be
independent of test execution. Such after-the-tet verification can be done using stored results from a
test run with either stored or red-time generated Oracle outpuit.

Test results can be verified manualy, within the test case, or automated separately. Manud
verification requires both test results and Oracle data be available for comparison and is limited by
human processing capabilities. Verification within a test case means that the Oracle data has to be
available when the test case runs, which means either prior or parale running of the Oracle. The test
case dso needs to be designed to perform the collection, comparing, and reporting of results. Separate
automation of results comparison requires that results from the test run are saved and that either the
Oracleresults are likewise saved or generated as needed by the verification routines.

Care must be taken during test planning to decide on the method of results comparison. Oracles are
required for verification and the nature of an oracle depends on severd factors under the control of the
test designer and automation architect. Different Oracles may be used for a single automated test and a
sngle oracle may serve many test cases. If test results are to be andlyzed, some type of oracleis
required.

Quality Week 1998 Douglas Hoffman Page 7 3/30/98

Douglas Hoffman
Software Quality Methods, LLC.
Phone 408-741-4830
Fax 408-867-4550

doug.hoff man@acm.org

Bio:

Douglas Hoffman is an independent consultant with Software Quality Methods, LLC. He has been
in the software engineering and quality assurance fields for over 25 years and now teaches courses and
consults with management in strategic and tactica planning for software qudity. For five years he served
as Chairman of the Santa Clara Vdley Software Quaity Association (SSQA), a Task Group of the
American Society for Qudity (ASQ). He has been a paticipant a dozens of software qudity
conferences and has been Program Chairman for severa international conferences on software qudlity.
He is a member of the ACM and IEEE and is active in the ASQ as a Senior Member, participating in
the Software Divison, the Santa Clara Valley Section, and the Software Quality Task Group. He is
Certified by ASQ as a Software Quality Engineer and has been a registered 1SO 9000 Lead Auditor.
He hasaBA in Computer Science, an MSin Electrica Engineering, and an MBA.

Douglas experience includes consulting, teaching, managing, and engineering in the computer
gystems and software industries. He has over fifteen years experience in cregting and transforming
software quality and development groups, and twenty years of business management experience. His
work in corporate, quality assurance, development, manufacturing, and support organizations makes
him very wel versed in technica and managerid issues in the computer industry. Douglas has taught
technical and managerid courses in high schools, universities, and corporations for over 25 years.

Quality Week 1998

