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Problemstellung 
In vielen technischen Anwendungen wie beispielsweise bei der Sprüh-
kühlung, in Verbrennungsmotoren und Gasturbinen kommen Sprays in 
Verbindung mit heißen Oberflächen zum Einsatz. In Abhängigkeit von 
verschiedenen Prozessparametern wie der Oberflächentemperatur, 
Fluid- und Stoffeigenschaften treten verschiedene hydrodynamische 
und thermodynamische Phänomene auf, welche in Wechselwirkung 
miteinander die Performance der Anwendungsprozesse wesentlich be-
einflussen. Einer dieser Effekte ist der Leidenfrost Effekt, welcher die 
Kühlleistung während der Sprühkühlung bei sehr hohen Temperaturen 
wesentlich reduziert.  
Aufgrund der Vielzahl an Einflussfaktoren ist es notwendig, die Komple-
xität der nicht-isothermen Spray-Wand Interaktionen zu reduzieren, um 
die grundlegende Physik besser zu verstehen und modellieren zu kön-
nen. Dabei konnte bereits ein fundamentales Verständnis rund um den 
Einzeltropfenaufprall, als zentrales Element des Sprayaufpralls, auf be- 
heizte Oberflächen erlangt werden. Darüber hinaus wurde ein experimenteller Aufbau entwickelt, um den Aufprall 
von Tropfenketten und in Folge dessen die Abkühlung der Oberfläche zu untersuchen.  
 

Aufgabenstellung 
Ziel dieser Arbeit ist es, eine Berechnungsmethode zu entwickeln und validieren, um den Wärmestrom in Folge des 
Tropfenkettenaufpralls zu berechnen. Durch den Aufprall der Tropfenkette auf eine heiße Oberfläche kühlt diese 
ab, woraus ein dreidimensionaler Temperaturgradient im Material resultiert. Mithilfe des bereits bestehenden ex-
perimentellen Aufbaus ist es gelungen den Temperaturgradienten zweidimensional zu messen. Anhand dieser 
Messwerte soll nun eine Berechnung des inversen Wärmeleitungsproblems über eine Lösung der instationären fou-
rierschen Wärmeleitungsgleichung erfolgen. Hierfür wurde am Fachgebiet bereits ein Lösungsansatz entwickelt, 
welcher noch in Matlab zu implementieren und testen ist. Darüber hinaus sind weitere bereits existierende Lösungs-
ansätze in der Literatur zu recherchieren und für die vorliegenden Randbedingungen zu bewerten. Aus diesen ist 
ein geeignetes Lösungsverfahren auszuwählen und in Matlab zu implementieren. Anhand vorhandener Tempera-
turmessungen soll der Wärmestrom berechnet werden und der am SLA entwickelten Lösungsansatz mit dem ge-
wählten Lösungsansatz aus der Literatur verglichen und validiert werden.  
Die Aufgabe gliedert sich in folgende Teilaufgaben: 
 

1. Einarbeitung in die vorhandene Literatur 
2. Literaturrecherche zu Lösungsansätzen des inversen, instationären Wärmeleitungsproblem. 
3. Bewertung unterschiedlicher Lösungsansätze in Bezug auf den vorhandenen Messaufbau  
4. Implementierung des am SLA entwickelten Lösungsansatzes, sowie des Lösungsansatzes aus der Literatur 

in Matlab und Anpassung an die vorhandenen Randbedingungen und Messungen  
5. Berechnung des Wärmestroms und Validierung des Lösungsansatzes 
6. Dokumentation der Arbeit 

 

 

„Implementierung eines Verfahrens zur inversen Berechnung 
der Wärmestromdichte beim Aufprall einer Tropfenkette auf 
eine beheizte Oberfläche“ 
 
„Implementation of a method for the inverse calculation of 
the heat flux during the impact of a drop chain onto a heated 
surface“ 

SLA 

Abbildung 1: Wärmestromdichte beim Ab-
kühlen einer heißen Oberfläche durch 
den Aufprall einer Tropfenkette 



Abstract

Spray cooling is one of the most efficient cooling methods, can achieve a very high, nearly uniform heat flux
and thus reduce thermal loads. Spray-wall interaction is encountered in existing and emerging technologies
and the underlying phenomenon associated with spray cooling. Spray cooling exploits the latent heat of
vaporization and surpasses other conventional cooling methods. Drop impact is a punctual aspect of a
monodisperse droplet chain, which reduces a spray to one dimension. The submitted thesis deals with the
development of heat flux calculation models as means of solving the inverse heat conduction problem of
drop impact on a heated surface.

In this work different existing models for solving the inverse heat conduction problem are introduced and
one of them is applied. This existing method is compared to the newly developed calculation methods
which are presented and compared. Firstly drop impact phenomena are explained for the isothermal and
non-isothermal case. Then the abstraction is made to sprays. The heat conduction equation is introduced
and subsequently solved for our experimental set-up.

The experimental set-up consists of a drop generator, a heated probe and measuring equipment. The drop
generation and measuring equipment are used to obtain temperature measurements within the probe. The
probe body is polished stainless steel with holes at different horizontal and radial positions for temperature
measurement. These measurement points are used to calculate the surface temperature of the heated
probe. The heat flux from the heated probe is the same as the heat flux absorbed by a droplet upon impact.
Therefore the heat flux during drop impact is calculated from the temperature measurements within the
heated probe body. The heat flux calculation results are used to understand the change in dissipated
heat at different temperatures. The calculations are validated using a simulated test case with a known
surface temperature and heat flux before the newly developed calculation methods are applied to real
measurement data.
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1 Introduction

Spray cooling is one of the most efficient cooling methods [5] in various sectors of mechanical engineering,
ranging from vehicle and reactor cooling to metal production and aerospace applications [6]. Spray cooling
can achieve a very high, nearly uniform heat flux and thus reduce thermal loads [7]. High thermal loads
can massively restrict a component’s functionality or damage and even destroy components. Therefore
cooling and a realistic estimation of dissipated heat is of utmost importance. Drop impact phenomena
can influence the heat flux absorbed by sprays, therefore drop impact interactions should be investigated.
In order to investigate physical interactions in spray cooling, single drop impact needs to be investigated
and then superposed according to stochastic models (as in e.g. [2]). By reducing spray to one dimension
droplet chains can be investigated. They are described by droplet diameter D0, velocity U0 and frequency
f . To understand single drop impact fully, both empirical and analytical solutions for varying parameters
should be consulted. By formulating the first law of thermodynamics at the drop impact surface one can
obtain the heat flux absorbed by the droplet as the heat flux emitted by the underlying material. Therefore
in order to calculate the absorbed heat flux by a droplet upon impact on a heated surface, traditional
methods of calculating the heat flux in a solid can be used. By placing thermoelements within a probe and
solving the inverse heat conduction problem the surface temperature and heat flux of the metal body on
which the drop falls can be calculated. 3-dimensional temperature gradients within the metal probe allow
the calculation of the heatflux within the metal body. This heatflux at the upper surface of the metal probe
is then the heat flux absorbed upon drop impact.

This thesis aims to find the heat flux from a metal probe to an impinging droplet. Due to the experimental
set-up the wall temperature can’t be directly measured, so an inverse heat conduction equation will be
solved numerically to estimate the exact wall temperature and then the corresponding heat flux. In
the following Chapter fundamentals of droplet wall interactions and non-isothermal drop impact are
discussed. Then the basics of applying drop impact findings to sprays are described. The fundamentals
of heat conduction are described, followed by the experimental set-up used to obtain the temperature
measurements. After the experimental set-up, a generic test-case for validating surface temperature and
heat flux calculations is introduced. Consequently, methods of calculating the heat flux from temperature
measurements are explained and applied for our set-up. Finally, the calculated results are discussed for
both the test-case as well as the measurement data. An outlook on future work in this field as well as
encountered problems conclude this thesis.
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2 Theoretical Background

To correctly assess the heat flux, fundamentals from both fluid mechanics and thermodynamics shall
be shortly summarized. Firstly, the droplet and its hydrodynamical properties as well as conventional
classification numbers are introduced. Then isothermal drop impact shall be explained and physical
interactions mentioned. For heated surfaces more phenomena can be observed, which will be introduced
afterwards. This includes boiling regimes for water. The concepts will be transferred to 3-dimensional
spray with a short description of existing heat flux calculation models. For a heated surface and its droplet
interaction the general heat conduction equation is introduced and for our purposes simplified. Finally,
inverse and ill-posed mathematical problems are introduced.

2.1 Droplet Parameters

Droplets are mainly characterized by their initial diameter D0 and impact velocity U0. The following figure
shows the droplet’s velocity Uf , initial temperature T0, initial diameter D0 and the surface temperature
TW .

Figure 2.1: Droplet parameters
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The impact velocity U0 can be calculated using U0 = sin(β)Uf with inclination of the surface β. The surface
is tilted relative to the droplet chain, so fluid can leave the impact area and a drop does not influence the
subsequent one. The Reynolds number

Re =
ρfD0U0

µ
(2.1)

where ρf and µ are the droplet’s density and dynamic viscosity is usually used in order to compare droplets.
The Reynolds number describes the ratio of inertial to viscous tensions in a fluid. The Weber number We
relates inertial to surface tension of a fluid and is defined as

We =
ρfD0U

2
0

σ
(2.2)

where σ is the droplet’s surface tension. The Prandtl number Pr of a fluid is defined as

Pr =
ν

a
(2.3)

using the kinematic viscosity ν = µ/ρf and thermal diffusivity a. An interpretation for the Prandtl number
is the ratio of momentum diffusivity to thermal diffusivity.

2.2 Isothermal Drop Impact

Before one investigates drop impact on a heated surface, it is helpful to gain some insight in the isothermal
case. Drop impact outcomes are mainly governed by the surface texture (i.e. wettability and roughness)
and the hydrodynamics of the droplet [1]. The six different impact outcomes are depicted in Fig. 2.2. The
deposition outcome is characterized by two stages. First the kinematic and then the actual deposition
[8]. Hydrodynamic properties of the droplet and the physical parameters of the surface do not affect the
droplet in the kinematic stage. Later the droplet spreads up to five times its inital diameter depending on
its physical properties [1]. Empirical correlations can be found to describe the spreading to inital diameter
ratio.

With increasing velocity the droplet’s morphology changes and develops the prompt splash scenario where
secondary droplets form due to the roughness of the wall. As surface tensions decrease, the lamella of
the splash can detatch from the wall, therefore creating the corona splash outcome. Corona splash is also
affected by the surrounding pressure and can be suppressed [? ].

Furthermore, wettability and viscosity of the droplet influence its impact outcome. For low-viscosity fluids
at high velocity the lamella overshoots the corona and starts to recede. Receding break-up is characteristic
for nonwettable surfaces and the "fingers" of a lamella can further break-up due to capillary instability. If
the kinetic energy is large enough, the receding break-up does not take up all the droplets energy and a
secondary rebound can form. This is common for strictly nonwettable surfaces. An arising liquid column
can partly or completely detach. Parts forming smaller secondary droplets as a partial rebound outcome
and complete detachment in unison is shown in the last line of Fig. 2.2 denoted as complete rebound.

3



Figure 2.2: Outcomes for isothermal drop impact, adapted from [1]

2.3 Non-isothermal Drop Impact

For an initial temperature not equal to the wall temperature, the drop impact is considered non-isothermal.
Non-isothermal drop impact can be classified as with and without boiling. The first relies completely on
heat conduction as a means of heat transfer [2]. Different boiling regimes as well as varying impact velocity
U0 can lead to various droplet-wall interactions. Before investigating non-isothermal drop impact outcomes,
it is helpful to look at the different boiling regimes and new physical phenomena which do not occur for
isothermal drop impact.

2.3.1 Boiling Regimes

Single drop impact outcomes can be categorized in the heat transfer regimes of single-phase cooling,
nucleate boiling, transition boiling and film boiling. These regimes are bounded by the critical heat flux
and the minimum heat flux at the Leidenfrost Temperature as depicted in Fig. 2.3. The Leidenfrost effect
leads to minimal specific heat conduction and should be fully understood in order to avoid this inefficient
heat transfer point in cooling applications.

The Leidenfrost effect was first observed and described by J.G. Leidenfrost as a phenomenon where a
water droplet was suspended over a heated surface in 1756. The droplet is suspended by its own vapour
layer which forms between the surface and the underside of the droplet in the film boiling regime [9].
The droplet slowly evaporates due to heat conduction across its vapour cushion, heat radiation from the
surface and molecular diffusion over the top of the droplet. As calculated numerically [9], experimental
data only agrees with the analytical solution when radiation and diffusion are taken into account. The
heat flux is at a local minimum for the Leidenfrost point, so conduction is relatively low in comparison
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with other saturation temperatures. Therefore, this does not contradict the general assumption of mainly
heat conduction for the heat flux calculation.

Figure 2.3: Nukiyama curve for boiling in droplet chains showcasing different boiling regimes,
adapted from [2]

Fig. 2.3 separates the different parts of the boiling curve as well as the different boiling regimes in sections
A to E. Section A shows the single phase cooling regime where no boiling takes place. The heat transfer is
purely conductive [2] via the molecular vibrations and no bubbles form.

The incipient boiling point as depicted in Fig. 2.3 marks the beginning of the nucleate boiling regime, here
denoted as B. Between surface and droplet bubbles nucleate evenly over the whole wetted area. These
small spherical bubbles rise through the droplet. The end of this boiling regime is the critical heat flux
which marks the highest specific heat transfer. Afterwards heat transfer declines due to vapour that partially
forms in section C. The bubbles from section B unite to bigger bubbles as depicted in the right hand side of
Fig. 2.3 during transition boiling. These bubbles form an insulative layer. A partial vapour film inhibits
effective heat transfer and the specific heat flux declines.

Thermal atomization is a recent discovery. The droplet only wets a smaller area of the surface in comparison
to the other regimes. Therefore the heat flux is significantly lower even though no insulative layer exists.
An image of thermal atomization is included in Fig. 2.4.

The Leidenfrost point marks the beginning of the last boiling regime: Film boiling, here section E. Due
to the rising temperature difference between droplet and surface, the specific heat flux starts to increase
again. The partial vapour layer that formed in section C is fully occupying the contact area between droplet
and surface. This considerably lowers the heat flux in comparison to the nucleate boiling regime. The

5



increase in the heat flux after the minimal heat flux is because of an increasing proportional amount of
radiation as means of heat transfer.

2.3.2 Non-isothermal Drop Impact Outcomes

Non-isothermal drop impact outcomes can be separated in drop deposition, drop dancing, thermal atom-
ization and drop rebound and are depicted in Fig. 2.4. Drop deposition occurs for the isothermal case, the
single-phase cooling regime as well as nucleate boiling. As depicted in Fig. 2.4, the droplet deposits after
an initial lamella spreading on the surface. The temperature threshold for this outcome is approximately
150 ◦C for all impact velocities U0 ∈ [0.4, 2] m/s.

Drop dancing can be observed in the transition boiling regime. Here the drop produces secondary droplets
upon impact which appear to “dance” on the surface due to vapour bubbles and frequently collapsing liquid
layers [2]. This happens for a surface temperature between 150 ◦C and 200 ◦C. A higher impact velocity
leads to earlier thermal atomization, as shown in Fig. 2.4. Thermal atomization occurs for higher heat
transfer rates. The lamella can levitate above the surface, as depicted in Figure 2.3 section D on the right
hand side. This outcome happens for lower impact velocities and high temperatures. High impact velocities
lead to the last outcome: Complete or partial rebound. Rebound appears at high temperatures in the film
boiling regime where an instantaneous vapour layer separates the droplet and the surface. Usually the
Weber number is used as a dimensionless parameter to determine the drop impact outcome for different
temperatures. Here this approach is forgone for the dimensional impact velocity. This is due to the fact,
that the Weber number is not sufficient to describe the impact outcome at varying temperatures since it
neglects thermodynamic properties[10]. For non-isothermal drop impact not only the outcome, but also
the heat flux upon impact is of interest.

Figure 2.4: Outcomes for isothermal drop impact a) drop deposition, b) drop dancing, c) thermal
atomization and d) drop rebound, adapted from [2]
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2.3.3 Heat Flux in Droplet Chains

The specific heat transfer for non-isothermal drop impact can be calculated according to [11] as

q̇(t) =
λfλW (Tw0 − Td0)√︁

afaWπt(λf/
√
af + λWF (Pr)/

√
aW )

(2.4)

using thermal diffusivity a and thermal conductivity λ for fluid and surface. F(Pr) is a dimensionless
function of the Prandtl number Pr which determines the degree of influence of the thermal effusivity of the
wall. Tw0 and Td0 are the initial temperatures of surface and drop. F(Pr) was approximated by [11] to be

F(Pr) = 1− 0.28

(0.27
√
Pr + 0.45)0.28

. (2.5)

Eq. 2.4 uses the surface temperature of the metal probe, which is not easily obtained. The methods used
in this thesis focus on calculating the heat flux based on the metal probe and temperature measurements
within the probe body. Before the thermodynamic fundamentals are introduced it is necessary to apply
drop impact findings to sprays.

2.4 Spray Cooling

2.4.1 Spray Parameter

In general spray parameters are an enhancement of already existing drop or drop chain parameters. Because
of fluctuations in size and velocity the mean diameter D0 and U0 are used. Frequency is replaced by mass
flux, usually per area. This results in the mean mass flux density jm.

2.4.2 Nukiyama Curve for Sprays

The Nukiyama curve can also be plotted for sprays while data points remain mostly experimental. Stochastic
descriptions of spray parameters remain dominant and empirical correlations are used to calculate heat
flux [6].

The different boiling regimes in spray cooling applications are described by [12]. In the film boiling regime
spray cooling leads to a uniform cooling of the surface. In the transition boiling regime after passing the
Leidenfrost point, the specific heat flux increases considerably. This can mean different boiling regimes at
the same time for complex geometries which will not be discussed any further. Due to the high specific
heat flux the transition boiling regime changes to the nucleate boiling quickly. Close to the critical heat
flux cooling continues rapidly and reaches the single phase cooling regime. In quenching processes the
mechanical properties can be determined until the critical temperature range. More details about the
temperature distribution can be found in [12].
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Figure 2.5: Nukiyama curve for sprays, adapted from [3]

2.4.3 Heat Flux Models in Spray Cooling Regimes

For the film boiling regime in spray cooling a heat flux calculation model already exists. The proposed
model by [2] states

q̇spray = 28.32
jmGλw(Tw0 − Tsat)√
awD0U0ρf (K + 2G)

ηwet. (2.6)

Here, jm is the mass flux of the spray and ηwet is the effective wetted substrate ratio. This is calculated
using the Poisson distribution and therefore defined as

ηwet =
1− e−λ

λ
, (2.7)

where the wetted area is estimated using the empirical correlation

λ =
2.1jm
ρfU0

(1 + 0.36We0.48)2. (2.8)

Furthermore, K and G are parameters defined as follows:

K =

√︄
(B −G)2 +

4G√
π
−B −G (2.9)

G =

√
πλvρfLaw

2(Tw0 − Tsat)λ2
w

(2.10)
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B =

√
5aw(Tsat − Td0)λf√
πaf (Tw0 − Tsat)λw

. (2.11)

2.5 General Heat Conduction Equation

Heat transfer between fluid and wall is mainly conduction [13] and therefore governed by the general heat
conduction equation

d

dt
T − a∆T =

Q̇

cpρ
(2.12)

where T is the temperature function with respect to time t and location, either in carthesian or polar
coordinates, Q̇ is the heat generated within the solid, cp is the probe’s specific heat capacity at constant
pressure and ρ is its density. In our current set-up no heat is generated after the probe has reached its
target temperature, from which the cooling experiment starts, therefore Eq. 2.12 can be simplified to

d

dt
T − a∆T = 0. (2.13)

d

dt
T − a(

d2

dx2
T +

d2

dz2
T ) = 0 (2.14)

with boundary conditions T = T0 at t = 0, d
dxT = 0 at z = 0.

2.6 Inverse Problems

Classical problems of heat conduction theory are assumed to be known and can help to distinguish different
classes of inverse problems. Each direct problem which uses a mathematical model can be compared with
a certain set of inverse problems. All problem statements of heat transfer between a solid body or between
a surface and an impinging droplet are considered from a "cause-effect" standpoint [14]. According to the
mathematical model, boundary conditions, initial conditions, thermophysical properties, internal sources
of heat and conductivities and the geometry can be classified as causal characteristics of heat transfer. The
effect is a heat state which is determined by the temperature field of the substrate.

Direct heat transfer problems specify the cause-and-effect relationship. They calculate the temperature
distribution for a given set of causal characteristics. Inverse problems try to recover the causal characteristics
of a temperature field. In an actual experiment these characteristics cannot be reproduced since it is
impossible to reverse the cause-and-effect relationship. Mathematically it is possible to reverse the problem
solving process. Inverse problems can be divided in
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• problems in diagnostics and identification of physical processes;

• problems in the design of engineering products;

• problems in controlling processes and systems.

A problem where the data is given and the right-hand side of the equation is unknown is considered "inverse".
Inverse problems of the first class are usually experimental research. Here it is necessary to reconstruct
causal characteristics on the basis of measured "output" effect characteristics. These problems are connected
with the construction of the mathematical models and determination of different characteristics of the
models. Design problems consist of determining design characteristics of an engineering unit on the basis
of given quality indices with certain limits. The required characteristics are causal with respect to these
indices and limits. Control influences create the causal characteristics which creates the control action
expressed by the effect (the system state).

2.7 Well-posed and Ill-posed Problems

A problem is considered well-posed if three criteria are fulfilled [15]. In our case Eq. 2.12 can be used to
explain the three requirements:

• Eq. 2.12 has a solution for any right hand side Q̇;

• the solution to Eq. 2.12 is unique;

• the dependence of the solution on Q̇ is continous, i.e. when the error in Q̇ tends to zero, the error in
the solution also tends to zero.

Else the problem is considered ill-posed. The three requirements can be summarized as existence, unique-
ness and continuity of a solution. Continuity is related to stability. It is necessary for a solution to be
continuous in order to be stable, but not all solutions, that are continuous, are stable [16]. A well-posed
problem can also be unstable. All classical problems in mathematical physics are well-posed, including the
general heat conduction problem 2.12 [16]. In our case, if the temperature (e.g. at given data points) is
known through measurements, the unknown is then the heat flux Q̇. To calculate Q̇ in Eq. 2.12, we need
to solve the inverse heat conduction equation. This is also the case for no heat generation within the probe.
Inverse problems are usually ill-posed [16].
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3 Experimental and Analytical Methods

This chapter describes the experimental set-up that was used to obtain the data points used in the heat
flux calculation. Furthermore the heat conduction equation is simplified for our present example. Then a
generic test case is described which was used to validate the new inverse heat flux calculation methods
described in the next chapter.

3.1 Experimental Set-up

The experimental set-up is depicted in Figure 3.1 and consists of a drop generator, an observation and
evaluation unit as well as the heated probe. Drops varying in diameter, velocity and frequency are generated
by a hollow needle of size G 27. The needle is blunt and has a hydrophobic coating. Its outer diameter is
0.4 mm. The inner needle diameter determines the droplet diameter D0. The needle is placed vertically
above the probe. In order to increase the impact velocity U0, the height of the needle can be adjusted. A
Bartels micropump mp 6 provides the mass flux and regulates the droplet frequency with increasing mass
flux.

The observation and analysis unit consists of a Phantom v12 high speed camera, a LED lamp for illumination
at the time of impact, 11 thermoelements of type J class 1 in the probe and a NI DAQ device to save the
thermoelements’ recorded data. Images and temperature measurements are then transmitted to a PC via
USB. The horizontal thermoelements’ temperature measurements are called T1 to T7, while the radial
thermoelements’ temperature measurements are called Tr1 to Tr4.

The procedure of the cooling experiment starts with heating the probe to an initial temperature T0. Then
the heater is turned off and the droplet chain cools down the probe. The camera is used to determine
the droplet’s impact velocity U0 and initial diameter D0. The camera also determines the impact regimes
which are described in section 2.3. The droplets are recorded using shadowgraphy with a frame rate of
6000 fps and a resolution of 16 µm/pixel. The drop impact on the heated surface causes a 3-dimensional
temperature gradient which can be measured with 3 radially and 8 horizontally placed thermoelements.

The probe is a polished stainless steel 1.4841 cylinder with thermoelements and a heating spiral inside, as
depicted in Fig. 3.2.

The probe’s density, specific heat and thermal conductivity are ρ = 7900 kg
m3 , cp = 542 J

kgK and λ = 16 W
mK

respectively. Specific heat at constant pressure cp and thermal conductivity λ are averaged from 100◦C to
500◦C. A more detailed description of the experimental set-up can be found in the Thesis from Quell [4].

The impinging droplets cause a measurable 3-dimensional temperature gradient within the probe. Making
use of the horizontal and radial thermoelements the temperature within the probe can be obtained.
This allows the calculation of the surface temperature and furthermore the heat flux. To obtain surface
temperature and heat flux for validation purposes, it is helpful to discuss a finite element simulation.
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Figure 3.1: Experimental set-up, adapted from [4]

Figure 3.2: Probe geometry, adapted from [4]
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3.2 Generic Test Case

In order to validate the new methods described in Chapter 4 and also to compare them to existing methods
of solving the heat conduction equation as listed in Chapter 3 a test case was developed. The advantage
of this test case in comparison to the real measurement data is, that the wall temperature as well as the
heat flux is known and can be compared to the results of the respective calculation method. The test
case was modeled as similarly as possible to our real probe. The probe body is represented by a cylinder
of height L = 25 mm and radius R = 25 mm A temperature distribution on the surface was given as a
boundary condition as well as adiabatic walls. By using a finite element method the temperatures at all
thermoelements’ location could be calculated. The parameters are delineated in Table 3.1.

parameter value description
ρ 7900 kg m−3 density
λ 16 W m−1K−1 thermal conductivity
cp 542 J kg−1K−1 specific heat

hmesh 0.5 mm grid spacing
∆t 0.0025 s time step

tfinal 60 s duration

Table 3.1: FEM parameters

3.2.1 Linear Temperature Decrease

The simplest test case is depicted in Fig. 3.3 and consists of merely a linear temperature decrease. Due
to computing time the test cases were only simulated for tfinal = 60 s. As expected, the temperature at
each thermoelement’s depth Ti follows the temperature decline with the increasing depth more strongly
dampening the temperature drop. While the first thermoelement T1 at depth z = 1 mm follows the wall
temperature TW closely, the deeper thermoelements T2 and T7 are affected by the temperature drop only
after a delay. The temperature gradient seems to reach T7 only after 20 s. The heat flux q̇ is negative,
because heat is emitted. The difference between TW and T1 slightly increases over the course of the
experiment. This explains, why the absolute value of the heat flux also increases. The thermoelements are
enumerated horizontally as depicted in 3.2.
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Figure 3.3: Temperature decline and heat flux in linear test case
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3.2.2 Cosinusoidal Temperature Fluctuation with linear Decrease

The second test case integrates a characteristic feature of the measurement data. Each drop impact causes
a visible decline in temperature for T1 which then rises again due to reheating of the probe. The subsequent
drop is visible and the cosinusoidal graph has a decreasing mean because of cooling. The advantage of
using cosine instead of sine is, that there is no discontinuity at the beginning. Similarly to the linear case,
Fig. 3.4 shows the temperature profile in the first 10 s and the last 10 s of the simulation.

The temperature at the depth of thermoelement 1 is not exactly in the same phase as the wall temperature.
This can be explained through a finite information velocity through the probe. The temperature decline over
1mm is visibly influenced by the probe’s depth. Due to the high frequency of drop impact we shall first look
at Fig. 3.4, since individual drop impact can be clearly distinguished for this interval. At thermoelement
2 which is only 4.5 mm distanced from the surface almost no oscillation can be observed. For deeper
thermoelements the same behavior can be observed, their depiction is omitted for clarity. Thermoelement
7 sees no temperature drop over the course of 12 s. The global trend shows a drop of ∆T = 40◦C for the
surface and ∆T = 10◦C at the depth of thermoelement 7. The heat flux is continously oscillating and has
a constant mean.

Figure 3.4: Temperature decline and heat flux in cosinusoidal test case
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3.2.3 Sinusoidal Temperature Decrease with initial Discontinuity

The final test case uses a sine instead of cosine which leads to an initial temperature gradient. Also, a delay
in the response of the thermoelements is taken into account. Similarly to the cosine case, Fig. 3.5 shows a
distinguishable trend for the temperature and the heat flux is depicted in Fig. 3.6. The highest absolute
value of the heat flux is q̇max ≈ −2 · 10−6 W/m2. This is also omitted in Fig. 3.7 in favour of clarity.

Figure 3.5: Temperature decline in final test case

Figure 3.6: Heat flux in final test case

16



Figure 3.7: Temperature decline and heat flux in final test case
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4 Solving the inverse Heat Conduction Equation

Various methods exist to solve the heat conduction equation. The heat conduction equation can be well-
or ill-posed depending on the existence of a unique solution for any heat flux (i.e. right hand side) with
stability for perturbations of the right hand side of the equation. The basic idea of some of the solving
methods shall be briefly described in the following subsections. The coordinate system used within the
substrate is depicted in Fig. 4.1. The application of methods introduced in this chapter are reported in
Chapter 5 for the earlier introduced test case as well as real measurement data from the experimental
set-up.

Figure 4.1: Probe with impinging droplet, adapted from [5]
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4.1 Existing inverse Heat Flux Calculation Methods

The following section provides a brief introduction to already existing inverse solving methods for the heat
conduction equation. The solution methods were firstly postulated by Burggraf [14], Monde [17] and
Levenberg Marquardt [15].

4.1.1 Burggraf Solution

For the 1-dimensional case Burggraf obtained an exact solution using an infinite sum of functions fn and
gn whose second derivatives are either 0 or the slope of the previous function. Then these functions are
combined with a measurement of temperature and heat flux within the solid at one single point. No initial
condition is necessary and this solution can be cut off for a precise approximation. The series expansion of
the following form satisfies the heat conduction equation 2.14.

T (r, t) =

∞∑︂
n=0

fn(r)
dnt0
dtn

− 1

a

∞∑︂
n=0

gn(r)
dnq0
dtn

(4.1)

as long as the boundary conditions are met for fn:

∆f0 = 0,∆fn =
1

a
fn−1 (4.2)

for n = 1,2,3,... .

The solution for the solid cylinder is given in Eq. 4.3.

T (r, t) = T0(t) +

∞∑︂
n=0

r2n

22n(n!)2an
dnT0

dtn
(4.3)

4.1.2 Analytical Solution using Laplace Transform

In the 2-dimensional case an analytical solution can be obtained using the Laplace transform. Inverting
the Laplace-transformed function with respect to time-space variables can be difficult and therefore
approximations are used. The following procedure provides a solution to the inverse heat conduction
problem as in [? ] for the 2-dimensional case in carthesian coordinates. The solution to Eq. 2.14 can be
given using a half-power polynomial function Fj(t) for θ = T − T0 :

θ = T − T0 =
J∑︂

j=0

Fj(t)cos(jπx/X) (4.4)
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The half-power polynomial function Fj(t) is multiplied by the Gamma-function for an easier Laplace-
transform.

Fj(t) =
K∑︂
k=0

Pj,kt
k/2/Γ(1 + k/2) (4.5)

The Laplace-transform of θ yields

θ =
J∑︂

j=0

cos(jπx/X)Fj(s)
sinh(

√︁
s/a+ (jπ)2/X2(z2 − z))

sinh(
√︁

s/a+ (jπ)2/X2(z2 − z1))
(4.6)

with z-coordinates z1 and z2 for the temperature sensors’ depth in the probe. This can be inversely
Laplace-transformed using tables to get the solution to Eq. 2.14.

T (r, t)− T0 =

J∑︂
j=0

cos(jπx/X)

(︄
K∑︂

k=−1

G
(12)
j,k tk/2/Γ(1 + k/2)

)︄
(4.7)

The coefficients G(12)
j,k can be determined as follows:

K∑︂
k=−1

G
(12)
j,k /s(k+2)/2 =

(︄
K∑︂
p=0

P
(1)
j,p /s

(p+2)/2

)︄(︄
(K+2)/2∑︂

q=0

C
(2)
j,q s

q

)︄
(4.8)

Cj,0 = α0/b0 (4.9)

Cj,k =
1

b0

(︄
αk −

k−1∑︂
q=0

Cj,qbk−q

)︄
(4.10)

xp =

(︃
1

p!

dp

dsp
(sinh(

√︁
s/a+ (jπ)2/X2(z2 − Z)))

)︃
|s=0. (4.11)

for x = α: Z = z and x = b: Z = z1. Further simplifications for e.g. Eq. 4.11 can be found in [? ].
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4.1.3 Levenberg Marquardt Method

The Levenberg Marquardt method is an iterative numerical procedure that successively minimizes the
distance between measured and calculated temperature. The function describing the squared distance
between measured and calculated temperature D(P) can be defined as follows according to [18]:

D(P ) =
I∑︂

i=1

[Tm(ti)− Y (P, ti)]
2 (4.12)

with I measurements for time steps ti, Tm(ti) measured temperatures, Y (P, ti) calculated temperatures
using the numerical solution and P parameters to determine q̇. The heat flux can be approximated as a
cubic spline. The resulting parameters for the interpolation of the cubic spline are P. This method was
originally developed to solve ill-posed problems, but can be applied for inverse problems using the Jacobi
matrix of T(P). The Jacobi matrix partially differentiates the splines of Ti(P ) with respect to the parameters
Pj . J is the Jacobi matrix containing all cells of Jij = ∂Ti

∂Pj
. According to [19] the solution to the matrix P

can be calculated using

P = (JTJ)−1JTTm (4.13)

The solution to Y (P, ti) can be iteratively found using the Taylor approximation:

Y (P ) = Y (P k) + Jk(P − P k) (4.14)

for k iterations. Substituting 4.13 in 4.14 yields

P k+1 = P k + [(Jk)TJk]−1(Jk)T [Tm − Y (P k)]. (4.15)
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4.2 New inverse Heat Flux Calculation Methods

This section deals with new methods developed by Apl. Prof. Dr. Ilia Roisman. The following subsections
introduce the theoretical derivation of each method. The first two methods simplify Fourier’s Heat
Conduction Equation and solve it using Taylor-Polynomials to calculate the unknown wall temperature
TW . From the solution of the inverse wall temperature problem the specific heat flux q̇ can be obtained.
The last method uses the analytical solution to the Heat Conduction Equation, ergo the complimentary
Gaussian Error Function.

4.2.1 Heat Conduction Equation

The underlying equation for this method is the general heat conduction equation 2.12 as introduced in
Chapter 2. For the 1-dimensional case without heat generation inside the solid body Eq. 2.12 simplifies to
Eq. 4.16.

d

dt
T − a

d2

dz2
T = 0 (4.16)

Figure 4.2: Change in temperature over depth

This can be evaluated at the depth of the first thermoelement z = z1 = 0.1 mm, therefore we get Eq. 4.17

d

dt
T |z=z1 − a

d2

dz2
T |z=z1 = 0 (4.17)

with help of a Taylor expansion at the surface and the depth of Thermoelement 2

TW = T1 − T ′z1 +
T ′′

2
z1

2 (4.18)
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T2 = T1 + T ′(z1 − z2) +
T ′′

2
(z1 − z2)

2 (4.19)

where T ′ denotes the spatial differentiation dT/dz. Due to the fact that both difference quotients are
evaluated at z = z1 we can solve for T ′′ and get Eq. 4.20

T ′′ =
2[T2z1 − T1z2 + Tw(z2 − z1)]

(z2 − z1)2z2
. (4.20)

This can be inserted in Eq. 4.17 and solved for the unknown wall temperature TW

TW =
1
2a

d
dtT |z=z1(z2 − z1)

2z2 − T2z1 + T1z2

(z2 − z1)
. (4.21)

All variables T1,2 in Eq. 4.21 are known as discrete measurements and only functions of time which also
allows to numerically compute the temporal gradient dT/dt|z=z1.

Knowing TW allows the the calculation of Q and later q̇ as depicted in Fig. 4.3.

Figure 4.3: Heat Q through change in temperature

The total heat Q can be calculated according to Eq. 4.22

Q = cpρ

∫︂ ∞

z=0
TW−Tdz ≈ cpρ[TWL−∆z1

2
(TW+T1)−

∆z

2
(T1+T2)−

∆z

2
(T2+T3)−...−∆z

2
(T6+T7)] (4.22)

Now Q is a function of time and q̇ can be calculated using Eq. 4.23

q̇ =
Q(ti)−Q(ti−1)

ti − ti−1
(4.23)
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4.2.2 Gaussian Error Function

Another method is the analytical solution to the homogenous general heat conduction equation 2.13. The
Gaussian Error Function erf(z) is defined as

erf(z) =
1√
π

∫︂ z

0
e−x2

dx (4.24)

over the domain D = (−1, 1). The complimentary function is called erfc(z) and defined as erfc(z) =
1− erf(z).

As described in [7] the complimentary error function erfc(z) solves the homogenous general heat conduction
equation 2.13. The wall temperature TW (t, z) can be computed using data from any given depth and time
as

TW (t, z) = T0 +

∫︂ t

0
A(x)erfc

(︃
z

2
√︁

a(t− x)

)︃
dx. (4.25)

This analytical solution can be approximated as a Riemann-sum with increasing accuracy for a higher
temporal resolution

TW (j,∆t, z) = T0 +

j−1∑︂
i=1

Aierfc

(︃
z

2
√︁
a∆t(j − i)

)︃
∆t. (4.26)

Now we introduce a new variable Bi according to Eq. 4.27 in order to get an iterative solution for every
consecutive time step. We also introduce the variable ζ for the argument of the error function

Bi :=
TW,j − T0

∆t
(4.27)

ζ :=
z

2
√
a∆t

. (4.28)

With the initial value A1 = 0 according to Eq. 4.26 we can calculate the subsequent Bi explicitly according
to Eq. 4.29

Bj+1 =

j∑︂
i=1

Aierfc

(︃
ζ√︁

(j − i+ 1)

)︃
=

j−1∑︂
i=1

Aierfc

(︃
ζ√︁

(j − i+ 1)

)︃
+Aj

(︃
ζ

1

)︃
. (4.29)

Now we can finally solve for the unknown Aj and calculate every Bj+1 iteratively according to Eq. 4.30:

Aj =

Bj+1 −
∑︁j−1

i=1 Aierfc

(︃
ζ√

(j−i+1)

)︃
erfc(ζ)

. (4.30)

This yields the wall temperature TW,jfor every iteration j according to Eq. 4.31

TW,j = T0 +∆t

j−1∑︂
i=1

Ai. (4.31)
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The specific heat flux q̇ can be calculated as described in Eq. 4.22 and 4.23.

4.2.3 Differential Equation

The next method follows a similar approach as the heat conduction equation with the distinction of a
different model to calculate the heat flux. The idea is to formulate a differential equation with constant
terms and factors for the wall temperature. The first model used is depicted in Fig. 4.4 and uses Eq. 4.32

Q

cpρ
=

∫︂ ∞

z=0
TW −Tdz ≈ TWL−∆z1

2
(TW +T1)−

∆z

2
(T1+T2)−

∆z

2
(T2+T3)− ...−∆z

2
(T6+T7). (4.32)

This equation can be rearranged and leads to

Q

cpρ
≈ −∆z1

2
TW + T0L− ∆z1

2
T1 −∆z(

T1

2
+ T2 + ...+ T6 +

T7

2
) =:

A

cpρ
TW +

B

cpρ
(4.33)

with the introduction of the two factors A and B

A =
ρcp∆z1

2
(4.34)

B = −ρcpT0L+ ρcp

(︃
T1∆z1

2
+ ∆z

(︃
T1

2
+ T2 + ...+ T6 +

T7

2

)︃)︃
(4.35)

which shall be used later. Furthermore for the calculation of the wall temperature we use Fourier’s law of
heat conduction

q⃗̇ = λ∇T. (4.36)

which can be simplified to Eq. 4.37

q̇ = λ
dT

dz
(4.37)

for the 1-dimensional case. Now the spatial temperature gradient can be approximated using Taylor
polynomials for the first and second thermoelement since the wall temperature is unknown

T1 = TW − T ′∆z1 +
T ′′

2
∆z1

2 (4.38)

T2 = TW − T ′∆z2 +
T ′′

2
∆z2

2 (4.39)

Now we eliminate T ′′ by multiplying Eq. 4.38 with ∆z2
2, Eq. 4.39 with ∆z1

2 and subtracting Eq. 4.39
from Eq. 4.38. This leads to Eq. 4.40

T1∆z2
2 − T2∆z1

2 = TW (∆z2
2 −∆z1

2) + T ′(∆z1∆z2
2 −∆z2∆z1

2) (4.40)
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Figure 4.4: Heat flux using thermoelements 1 and 2

which can be solved for T ′ in order to get the spatial temperature gradient needed

T ′ =
dT

dz
=

T1∆z2
2 − T2∆z1

2 − TW (∆z2
2 −∆z1

2)

∆z1∆z2
2 −∆z2

∆z1
2. (4.41)

Eq. 4.41 yields the second equation needed to formulate a differential equation by differentiating Eq. 4.33.
First we introduce two factors C and D as

dT

dz
=

C

λ
TW +

D

λ
(4.42)

with

C = −λ
∆z1 +∆z2

∆z1∆z2
2 −∆z2∆z1

2 (4.43)

and

D =
T1∆z2

2 − T2∆z1
2

∆z1∆z2
2 −∆z2∆z1

2 . (4.44)

The temporal differentiation of Q from Eq. 4.33 is equal to q̇ from Eq. 4.37 plus the heat flux lost on the
underside of the probe. The sides of the probe are well insulate and thus assumed adiabatic. This is stated
in Eq. 4.45

q̇ =
dQ

dt
+ q̇L. (4.45)
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The heat flux lost on the underside of the probe is relatively small. Therefore the temperature gradient can
be simply approximated by a finite difference

q̇L ≈ λ
T7 − T6

∆z
. (4.46)

Inserting Eq. 4.33, 4.42 and 4.46 in Eq. 4.45 yields the following differential equation for TW with known
variables A,B,C,D and qL̇

ATẆ = CTW − Ḃ +D − q̇L. (4.47)

This inhomogenous differential equation of the first order has an analytical solution which is

TW (t) = e
Ct
A

(︃
T0 +

∫︂ t

0

e
−Cx
A (D(x)− q̇L − Ḃ(x))

A
dx

)︃
. (4.48)

This wall temperature can then be used to calculate the heatflux, for example by using Eq. 4.37 or the
method described in 4.22.

4.2.4 Finite Difference Method

The finite difference method solves the heat conduction equation for a 1-dimensional case with temperature
measurements along one axis (e.g. the z-axis) or a 2-dimensional grid with temperature measurements
along a z-axis as well as a r-axis. Firstly, the 1-dimensional case shall be described and then the extension
to two dimensions is made.

4.2.5 1-dimensional Finite Difference Method

The 1-dimensional finite difference method starts by assuming a cubic spline for the temperature function
of the form

T (z) = T1 +A(z − z1) +B(z − z1)
2 + C(z − z1)

3. (4.49)

Now Eq. 4.49 is evaluated at the points z2 = z1 +∆z and z3 = z1 + 2∆z so that

T2 = T1 +A∆z +B∆z2 + C∆z3 (4.50)

T2 = T1 + 2A∆z +B(2∆z)2 + C(2∆z)3. (4.51)

Eq. 4.50 and 4.51 can be used to eliminate the factors A and B

T (z) = T1 −
(−4C∆z3 + 3T1 − 4T2 + T3)(z − z1)

2∆z
− (6C∆z3 − T1 + 2T2 − T3)(z − z1)

2

2∆z2
+ C(z − z1)

3

(4.52)
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so only the factor C remains. We can use Eq. 2.13 evaluated at z = z1 to solve for C. This yields

C = −
cp

dT
dt ρ

6∆zλ
+

T1 − 2T2 + T3

6∆z3
. (4.53)

Now Eq. 4.52 can be evaluated for z → 0

TW = T1 +
(−4C∆z3 + 3T1 − 4T2 + T3)z1

2∆z
+

(6C∆z3 − T1 + 2T2 − T3)z
2
1

2∆z2
− Cz31 (4.54)

which also yields the heat flux q̇

q̇ = λ
dT

dz

⃓⃓⃓⃓
z→0

= λ

(︃
−4C∆z3 + 3T1 − 4T2 + T3

2∆z
+

(6C∆z3 − T1 + 2T2 − T3)z1
∆z2

− 3Cz21

)︃
. (4.55)

4.2.6 2-dimensional Finite Difference Method

The 2-dimensional method also uses a cubic spline to approximate the temperature distribution along the
z-axis. Analogously, Eq. 4.49 is simplified to Eq. 4.52. The heat conduction equation can be discretized
using the notation depicted in Fig. 4.5. Therefore we have the discrete heat conduction equation 4.56

Figure 4.5: Temperature measurements and approximated temperature

ρcp
dT

dt
− λ

T1 − 2T2 + T3

∆z2
− λ

4(Tr2 − T2)

∆r2
= 0. (4.56)
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As depicted in Fig. 4.5 for our grid we need the non-measured temperature Tr2. We can solve Eq. 4.56 for
Tr2

Tr2 =
cp∆r2 dT2

dt ∆z2ρ−∆r2λT1 + 2∆r2λT2 + 4∆z2λT2 −−∆r2λT3

4∆z2λ
. (4.57)

Now we interpolate the temperature Tr1 using our measured temperature Tr12 as well as the calculated
Tr2

Tr1 = Tr12 +
Tr2 − Tr12

z1/2 + ∆z
z1/2. (4.58)

To determine C from Eq. 4.52 we use a temperature distribution of the radial coordinate r

T (r) = T1 +Dr2. (4.59)

The Laplace operator ∆T of the temperature is for cylindrical coordinates with point symmetry defined as

∆T =
d

rdr

(︃
r
dT

dr

)︃
+

d2T

dz2
. (4.60)

Therefore in our case this yields

∆T =
6C∆z3 − T1 + 2T2 − T3

∆z2
+

4(−T1 + Tr1)

∆r2
. (4.61)

Now we can use the general heat conduction equation again to calculate C using Tr1 from Eq. 4.58

C =
−cp∆r2 T1

dt∆z2ρ+ λ(∆r2(T1 − 2T2 + T3) + 4∆z2(−T1 + Tr1))

6∆r2∆z3λ
. (4.62)

Using this updated C, the same procedure as in the 1-dimensional finite difference method can be deployed,
namely making use of Eq. 4.54 and 4.55 to calculate the wall temperature TW and heat flux q̇ respectively.
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5 Results

This chapter shows the calculation results using the methods delineated in chapter 4. The test case yields the
wall temperature as well as the heat flux. This can be compared to the calculation results of the analytical
solution using the Laplace transform (here referred to as Monde) as well as the newly invented inverse
heat flux calculation methods. The abbreviations for the Heat Conduction Equation Method and Finite
Difference Method are HCE and FD1D respectively. The cosine test case was used to continuously increase
the complexity of the heat flux calculation algorithms. All features of the cosine test case can also be
observed in the final test case, therefore the cosine case shall not be discussed in the following. The methods
Gaussian Error Function and Differential Equation proved not to be applicable to our measurement data,
because they needed an unproportionally high amount of pretreatment. Given the measurement oscillations
in the temperature measurements as depicted in the calculation results in Fig. 5.7 this data proved to be
too strongly fluctuating for the iterative processes of the Gaussian Error Function and Differential Equation
methods. The test case was designed to be 1-dimensional and did not provide radial temperature data.
Therefore FD2D was not used for the test case and consequently not used for the measurement data since
it could not be validated. The source code of the implemented calculation methods from Chapter 4 is
attached in the appendix.

5.1 Wall Temperature and Heat Flux in the Test Case

5.1.1 Linear Test Case

The simplest form of the test case is linear temperature decrease. All in Fig. 5.1 depicted calculation models
approximate the unknown wall temperature TW on a global level very well. Over the course of the whole
simulation the Monde solution, the Heat Conduction Equation and the Finite Difference Method in the
1-dimensional form agree with the simulation very well.

Upon closer inspection, a small difference between test case and the Heat Conduction Equation can
be observed. This is depicted in Fig. 5.2 and can be attributed to the fact, that the Heat Conduction
Equation does not take the heat flux on the bottom of the probe into account. The detailed depiction of the
temperature is continued in the form that is presented in 5.2. The temperature decrease is continued and
matched by the calculation methods Finite Differences and Monde until the end of the simulation.

Using the wall temperature TW the heat flux q̇ on the surface of the probe can be calculated. The graphs for
the same calculation methods as before are depicted in Fig. 5.3. Similarly to the temperature trend the heat
flux is calculated very accurately. The temperature gradient is proportional to the heat flux therefore the
graph is not constant but increases at a decreasing rate resembling a root-function. The rising temperature
gradient is not apparent in the temperature graph, but can be logically explained. The cooled surface has a
higher temperature difference to the inside of the probe, therefore the heat flux rises at the beginning.
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Figure 5.1: Calculated temperature in the linear test case

Figure 5.2: Calculated temperature in the linear test case

After a delay the cooling effect also affects most of the probe body and the heat flux rise slows down. The
heat flux has a negative sign since it is emmitted heat by the probe. The absorbed heat by the droplet
would be positive.
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Figure 5.3: Calculated heat flux in the linear test case
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5.1.2 Final Test Case

All features of the cosine test case can be observed in the final test case which combines a linear temperature
decrease which resembles a cooling effect with a sinusoidal temperature course. The sinusoidal course
approximates a temperature measurement of drop impact. The drop lands on the heated body, cools it
down and evaporates. Heating from the underlying probe body increases the temperature again. This
characteristic temperature trend can be seen in the measurement data (see Fig. 5.7). The beginning of the
simulation features a response delay of the thermoelement measurement. Often singularities are observed
when the drop first touches the surface and a contact temperature results. This singularity is dampened,
because the temperature changes faster than the thermoelement can record data. The initial discontinuity
is described by a step function (see Fig. 5.4). The temperature trend continues in the same form until the
end of the simulation. An exemplary discussion of the first 10 s covers all observed phenomena.

In contrast to the linear test case the test case data does only overlap with the Monde solution. All models
differ in amplitude and the Heat Conduction Equation method even in phase shift. The phase shift is
explicable due to the time the temperature gradient needs to travel through the material. This information
delay is used to calculate the total heat. The model does not contain a function which reverses the phase
shift. This could be implemented, but would lead to more data preprocessing.

The Monde solution does exactly match the test case temperature in amplitude and phase shift. A higher
calculation time correlates with higher accuracy in comparison to the other calculation methods.

The Finite Difference Method in its 1-dimensional version has no phase shift. The temperature oscillation
is overestimated by approximately 10 percent.

The mean of all calculations fits the mean of the real temperature. The Monde solution calculated the
temperature trend most exactly, the Finite Difference Method also calculated mean and phase accurately,
though overestimated the temperature amplitude by a small amount. The Heat Conduction Equation is a
rough estimate for amplitude and phase.

Figure 5.4: Calculated temperature in the final test case

The first 10 s also suffice to describe the characteristics of the heat flux curve. The following 50 s which are
not depicted in Fig. 5.5 show the exact same trend until the end of the simulation.
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Surprisingly the Monde solution which calculated the temperature best underestimated the heat flux by a
big factor. The real heat flux from the test case is roughly 4 times higher in amplitude. The phase shift is
smallest for the Monde and the Finite Difference solution. The Heat Conduction Equation also calculates
the phase relatively well. All three calculation methods determine the mean of the heat flux exactly. The
phenomenon that Monde differs from other calculation methods for the heat flux can also be observed in
the measurement data. The Monde solution seems to calculate a broader mean. Changes in heat flux are
therefore not represented by the same amplitude.

Figure 5.5: Calculated heat flux in the final test case
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5.2 Wall Temperature and Heat Flux in Measurement Data

The final temperature trend for the real measurement data is depicted in Fig. 5.6. The measurement took
place over the course of 2262 s with a sample rate of 95 Hz. The algorithm provided by Monde et al. only
supports 16 000 data points. Therefore the measurement data needed to be sliced in 13 data sets for
individual calculation. These assembled results show an initial discontinuity at the beginning of each data
set.

Allover the three calculation methods used agree on the wall temperature very well. The fluctuation in
measurement is more sensible for the Finite Difference method and Monde than the Heat Conduction
Equation. The global decrease is depicted in Fig. 5.6. Individual drop impacts cannot be distinguished in
the global trend. The temperature drops in the domain from T = 460 ◦C to T = 250 ◦C with a constant
slope. As depicted in Fig. 5.7 individual drop impacts can be made out. Consecutive drop impacts do not
seem to interfere with each other in the high temperature domain T ∈ [250, 460] ◦C. Interactions between
consecutive drops can occur in a lower temperature domain T ∈ [110, 250]. This was also affirmed by image
data [4].

Fig. 5.7 depicts an arbitrary interval of roughly 25 s in length. Other intervals resemble the same
characteristics qualitatively. Individual decreases in temperature can be made out due to the drop impact
and reheating from the hot body underneath. The drop impact causes a rapid local temperature decline.
This temperature decline stops as soon as the drop does not touch the probe surface anymore. The
surrounding and underlying probe body then slowly reheats the drop impact area until the next drop
impact.

The agreement between all three models can be seen in Fig. 5.7. The temperature increase after drop
impact seems to be more rapid than in the Heat Conduction Equation graph, because the Monde solution
and the mean of the Finite Difference Method agree and validate each other. The temperature fluctuations
seem to increase in amplitude around T = 250 ◦C. This can be attributed to wetting. For these lower
temperatures the time between each individual drop impact does not suffice for the complete evaporation of
the previous droplet. The wetted surface leads to a higher temperature difference between drop impact and
(partial) drop evaporation. The higher temperature difference also causes a higher temperature gradient
and therefore higher heat flux. This can be seen in Fig 5.8.
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Figure 5.6: Calculated temperature in measurement data

Figure 5.7: Calculated temperature in measurement data
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Fig. 5.8 shows the global trend of the heat flux. For the whole time of the simulation no individual drop
impacts can be recognized. Similarly to the temperature trend a section of the heat flux trend demonstrates
the characteristic differences of the different calculation models used. Fig. 5.9 shows individual drop impact
and allows distinguishable heat flux graphs. In contrast to the temperature graph the Heat Conduction
Equation shows the highest temperature fluctuations. The Monde solution depicts an averaged heat flux
which does not oscillate in the same high amplitude as the Finite Difference method or the Heat Conduction
Equation. Due to the good agreement in temperature trends between the Finite Difference method and
Monde, the heat fluxes of those two models are most likely accurate as well. It is to be expected that the
true heat flux is slightly higher than the Monde calculation as the final test case demonstrated. The Heat
Conduction Equation overestimates the heat flux due to the fact, that firstly, the heat lost on the bottom of
the probe is neglected and secondly, the temperature rises more slowly (see Fig. 5.7). The 2-dimensional
Finite Difference Method provides a continuous solution that agrees with the 1-dimensional version very
well.

Figure 5.8: Calculated heat flux in measurement data

Figure 5.9: Calculated heat flux in measurement data
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6 Conclusion and Outlook

Different methods for the inverse calculating of the heat flux during the impact of a drop chain on a
heated surface were implemented. These methods consist on the one hand of implementing the already
existing calculation method presented by Monde et al. for the present test cases and measurement data.
On the other hand new calculation methods, namely the Heat Conduction Equation method, the Gaussian
Error Function method, the Differential Equation method and the Finite Difference method in its 1- and
2-dimensional form, were implemented. The measurement data as well as the test case, which was modeled
after the measurement data, reduced the applicable calculation methods to the Heat Conduction Equation
method and the Finite Difference Method.

A test case in its most complex form showed a good agreement between the simulated surface temperature,
the solution obtained by the Monde code and the Finite Difference Method for any time. The Heat
Conduction Equation calculated the mean of the temperature decrease over the time of the whole simulation
accurately. The heat flux was calculated precisely by the Heat Conduction Equation and the Finite Difference
method. The Monde solution provided an accurate solution for the mean of the heat flux but could not
depict the spikes in the heat flux.

The measurement data was evaluated using the Monde code, the Heat Conduction Equation method
and the Finite Difference method. The solution for the surface temperature showed good agreement
between Monde and the Finite Difference method. The Heat Conduction Equation managed to calculate
the global surface temperature trend. The heat flux was calculated and all used methods agreed over their
global trend. The Heat Conduction Equation method’s solution oscillated to such a high degree, that post
processing will be necessary, if this method should be employed.

Finally, the Finite Difference method agreed with the proven Monde code. In a special case, it even provided
a more accurate depiction of the heat flux. The computing time of this new method is substantially lower
than the Monde code and it is not limited to 16 000 data points.

Future work could include extensive data pretreatment to also implement the Gaussian Error Function
method and the Differential Equation method. Furthermore the heat flux results of the Heat Conduction
Equation method can be post processed to reduce oscillation. An agreement between these improved
methods and the Finite Difference method further validates the results.
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Appendix
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clear; 
close all;
clc; 
 
%% define variables
 
% material value stainless steel 1.4841
 
rho     = 7900;                 % kg/m³             density
cp      = 542;                  % K/(kg K)          specific heat at constant pressure
lambda  = 16;                   % W/(m K)           thermal conductivity
e_w     = sqrt(rho*cp*lambda);  % J/(m² K sqrt(s))  thermal effusivity
alpha   = lambda/(rho*cp);      % m/s               thermal diffusivity
temp.samplerate = 95;
 
%% load Data
 
load('20200911_000.mat')
 
%% Heat Conduction Equation method calculation
 
 
% determine geometric parameters
 
delta_z1 = -temp.Position_z1(1,1);      % m     distance from first thermoelement to 
surface
delta_z2 = -temp.Position_z2(1,1);      % m     distance from second thermoelement to 
surface
delta_z = delta_z2 - delta_z1;          % m     distance between thermoelements
h = 0.025;                              % m     height of probe body
delta_z6 = h + temp.Position_z6(1,1);   % m     distance from sixth thermoelement to 
bottom
delta_z7 = h + temp.Position_z7(1,1);   % m     distance from seventh thermoelement to 
bottom
 
% for test case
 
% T_z1 = temp.T_z1;                   % °C    temperature thermoelement z1
% T_z2 = temp.T_z2;                   % °C    temperature thermoelement z2
% T_z3 = temp.T_z3;                   % °C    temperature thermoelement z3
% T_z4 = temp.T_z4;                   % °C    temperature thermoelement z4
% T_z5 = temp.T_z5;                   % °C    temperature thermoelement z5
% T_z6 = temp.T_z6;                   % °C    temperature thermoelement z6
% T_z7 = temp.T_z7;                   % °C    temperature thermoelement z7
 
% for measurement data
 
T_z1 = temp.T_z1';                % °C    temperature thermoelement z1
T_z2 = temp.T_z2';                % °C    temperature thermoelement z2
T_z3 = temp.T_z3';                % °C    temperature thermoelement z3
T_z4 = temp.T_z4';                % °C    temperature thermoelement z4 
T_z5 = temp.T_z5';                % °C    temperature thermoelement z5
T_z6 = temp.T_z6';                % °C    temperature thermoelement z6
T_z7 = temp.T_z7';                % °C    temperature thermoelement z7
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dT_z1Dt = gradient(temp.T_z1,1/samplerate);        % temporal gradient thermoelement z1
dT_z7Dt = gradient(temp.T_z7,1/samplerate);        % temporal gradient thermoelement z7
 
t = temp.t;
 
% read temperature in struct with average over "meanWidth"
 
meanWith = 3;
T_z1 = movmean(temp.T_z1,meanWith);                   % °C    temperature thermoelement 
z1
T_z2 = movmean(temp.T_z2,meanWith);                   % °C    temperature thermoelement 
z2
T_z3 = movmean(temp.T_z3,meanWith);                   % °C    temperature thermoelement 
z3
T_z4 = movmean(temp.T_z4,meanWith);                   % °C    temperature thermoelement 
z4
T_z5 = movmean(temp.T_z5,meanWith);                   % °C    temperature thermoelement 
z5
T_z6 = movmean(temp.T_z6,meanWith);                   % °C    temperature thermoelement 
z6
T_z7 = movmean(temp.T_z7,meanWith);                   % °C    temperature thermoelement 
z7
T_r1 = movmean(temp.T_r1,meanWith);                   % °C    temperature thermoelement 
r1
T_r2 = movmean(temp.T_r2,meanWith);                   % °C    temperature thermoelement 
r2
T_r3 = movmean(temp.T_r3,meanWith);                   % °C    temperature thermoelement 
r3
T_r4 = movmean(temp.T_r4,meanWith);                   % °C    temperature thermoelement 
r4
 
% preallocate memory
 
q = zeros(1,length(temp.t));
Q = zeros(1,length(temp.t));
T_z0 = zeros(1,length(temp.t));
T_z8 = zeros(1,length(temp.t));
 
% set first timestep
 
T_z0(1) = T_z1(1);                   % °C    temperature surface (z=0mm)
T_z8(1) = T_z7(1);                   % °C    temperature bottom  (z=25mm)
 
Q(1) = rho*cp*(+ ...
       delta_z1*(T_z0(1)+T_z1(1))/2 +...       % Q in upper interval between surface and 
first thermoelement
       delta_z/2*(T_z1(1) + 2*T_z2(1) + 2*T_z3(1) + 2*T_z4(1) + 2*T_z5(1) + 2*T_z6(1) + 
T_z7(1)) + ...   % delta Q in all thermoelements
       delta_z7*(T_z7(1)+T_z8(1))/2);          % Q in lower interval between bottom and 
seventh thermoelement
   
for it=2:1:length(temp.t)
    
    % calculate wall temperature surface (z=0mm)
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    T_z0(it) = T_z1(it)*(1 + delta_z1/delta_z) - T_z2(it)*delta_z1/delta_z + dT_z1Dt(it)
*(delta_z1*delta_z2)/(2*alpha);
 
    % calculate wall temperature bottom  (z=25mm)
    
    T_z8(it) = T_z7(it)*(1 + delta_z7/delta_z) - T_z6(it)*delta_z7/delta_z + dT_z7Dt(it)
*(delta_z7*delta_z6)/(2*alpha);
 
    % calculate heat in material
    
    Q(it) = rho*cp*(+ ...
           delta_z1*(T_z0(it)+T_z1(it))/2 +...       % Q in upper interval between 
surface and first thermoelement
           delta_z/2*(T_z1(it) + 2*T_z2(it) + 2*T_z3(it) + 2*T_z4(it) + 2*T_z5(it) + 
2*T_z6(it) + T_z7(it)) + ...   % delta Q in all thermoelements
           delta_z7*(T_z7(it)+T_z8(it))/2);           % Q in lower interval between 
bottom and seventh thermoelement
    
    % calculate heat flux  
    
    q(it) = (Q(it) - Q(it-1)) / (temp.t(it) - temp.t(it-1));
    
end
 
% save data to struct
 
heatHCE.measurement_number = temp.measurement_number;
heatHCE.solver = 'Heatflux Ilias Heat Conduction Equation';
heatHCE.meanWith = meanWith;
heatHCE.t = temp.t';
heatHCE.q = q;
heatHCE.T_z0 = T_z0;
 
%% Gaussian Error Function method
 
% set variables for the calculation
 
delta_t = 0.6;                                          % s     time difference between 
temperature measurements
                                                        % > 1   for realistic 
temperature results
tpoints = (temp.t(1,end)-temp.t(1,1))/delta_t;          % -     number of points, for 
which the temperature is calculated
tstar = linspace(temp.t(1,1),temp.t(1,end),tpoints);    % s     timevector
delta_z1 = -temp.Position_z1(1,1);                      % m     distance from first 
thermoelement to surface
 
zeta = delta_z1 / (2 * sqrt(alpha * delta_t));
 
% smoothing data for smalter delta_t
 
fT_z1 = fit(temp.t',temp.T_z1','smoothingspline','SmoothingParam',0.7);
T_z1star = fT_z1(tstar);
 
B(:) = (T_z1star(:)-T_z1star(1))/delta_t;

iv



 
 
% loop for calculation
 
A = zeros(length(tstar),1);         % preallocate memory
Asum = zeros(length(tstar),1);      % preallocate memory
T_z0star = zeros(length(tstar),1);  % preallocate memory
 
 
% define variable in first time step
 
A(1) = 0;
Asum(1) = 0;
T_z0star(1) = T_z1star(1);
 
 
for j=2:1:(length(tstar)-1)
        
    Asum(j) = Asum(j-1)+A(j-1);
    
    A(j) = (B(j+1)-Asum(j))/(erfc(zeta));
    
    % surface temperature for time step j
    
    T_z0star(j) = T_z1star(1) + delta_t*Asum(j);
    
end
 
T_z0star(end) = T_z0star(end-1);
Tstar = T_z0star;
 
% calculates heat flux for T_z0star
 
x = [1 4.5 8 11.5 15 18.5 22] / 1000 ;  %depth of measurement points H1 to H7 in Meter
delta_z1 = -temp.Position_z1(1,1);      % m     distance from first thermoelement to 
surface
delta_z2 = -temp.Position_z2(1,1);      % m     distance from second thermoelement to 
surface
delta_z = delta_z2 - delta_z1;          % m     distance between thermoelements
 
T_z1 = temp.T_z1';                % °C    temperature thermoelement z1
T_z2 = temp.T_z2';                % °C    temperature thermoelement z2
T_z3 = temp.T_z3';                % °C    temperature thermoelement z3
T_z4 = temp.T_z4';                % °C    temperature thermoelement z4 
T_z5 = temp.T_z5';                % °C    temperature thermoelement z5
T_z6 = temp.T_z6';                % °C    temperature thermoelement z6
T_z7 = temp.T_z7';                % °C    temperature thermoelement z7
 
% first time step
 
T_z0(1) = T_z1(1);
T_z02(1) = T_z1(1);
T_z8(1) = T_z7(1);
Q(1) = rho * cp * temp.T_z1(1) * x(end) - rho * cp * x(1) * T_z0(1) / 2 - rho * cp * 
delta_z * ...
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           (temp.T_z1(1) * x(1) / (2 * delta_z) + temp.T_z1(1) / 2 + temp.T_z2(1) + 
temp.T_z3(1) + ...
           temp.T_z4(1) + temp.T_z5(1) + temp.T_z6(1) + temp.T_z7(1) / 2);
       
% loop for remaining time steps
 
for t = 2:length(length(tstar))
    
    dT_z7Dt = gradient(temp.T_z7);        % temporal gradient of thermoelement 7
    T = round(tstar(t)*length(temp.t)) / delta_t;
    Q(t) = rho*cp*(+ ...
           delta_z1*(T_z0star(t)+temp.T_z1(T))/2 +...       % Q in upper interval 
between surface and first thermoelement
           delta_z/2*(temp.T_z1(T) + 2*temp.T_z2(T) + 2*temp.T_z3(T) + 2*temp.T_z4(T) + 
2*temp.T_z5(T) + 2*temp.T_z6(T) + temp.T_z7(T)) + ...   % delta Q in all thermoelements
           delta_z7*(T_z7(T)+T_z8(T))/2);           % Q in lower interval between bottom 
and seventh thermoelement
        
       % calculate heat flux
       
    qstar(t) = -(Q(t) - Q(t-1)) / (temp.t(1,T) - temp.t(1,T-1)); 
    
end
 
%% Differential Equation method 
 
% define geometry and inital values
 
x = [1 4.5 8 11.5 15 18.5 22] / 1000 ;  % depth of measurement points H1 to H7 in Meter
 
delx1 = x(1) - 0;
delx2 = x(2) - 0;
delx = x(2) - x(1);
 
k = lambda;
T0 = temp.T_z1(1,1);
L = x(end);
 
%% coefficients for analytical solution 
 
c = rho * cp * delx1 / 2; 
A = -k * (delx1 + delx2) / (delx1 * delx2);
 
D = zeros(1,length(temp.t));
B = zeros(1,length(temp.t));
qL = zeros(1,length(temp.t));
 
for t = 1:length(temp.t)
    
    T1 = temp.T_z1(1,t);
    T2 = temp.T_z2(1,t);
    T3 = temp.T_z3(1,t);
    T4 = temp.T_z4(1,t);
    T5 = temp.T_z5(1,t);
    T6 = temp.T_z6(1,t);
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    T7 = temp.T_z7(1,t);
    D(t) = -rho * cp * T0 * L + rho * cp * delx * ...
           (T1 * delx1 / (2 * delx) + T1 / 2 + T2 + T3 + T4 + T5 + T6 + T7 / 2); 
                                                             
    B(t) = k * (T1 * delx2^2 - T2 * delx1^2) / (delx1 * delx2 * (delx1 + delx2));
    qL(t) = k * (T7 - T6) / delx;
end
    
% calculate analytical solution with Integral K(t)
 
Ddot = zeros(1,length(temp.t));
K = zeros(1,length(temp.t));
T_w = zeros(1,length(temp.t));
delt = temp.t(1,2) - temp.t(1,1);
c1 = T0 ;
 
for t = 2:length(temp.t)
    
    Ddot(t) = (D(t) - D(t-1)) / delt;
    t1 = temp.t(1,t-1);
    t2 = temp.t(1,t);
    K(t) = K(t-1) + delt * (exp( -A * t1 / c) * (B(t-1) - qL(t-1) - Ddot(t-1)) + ...
           exp( -A * t2 / c) * (B(t) - qL(t) - Ddot(t))) /2;  
    T_w(t) = exp(A * t2 / c) * (c1 + K(t));
    
end
 
%% Finite Difference method 1-dimensional calculation 
 
% geometric parameters
 
delta_z1 = -temp.Position_z1(1,1);      % m     distance from first thermoelement to 
surface
delta_z2 = -temp.Position_z2(1,1);      % m     distance from second thermoelement to 
surface
delta_z = delta_z2 - delta_z1;          % m     distance between thermoelements
 
t = temp.t;                             % s     time vector
 
% read temperature in struct with average over "meanWidth"
 
meanWith = 3;                        
T_z1 = movmean(temp.T_z1,meanWith);     % °C    temperature thermoelement z1
T_z2 = movmean(temp.T_z2,meanWith);     % °C    temperature thermoelement z2
T_z3 = movmean(temp.T_z3,meanWith);     % °C    temperature thermoelement z3
 
dT_z1Dt = gradient(T_z1,(1/temp.samplerate));      % temporal gradient thermoelement z1
 
% Preallocate Memory
 
c    = zeros(length(temp.t),1);
q_z0 = zeros(length(temp.t),1);
T_z0 = zeros(length(temp.t),1);
 
% iteration for every time step
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for it=1:1:length(temp.t)
    
    % calculate factor c of cubix approximation
    
    c(it) = -(cp*dT_z1Dt(it)*rho)/(6*delta_z*lambda) + (T_z1(it)-2*T_z2(it)+T_z3(it))/
(6*delta_z^3);
    
    % calculate upper surface temperature (z=0mm)
    
    T_z0(it) = T_z1(it) + ((-4*c(it)*delta_z^3+3*T_z1(it)-4*T_z2(it)+T_z3(it))*delta_z1)
/(2*delta_z) - ((6*c(it)*delta_z^3-T_z1(it)+2*T_z2(it)-T_z3(it))*delta_z1^2)/
(2*delta_z^2) - c(it)*delta_z1^3;
    
    % calculate inverse heat flux 
    
    q_z0(it) = lambda*(-(-4*c(it)*delta_z^3+3*T_z1(it)-4*T_z2(it)+T_z3(it))/(2*delta_z) 
+ ((6*c(it)*delta_z^3-T_z1(it)+2*T_z2(it)-T_z3(it))*delta_z1)/(delta_z^2) + 3*c(it)
*delta_z1^2);
 
end
 
% save data to struct
 
heatFD1D.measurement_number = temp.measurement_number;
heatFD1D.solver     = 'heatFluxes_FD 1D (Ilia)';
heatFD1D.meanWith   = meanWith;
heatFD1D.t          = temp.t';
heatFD1D.q_z0       = q_z0;
heatFD1D.T_z0       = T_z0;
 
%% Finite Difference method 2-dimensional calculation 
 
% geometric parameters
 
delta_z1 = -temp.Position_z1(1,1);      % m     distance from first thermoelement to 
surface
delta_z2 = -temp.Position_z2(1,1);      % m     distance from second thermoelement to 
surface
delta_z = delta_z2 - delta_z1;          % m     distance between thermoelements in axial 
direction
delta_r = temp.Position_r1(1,2) - temp.Position_z1(1,2); % m     distance between 
thermoelements in radial direction
 
 
t = temp.t;                             % s     time vector
 
% read temperature in struct with average over "meanWidth"
% meanWith = 2 * 95/0.5; % width definied by samplerate and drop frequency times 2
 
meanWith = 1;                        
T_z1 = movmean(temp.T_z1,meanWith);     % °C    temperature thermoelement z1
T_z2 = movmean(temp.T_z2,meanWith);     % °C    temperature thermoelement z2
T_z3 = movmean(temp.T_z3,meanWith);     % °C    temperature thermoelement z3
T_r1 = movmean(temp.T_r1,meanWith);     % °C    temperature thermoelement r1
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T_r2 = movmean(temp.T_r2,meanWith);     % °C    temperature thermoelement r2
T_r3 = movmean(temp.T_r3,meanWith);     % °C    temperature thermoelement r3
T_r4 = movmean(temp.T_r4,meanWith);     % °C    temperature thermoelement r4
 
dT_z1Dt = gradient(T_z1,(1/temp.samplerate));      % temporal gradient thermoelement z1
dT_z2Dt = gradient(T_z2,(1/temp.samplerate));      % temporal gradient thermoelement z2
 
% Preallocate Memory
 
c     = zeros(length(temp.t),1);
q_z0  = zeros(length(temp.t),1);
T_z0  = zeros(length(temp.t),1);
T_z1r = zeros(length(temp.t),1);
T_z2r = zeros(length(temp.t),1);
 
 
for it=1:1:length(temp.t)
    
    % calculate temperature at position (z=4.5mm; r=3.5mm)
    
    T_z2r(it) = (cp*rho*delta_r^2*delta_z^2*dT_z2Dt(it) - delta_r^2*lambda*T_z1(it) + 
2*delta_r^2*lambda*T_z2(it) + 4*delta_z^2*lambda*T_z2(it) - delta_r^2*lambda*T_z3(it))/
(4*delta_z^2*lambda);
 
    % calculate temperature at position (z=1mm; r=3.5mm)
    
    T_z1r(it) = T_r1(it) + (T_z2r(it)-T_r1(it))/(0.5E-3+3.5E-3)*0.5E-3;
    
    % calculate factor c of cubix approximation
    
    c(it) = -(cp*dT_z1Dt(it)*rho)/(6*delta_z*lambda) + (T_z1(it)-2*T_z2(it)+T_z3(it))/
(6*delta_z^3) - 2*(T_z1(it)-T_z1r(it))/(3*delta_r^2*delta_z);
    
    % calculate upper surface temperature (z=0mm)
    
    T_z0(it) = T_z1(it) + ((-4*c(it)*delta_z^3+3*T_z1(it)-4*T_z2(it)+T_z3(it))*delta_z1)
/(2*delta_z) - ((6*c(it)*delta_z^3-T_z1(it)+2*T_z2(it)-T_z3(it))*delta_z1^2)/
(2*delta_z^2) - c(it)*delta_z1^3;
    
    % calculate inverse heat flux   
    
    q_z0(it) = lambda*(-(-4*c(it)*delta_z^3+3*T_z1(it)-4*T_z2(it)+T_z3(it))/(2*delta_z) 
+ ((6*c(it)*delta_z^3-T_z1(it)+2*T_z2(it)-T_z3(it))*delta_z1)/(delta_z^2) + 3*c(it)
*delta_z1^2);
 
end
 
% save data to struct
 
heatFD2D.measurement_number = temp.measurement_number;
heatFD2D.solver     = 'heatFluxes_FD 2D (Ilia)';
heatFD2D.meanWith   = meanWith;
heatFD2D.t          = temp.t';
heatFD2D.q_z0       = q_z0;
heatFD2D.T_z0       = T_z0;
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