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The Dottie number was the nickname among my graduate school friends for the unique
real root of cos(x) = x . The story goes that Dottie, a professor of French, noticed that
whenever she put a number in the calculator and hit the cos button over and over
again, the number on the screen always went to the same value, about 0.739085 . . . .
She asked her math-professor husband why the calculator did this no matter what
number she started with. He looked. He tried it. He said he had no idea, at least not
that day. The next day he realized not only what was happening, but that his wife had
found a beautiful, simple example of a global attractor.

Dottie was computing the sequence defined by the recursion relation, sn+1 =
cos(sn). This sequence has a unique fixed point at the root of cos(x) = x where x
is, of course, expressed in radians. Moreover, the domain of attraction for this fixed
point was the entire real line. So any value used for s0 will generate a sequence that
converges to the same root.

In my own teaching, I have been inserting the Dottie number story into my courses.
I use the story to teach students that when they get stuck on a problem, it is okay to
stop and come back to the problem later, refreshed. I also follow up the story with a
homework problem related to the Dottie number. For convenience, I will denote the
Dottie number by d in this paper.

I have first semester Calculus students demonstrate that the Dottie number is the
unique root of cos(x) = x . They then apply the Intermediate Value Theorem to the
function, f (x) = x − cos(x), on the interval (−π/2, 3π/2) to show the existence of
d. Using Rolle’s Theorem, they give a proof by contradiction that d is the unique root
on that interval. Then they have to show that there are no roots outside the interval.

In differential equations, I show students how to use Euler’s method to find roots of a
function. The differential equation x ′ = f (x) has fixed points or equilibrium solutions
at the roots of f (x). Using Euler’s method, a numerical approximation to x ′ = f (x, t)
for the initial condition x(t0) = x0 can be found from the series, tn+1 = tn + �t and
xn+1 = xn + �t f (xn, tn) where �t is a given parameter. I have students find a numer-
ical approximation to the Dottie number by finding a solution to x ′ = cos(x) − x with
x(0) = 0 and �x = 1. I ask them to write a report about what they are doing and what
they found.

In my Problems in Math course or an equivalent Advanced Calculus course, I talk
about inverse power series. Looking for a good problem, I discovered that the Dottie
number has a power series in odd powers of π . I got my students to prove that the
Dottie number can be written in the form

d =
∞∑

n=0

anπ
2n+1

where each coefficient, an is rational. For the function f (x) = x − cos(x), f (d) =
0. Hence f −1(0) = d where f −1 is defined in the interval (−π/2, 3π/2). Using the
Taylor series for f −1 about π/2, I have students then find the first two coefficients,
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a0 and a1 in the power series for f −1(0), the Dottie Number. This method requires
students to compute the nth derivative of f −1 at π/2 in terms of the first n derivatives
of f at π/2. By the way, a0 = 1/4 and a1 = −1/768.

In my Chaos course I make sure to tell the story of the Dottie number right away—
without the punch line—and ask them what is going on. They repeat the experiment
themselves and make conjectures. We come back to this example every time we learn
one new element of finding attracting fixed points and domains of attraction.

In my complex variables class, we show that cos(z) = z has infinitely many com-
plex roots that come in complex conjugate pairs (except for the Dottie number). We
do this by studying the complex form of cos(z) = (eiz + e−i z)/2. Later in the complex
variables course, I introduce complex dynamics. When we get to Julia sets, we com-
pute the Julia set numerically for cos(z) and see the domain of attraction for d. The
other roots are repelling.

It is unlikely that the Dottie number will enter the annals of great constants along-
side e, π , the Golden Ratio and many others. However, the Dottie number and its story
might make good teaching elements for others out there. I also imagine there are many
other interesting facets of the Dottie number yet to be discovered. I look forward to
hearing about what you find.

d = 0.73908 51332 15160 64165 53120 87673 87340 40134 11758 90075

74649 65680 63577 32846 54883 54759 45993 76106 93176 65318 . . .
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If n odd:

n∑

k=1

(2k − 1)2 (−1)k−1 = 2n2 − 1

E.g. n = 5:

  3 5
2 2 7 2 9 21


