
A Darker Side of Metrics PNSQC 2000 Page 1 of 8

The Darker Side of Metrics

Douglas Hoffman, BACS, MBA, MSEE, ASQ-CSQE
Software Quality Methods, LLC.

24646 Heather Heights Place
Saratoga, California 95070-9710

doug.hoffman@acm.org

Abstract

There sometimes is a decidedly dark side to software metrics that many of us have observed, but
few have openly discussed. It is clear to me that we often get what we ask for with software metrics and
we sometimes get side effects from the metrics that overshadow any value we might derive from the
metrics information. Whether or not our models are correct, and regardless of how well or poorly we
collect and compute software metrics, people’s behaviors change in predictable ways to provide the
answers management asks for when metrics are applied. I believe most people in this field are hard
working and well intentioned, and even though some of the behaviors caused by metrics may seem
strange, odd, or even silly, they are serious responses created in organizations because of the use of
metrics. Some of these actions seriously hamper productivity and can effectively reduce quality.

This paper focuses on a metric that I’ve seen used in many organizations (readiness for release) and
some of the disruptive results in those organizations. I’ve focused on three different metrics that have
been used and a few examples of the behaviors elicited in organizations using the metrics. For obvious
reasons, the examples have been altered to protect the innocent (or guilty).

Biography

Douglas Hoffman is an independent consultant with Software Quality Methods, LLC. He has been
in the software engineering and quality assurance fields for over 25 years and now is a management
consultant specializing in strategic and tactical planning for software quality. He is Section Chairman for
the Santa Clara Valley Section of the American Society for Quality (ASQ) and is past Chairman of the
Silicon Valley Software Quality Association (SSQA). He is also a member of the ACM and IEEE, and
is certificated by ASQ in Software Quality Engineering and has been a registered ISO 9000 Lead
Auditor. He has earned an MBA as well as an MS in Electrical Engineering and BA in Computer
Science. He has been a speaker at dozens of software quality conferences including PNSQC and has
been Program Chairman for several international conferences on software quality.

Copyright © 2000, Software Quality Methods, LLC. All rights reserved.

A Darker Side of Metrics PNSQC 2000 Page 2 of 8

The Darker Side of Metrics1,2

Introduction

Software measures and metrics have been around and used since the earliest days of programming.
I have studied and used software measures and metrics with varying degrees of success throughout my
career. I might even be labeled a reformed measurement enthusiast3. During the 25 years or so that I
have studied and used software metrics I have been surprised by some of the effects the metrics have
had on the organizations, and often I have been extremely distressed over the negative impacts I have
seen. Even though I have touted software metrics and successfully begun several metrics programs,
every software organization I have observed that has used metrics for more than a few years has had
bizarre behaviors as a result. There is a decidedly “dark side” to these metrics programs that impacts
organizations all out of proportion to what is intended. In the last year Kaner4,5,6 has provided a
framework for understanding why this might occur. One source comes from a lack of relationship
between the metrics and what we want to measure (Kaner’s 9th factor)7 and a second problem is the
over-powering side effects from the measurement programs (Kaner’s 10th factor)8. The relationship
problem stems from the fact that the measures we are taking are based on models and assumptions
about system and organizational behavior that are naïve at best, and more often just wrong9. Gerald
Weinberg provides excellent examples in his Last Word article analyzing some benign software
inspection metrics10. Weinberg shows how counting defects found during preparation and at code
inspections gives metrics relating mostly to the number of inspectors and telling almost nothing about the
product or process it proports to measure.

It is clear to me that we often get what we ask for with software metrics. Whether or not our
models are correct, and regardless of how well or poorly we collect and compute software metrics,
people’s behaviors change in predictable ways to provide the answers management asks for when

1 This information was first generated for presentation and discussion at the Eighth Los Altos Workshop on Software
Testing in December, 1999. I thank the LAWST attendees , Chris Agruss, James Bach, Jaya Carl, Rocky Grober,
Payson Hall, Elisabeth Hendrickson, Bob Johnson, Mark Johnson, Cem Kaner, Brian Lawrence, Brian Marick,
Hung Quoc Nguyen, Bret Pettichord, Melora Svoboda, and Scott Vernon, for their participation and ideas .
2 I differentiate between the measures of an attribute and metrics computed from the measures. Ultimately we should
take measures to compute metrics.
3 Lawrence, Brian “Measuring Up,” Software Testing and Quality Engineering vol. 2, no. 2 (2000)
4 Kaner, C. “Rethinking Software Metrics,” Software Testing and Quality Engineering vol. 2, no. 2 (2000)
5 Kaner, C. “Yes, But What Are We Measuring?,” 1999 PNSQC
6 Kaner, C. “Measurement of the Extent of Testing,” 2000 PNSQC
7 ibid.
8 ibid.
9 Many models go so far as to ignore mathematical truths. Many times we categorize based on ordinal scales; Defect
Severity, for example. We assign numbers to the categories and depict the order based on the values we chose. We
know that a “Severity 1” isn’t ½ as much as a “Severity 2,” and we can’t claim that all “Severity 3” defects are the
same. We could just as well use colors and call the categories as Green, Yellow, Orange, and Red. Doing arithmetic
with them (e.g., the Priority is Severity times Likelihood) is as absurd as multiplying colors.
10 Weinberg, G. “How Good Is Your Process Measurement,” Software Testing and Quality Engineering vol. 2, no. 1
(2000)

A Darker Side of Metrics PNSQC 2000 Page 3 of 8

metrics are applied. Don’t take me wrong; I
believe most people in this field are hard working
and well intentioned. Although some of the
behaviors cause by metrics may seem funny or
even silly, there are potentially serious
consequences to organizations because they use
metrics. The specific observations I make here
are based on real companies using software
metrics in their product development. I have
taken some care to change enough of the details
that the innocent (or guilty) cannot be easily
identified. In some instances, I have combined
observations from multiple organizations. But, you
wouldn’t be alone if you think you recognize your
organization in some of the situations. I’ve noticed
that people often recognize their own experiences
here.

Three Metric Examples

I’ve selected three examples of metrics used
to decide when a product is ready to release.
There certainly are other examples and other
metrics, but this has been a particularly ripe area
of examples from my experience. The three
metrics used to show a product’s readiness for
release are:

1. Defect find/fix rate
2. Percent of tests running/Percent of tests

passing
3. Complex model based metrics (e.g.,

COCOMO)

Briefly, each of the metrics is used to describe
an attribute of project status (how far along is the
project, is it ready for release, are we meeting our
milestones, etc.). These attributes were applied
by management to monitor and adjust project
plans and member behaviors in order to keep the project on schedule. I haven’t a clue about the
attributes’ scales and don’t think anyone else can, either. The variation in the attribute and the measures
is all over the map – a few projects run like clockwork (or so I’ve heard), but most don’t run as
planned, and some I’ve worked with were just out of control. (Out of control is a term I use for

Kaner’s Ten Measurement Factors

1. The purpose of the measure. What the
measurement will be used for.

2. The scope of the measurement. How broadly
the measurement will be used.

3. The attribute to be measured. E.g., a
product’s readiness for release.

4. The appropriate scale for the attribute.
Whether the attribute’s mathematical
properties are rational, interval, ordinal,
nominal, or absolute.

5. The natural variation of the attribute. A
model or equation describing the natural
variation of the attribute. E.g., a model
dealing with why a tester may find more
defects on one day than on another.

6. The instrument that measures the attribute.
E.g., a count of new defect reports.

7. The scale of the instrument. Whether the
mathematical properties of measures taken
with the instruments are rational, interval,
ordinal, nominal, or absolute.

8. The variation of measurements made
with this instrument. A model or equation
describing the natural variation or amount
of error in the instrument’s measurements.

9. The relationship between the attribute and
the instrument. A model or equation relating
the attribute to the instrument.

10. The probable side effects of using this
instrument to measure this attribute. E.g.,
changes in tester behaviors because they know
the measurement is being made.

A Darker Side of Metrics PNSQC 2000 Page 4 of 8

software that has progressively much worse quality as developers try to patch it up, followed by project
cancellation or quick turnover of most of the management and staff.)

I’ve neaver heard of any direct measure of project status, program readiness for release, or
progress toward meeting milestones, etc. Instead, we’ve used surrogate measures and metrics; the
instruments we used to measure are:

1) counters of new and resolved defect reports,
2) percents of tests running and passing, and
3) a “Mulligan’s stew” of metrics (including cyclomatic complexity, defect counts, defect find/fix

rates, defect severities, estimated size of programs, experience levels of developers, past
projects’ metrics, and others) combined and mixed thoroughly in an arithmetic equation (such as
COCOMO).

Defect find/fix rate

The first two metrics use pairs of measures to determine convergence on the planned project
completion. The ratio of defects found to defects fixed intuitively feels like a reasonable way to see the
end. When we find more than we fix (ratio greater than 1) during a specified time period, we are
discovering problems faster than fixing them. When the ratio equals 1, we are not gaining ground or
losing it in terms of fixing problems. When the ratio gets below 1, the developers are reducing the
number of known problems. For the life of the project, the ratio of all defects found to all defects fixed
should approach 1 as we fix all known problems. This model is based on several assumptions that don’t
hold:

1) all defects that are found are reported,
2) there is a goal of fixing (or resolving) all known defects,
3) when all known defects are fixed the product is ready to release,
4) there are reasonable resolutions for all fixed defects.

Defect counts don’t naturally vary, given a consistent definition of defects. One has either been
found and reported or it hasn’t. The count of the number of reported defects can easily be done, and
several people are likely to come up with the same counts given the same defect database. However,
human nature makes hash of the numbers by accident and with purpose. Reducing the effort to hunt new
defects or withholding reports will directly and immediately improve the ratios. Developers and testers
can become extremely creative in recategorizing defects as enhancement requests, problems in other
products, duplicates, unassigned, etc. in order to resolve them without fixing the underlying problems.

A few examples of observed behaviors of these sorts may serve to clarify:

• To reduce the number of defects, twenty-five reports against a subsystem were all marked as
“duplicates” of one new defect. The new defect report referred to each of the twenty-five for a

A Darker Side of Metrics PNSQC 2000 Page 5 of 8

description of the problem (because the only thing the twenty-five had in common was that they
were reported against the same subsystem).

• In an organization where defects didn’t get counted before initial screening and assignment, a
dozen defects that hadn’t been resolved in more than four weeks were assigned to the
developer “Unassigned,” and thus were not counted.

• In one case the testers withheld defect reports to befriend developers who were under pressure
to get the open defect count down. In another case the testers would record defects when the
developers were ready with a fix to reduce the apparent time required to fix problems.

• A test group took heat for not having found the problems sooner (to give the developers more
time to fix the problems).

• Developers only reported problems after they had been fixed (thus never making the ratio
worse).

• I’ve seen defects fall in the crack, get lost, pushed in circles, or be forever deferred.

One general reaction to found/fixed metrics was the creation of “Pocket lists” of defects by
developers and testers. Developers kept these unofficial lists of defects and action items to themselves.
If they reported the defects, it created a negative perception about the code and they also needed to
address the problems. One manager went so far as to publicly criticize individuals for having more than
five defects against their modules. The project (with 40 modules) now never has more than 200 defects
reported (and seldom fewer than that). The pocket list has been as benign as not reporting problems
observed and fixed in code, and as blatant as knowing about existing problems others were likely to
encounter.

There are also ways that management can make this situation much worse (such as a Dilbertian
“bug bonus” for the number of bugs found or fixed), so the developer and tester are encouraged to
report and fix large numbers of defects kept in pocket lists so they create the appearance of a flurry of
last moment heroic activity. Indeed, it is quite difficult to take software measures without creating
significant side effects.

Percent of tests running/Percent of tests passing

The second case (percent of tests running and percent passing) also may intuitively feel like a
reasonable way to see the end. If 100% of our tests run, and 100% pass, we’re done, right? The
percentage of tests running can be interpreted two ways; either the testers haven’t had time to run all the
tests, or the software isn’t complete enough to fully test. Likewise, the percent of tests that pass may
feel like a reasonable way to measure progress. The terms themselves are difficult to pin down, and no
matter how they are defined and enforced, there are simple ways to manipulate the percentages. Also,
this model of testing makes several false assumptions:

1) all tests are known before testing begins,
2) whatever constitutes “a test” is well understood and agreed upon,
3) whatever constitutes “running a test” is well understood and agreed upon,
4) test outcomes are clearly pass or fail, and

A Darker Side of Metrics PNSQC 2000 Page 6 of 8

5) release occurs when all tests (or a specified percentage) pass.

Very few organizations I’ve worked with do only pre-defined tests. Most test groups mix regression
tests with exploration and continue to create new tests until the product escapes. Unless we know the
exact number of tests we will run, we don’t know the denominator. And, the definitions of a test,
running a test, and passing and failing are subject to debate and manipulation. If a test is used in several
configurations, is it a separate “test” in each? If it’s only counted as a test once, do failures in several
(but not all) configurations count as one failure, several, or a fraction of one? Does a test fail twice if it
detects more than one defect? Does a long exercise count as multiple tests? Do we only count those
tests that are for completed features? Do we have to run tests we know will fail? Do we have to report
defects against those failures?

Some examples of observed behaviors due to these metrics:

1) the redefinition of what a “test” is in order to increase the number to be counted and increase
the percentage passing. (Each test is divided into sections because having one of ten (1000 line)
tests that can’t run looks much worse than three of two hundred (50 line) tests.)

2) top management declares victory and releases because “All four of the tests that could run were
tried, and 100% passed. (The code just wasn’t complete for the other 5,768 tests.)”

3) replacement of expected results with actual (bad) results because a problem was “known.”
(Development demanded that testing remove the test from the count of tests running and not
passing for those defects that weren’t going to be fixed. Management would not let the testers
reduce the count of tests running, so they compromised…) [I call this “institutializing a defect” –
making sure it stays in the product forever.]

Complex model based metrics

The last situation uses complex multivariate mathematical models to describe the project. A
“mathematical” model is applied to decide ahead of time how many defects there should be in modules.
The models are also used to predict the rate of defect reporting, so the progress and readiness of a
project can be discerned simply by counting the defects found to date. “According to the model, we
should find 50% of the defects through our testing. Since there are 200 defects in the project (according
to the Function Point computations), the project should be ready to release when we’ve found 100
defects.” These predictions then become self-fulfilling prophecies, with sometimes crippling side effects.

For these measures, there isn’t any real relationship between the measured or subjectively assigned
attributes and the meaning assigned. There might be a relationship between the mathematical model and
organizational behavior or project status, but I doubt it. The amazing thing I’ve observed is the near
religious fervor that goes into defending the validity of the model based on the fact that on the last N
projects, the equation has yielded a precise estimate of release on the day of release. (Never mind that it
wasn’t correct any of the 52 weeks previous to that, and the subjective values and equation fudge
factors were changed every one of the past 52 times the equation was used.) This is what I call the “you
always find your keys at the last place you look for them” effect. When they look back at the project,

A Darker Side of Metrics PNSQC 2000 Page 7 of 8

they conclude they now know the numbers for “experience factors,” “product complexity,” and all the
other elements that plug into the equation. They only really know that numbers can be chosen for the
equation to show what they now know – its ready for release. The sad thing is the number of managers
and engineers who don’t realize that given any moderately complex equation with multiple variables,
values can be selected to generate any particular result. For example, given the equation 5 * X + 3 * Y
+ Z, we can pick values of X, Y, and Z to yield any positive result.

Some examples of observed behaviors due to these metrics:

• Managers demanding sign off by testers without testing because the model showed release
should occur in spite of testing not being complete. (“We’ve followed the curve precisely for
eight months – obviously it’s ready for release.”)

• Punishment of testers for not finding enough defects quickly enough through lowering their rating
(and thus their pay).

• Reporting of minor problems, variations on a defect, and seriously questionable tests, to
increase defect counts.

• Testers not reporting defects (or reporting trivial problems) in order to keep the defect counts
corresponding with the predicted values from the model. (Because management had such faith
in the models, people were expected to perform exactly as predicted. Having too many defects
was interpreted as meaning the project was poor quality and too few was interpreted as the
tester doing a poor job.) [I’ve been given the argument that “the exactly predicted number of
defects was reported every week on an 18 month project.” This is a statistical impossibility for
a real world process. W. Edwards Demming described the real world effect as being due to
normal random variation. My chemistry instructors called too perfect data in an experiment
“dry-labbing,” documenting the predicted results instead of taking accurate measurements (even
subconsciously).

Other Side Effects

In response to noticing some of the above side effect behaviors, the rules can change. In some
situations, defect fixes cannot be deferred to future releases because opening a project with defects
already reported skews the statistics (and anyway, the argument goes, the defects weren’t put in on this
project; they were put in on previous projects). But, since products cannot be released with known
defects and the defects cannot be deferred, they are resolved (‘not a defect’ or ‘no fix’) in the current
project and may be reentered if someone remembers them during the next project.

Deferral was used as a technique to reduce the number of defects, so management mandated
justification in person for all deferred defects. Consequently, the number was reduced through
consolidation of defects (25 marked as duplicates of a new one that references each of the 25). Then all
duplicates required management review. Defects were then resolved en mass as “no fix intended.” The
rules changed then to force management review of all defect reclassification. Then defects became
stacked into “submitted/need assignment” to keep them from getting into the statistics until resolution
was ready.

A Darker Side of Metrics PNSQC 2000 Page 8 of 8

Conclusions

Software metrics have been successfully employed for decades to understand, monitor, and
improve products and processes. There are volumes of literature describing successes and methods,
and organizations regularly implement metrics programs. In software development and quality assurance
there is almost blind acceptance of the value of such programs, even though in many of these same
organizations the metrics program is secretly causing lower productivity and quality.

It is imperative for any organization interested in quality to be alert and careful about metrics. Even
organizations that have well established programs, especially organizations with long established metrics
programs, ought to consider whether the metrics have the desired meanings and identify what side
effects are caused. Where efforts are diverted without improving the product or its quality, some
questioning should be made as to the appropriateness of the measures and metrics. The unintended side
effects may be slowing rather than streamlining the organization, and can even serve to obscure our
understanding of test results and reduce the overall product quality.

Cem Kaner has provided a framework for understanding and rethinking software metrics, but
observations of behaviors within organizations is often sufficient to recognize unintended side effects. By
reassessing the meanings of our metrics and recognizing their limitations we can potentially reduce the
negative impacts.

