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Summary

A quarter of the world’s population is subjected to a

1 hr time change twice a year (daylight saving time,
DST). This reflects a change in social clocks, not envi-

ronmental ones (e.g., dawn). The impact of DST is
poorly understood. Circadian clocks use daylight to

synchronize (entrain) to the organism’s environment.
Entrainment is so exact that humans adjust to the

east-west progression of dawn within a given time
zone [1]. In a large survey (n = 55,000), we show that

the timing of sleep on free days follows the seasonal
progression of dawn under standard time, but not un-

der DST. In a second study, we analyzed the timing of

sleep and activity for 8 weeks around each DST transi-
tion in 50 subjects who were chronotyped (analyzed for

their individual phase of entrainment [2]). Both param-
eters readily adjust to the release from DST in autumn

but the timing of activity does not adjust to the DST
imposition in spring, especially in late chronotypes.

Our data indicate that the human circadian system
does not adjust to DST and that its seasonal adaptation

to the changing photoperiods is disrupted by the intro-
duction of summer time. This disruption may extend to

other aspects of seasonal biology in humans.

Results and Discussion

Despite the fact that w1.6 billion people experience
DST, few studies have investigated the impact of DST
transitions on physiology and behavior. One found no
effect on psychiatric disorders [3]. Others studied the ef-
fect on traffic accidents with inconsistent results [4–7].
Behavioral studies accompanying subjects across DST
transitions are rare. The first study (65 subjects; 6 days
prior to and 11 days after the autumn change) showed
full adjustment of wake-up times after 5 days [8]. The
second study recorded sleep EEGs and concluded
that sleep architecture adjusts within several days to
the spring DST transition [9]. The largest study (101 sub-
jects) found instantaneous adjustment of bedtimes after
both transitions, while wake-up times took about 1 week
[10]. The longest study, so far (4 weeks around the
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spring change), found interindividual differences in ad-
justment (ranging from 1–2 days up to 2 weeks) [11]
but no effects for the autumn change [12]. The first study
[13, 14] considering different time-of-day preferences in
their subjects (by the morningness-eveningness scale
[15]) found a reduction in sleep duration by w1 hr after
the spring transition for morning and evening types.
Whereas activity times adjusted immediately, sleep
times took a week.

Studying the effects of DST transitions essentially in-
vestigates the potential re-entrainment of individuals
to a new social schedule and should, therefore, consider
chronotype (an individual’s phase of entrainment),
which differs substantially within a given population
[2]. Depending on genotype [16], gender, age [17], and
light exposure, our clocks will adopt a different phase
relationship to dawn. We have developed a simple
tool, the Munich ChronoType Questionnaire (MCTQ;
see Experimental Procedures and Supplemental Data
available online) to assess chronotype in a highly quan-
titative manner.

Assessment of how the human clock adjusts to DST
transitions at nonequatorial latitudes is confounded by
the fact that the times of dawn and dusk also change.
Dawn times (see gray area in Figure 1) change rapidly
around the spring DST transition (which often occurs
close to the March equinox) and change to a lesser ex-
tent around the autumn transition (which often occurs
more than a month after the September equinox). Given
that daylight (including the low light levels at dawn) is the
predominant zeitgeber for our circadian system [1, 19,
20], it is unlikely that it readily adjusts to the abrupt
and purely social DST transitions.

We investigated the adaptation of the human circadian
clock to both season and DST with two approaches.
First, we mined the MCTQ database (containing
w55,000 subjects from Central Europe, including the
date of entry) for seasonal changes in sleep timing at
the population level. Second, we conducted a longitudi-
nal study to describe the adaptation to DST transitions at
the individual level (50 subjects investigated for 4 weeks
before and 4 weeks after both the autumn and the spring
transition in 2006 and 2007, respectively).

Mining the MCTQ database shows that midsleep on
free days, MSF correlates with dawn under standard
time, whereas it is scattered around 3:30 under DST
(Figure 1A). Notably, the onset of DST elicits no signifi-
cant change in sleep timing, whereas a large delay fol-
lows the offset of DST. Self-reported sleep duration
changed significantly across seasons (by w20 min;
Figure 1B).

To understand the dynamics of how individuals re-
spond to DST transitions, we evaluated both the phase
of sleep (as midsleep, calculated from sleep logs) and
the phase of activity (as center of activity, CoAct, calcu-
lated from wrist actimetry; see Experimental Proce-
dures). Figure 2 shows how an individual’s activity pro-
file reflects early or late chronotype. The individual
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Figure 1. Seasonality in Sleep Timing Taken

from the MCTQ Database

Annual time courses are double plotted (the

same data are shown sequentially to more

easilyvisualizesystematic trends) (nz 55,000).

(A) Half-monthly averages of midsleep times

on free days [1], MSF (open circles 6 SEM),

and of wake-up times (line). DST periods are

indicated by the open boxes and their transi-

tions by dashed horizontal lines; dawn times

are shown as a gray to white border. Whereas

sleep times track dawn under standard time,

midsleep is scattered around 3:30 (wake-up

times around 7:40) under DST. Age and sex

ratio were not significantly different in the 24

averages and showed no interactions.

(B) Seasonal changes in sleep duration (filled

circles; averaged over both free and work

days 6 SEM) result in about 20 min more

sleep in winter than in summer (cosine fit:

r = 0.75; p < 0.0001).
weekly phase deviations from baseline are averaged for
both markers (separately for free and work days) either
for the entire cohort (Figure 3A) or for the different chro-
notype groups (Figure 3B; see legend for statistical anal-
ysis). The timing of midsleep and CoAct for all subjects
on free days fully adjusted to the release from DST in au-
tumn within 1 week (top left in Figure 3A). On workdays,
this acute response of CoAct was less pronounced, fol-
lowed by a gradual change over the four post-transition
weeks (top right in Figure 3A). Whereas both midsleep
and CoAct on workdays showed a constant (social)
phase before the release from DST, they paralleled
dawn thereafter, similar to the results shown in
Figure 1A.

The spring transition was anticipated by midsleep on
free days (hence, a reduced acute post-transition phase
jump; Figure 3A). This was even more pronounced for
the timing of activity (CoAct gradually advanced for 5
consecutive weeks) and indicates that the human clock
tracks dawn as photoperiod increases. However, 2
weeks into DST, CoAct delayed again and settled at an
advance of less than 30 min (final relative phase; see Ex-
perimental Procedures). Both midsleep and CoAct on
workdays tracked the social clock before the spring
change as they did in autumn. Whereas midsleep fully
adjusted on workdays (60% of the subjects indicated
using an alarm clock on workdays), the incomplete ad-
vance of CoAct on free days was similar for workdays.

Different chronotypes respond differently to time
changes. Most people (except for extreme early chrono-
types) adjust more readily to delays than to advances,
i.e., they suffer less from jet lag after westward than after
Figure 2. Comparison of Sleep Times and

Activity Profiles between Different Chrono-

types

Sleep times (black bars) and activity (black

lines)—recorded during the two longitudinal

studies around the autumn and the spring

DST transition—averaged for the free days

within the 4 weeks before the autumn change

in an early (top) and a late (bottom) chrono-

type. Sleep onset and offset times are taken

from the sleep logs; activity levels were mea-

sured by wrist actimetry. The phase of mid-

sleep is indicated by an open circle within

the sleep bar and the phase of the center of

activity (CoAct, see Experimental Proce-

dures) as a black square. Chronotype corre-

lated highly with the CoAct at baseline

(see Experimental Procedures; r = 0.56,

p < 0.0001). Sleep log entries also correlated

with the sleep times extracted from the activ-

ity records similarly for both transitions (for

the autumn: sleep-onsetbefore: r = 0.38, p <

0.001; sleep-endbefore: r = 0.7, p < 0.001;

sleep-onsetafter: r = 0.22, p < 0.005; sleep-

endafter: r = 0.55, p < 0.001).
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Figure 3. Adjustments to DST Transitions of Sleep and Activity Times Resulting from the Longitudinal Study

(A) Phase adjustments of midsleep (circles) and activity (CoAct, black squares) around the DST transitions expressed as weekly averages relative

to each individual’s baseline (average phase during the four pretransition weeks, see Experimental Procedures). Results are shown for the entire

cohort both on free (left) and on work (right) days. The autumn transition is shown in the top panels; the spring transition is in the bottom panels.

Horizontal bars connected to the respective symbols represent SEM, which were in most cases smaller than the size of the symbols. n = 50.

(B) The comparison between early (left) and late (right) chronotypes is shown for free days only (otherwise as in [A]). For the changes of midsleep

on free days in autumn, a mixed ANOVA (within-subject design with chronotype [early, intermediate, and late] as a between-subject factor)

shows a significant difference between all weeks (F(4.33;117) = 10.00, p < 0.001). For both transitions, post-hoc tests show that neither the 4

pre- nor the 4 post-transition weeks differ among each other, whereas they differ significantly across the transitions. In autumn, the CoAct times

show no difference between the 8 weeks (F(3.5; 94) = 1.89, p = .13). The changes for CoAct of early chronotypes correlates better with dawn than

with social time (r: 0.938 versus 0.896). In spring, the phase changes of both midsleep and CoAct differ significantly before versus after the tran-

sition (mixed-design ANOVA; midsleep: F(4.57; 128) = 20.26, p % .001; CoAct: F(4.84;170) = 4.36, p % .001), whereas they are statistically indif-

ferent among the pre- and post-transition weeks. The changes for CoAct of late types between week 1 and 6 correlate better with dawn than with

social time (r: 0.974 versus 0.774). Whereas post-hoc tests show that the final phases reached in the last two weeks show no significant differ-

ence relative to any of the 4 weeks prior to transition for both chronotypes, they differ significantly between early and late types (t(49) = 2.13, p %

0.05).
eastward flights [21]. A similar pattern is suggested for
DST transitions [13, 14]. Our results show that adjust-
ment to DST transitions is chronotype specific
(Figure 3B). We present results only for early and late
chronotypes here (‘‘larks’’ and ‘‘owls;’’ those for inter-
mediate chronotypes lie predictably in between the
two extremes) and concentrate on the less socially influ-
enced free days. Midsleep in both larks and owls
showed a large phase jump in response to the autumn
delay (compare with Figure 1A); the response of the Co-
Act suggests that owls delay more readily than larks (at
a level below significance). The chronotype-specific dif-
ferences are more marked after the spring change.
Again, both midsleep and CoAct moved with dawn be-
fore the transition to DST (compare with Figure 1A),
most prominently in the late chronotypes who gradually
advanced their CoAct for five consecutive weeks (com-
pare with Figure 3A). Midsleep of larks readily adjusted
while an apparent full adjustment in owls was transient.
Whereas larks advanced their CoAct by only 40 min,
owls failed to adjust their CoAct to the advance of the
social clock.

The similarity between the longitudinal study (50 indi-
viduals followed across the DST transitions) and those
found in the database is remarkable (compare Figures
3A and 3B with Figure 1A). In both cases, the human cir-
cadian clock tracks dawn under standard time but not
under DST. Whereas the human clock (as measured by
the CoAct) predictably advances from autumn to spring
(15:54 SET, averaged between Nov 19 and Dec 3, com-
pared to 15:14 SET, averaged between Mar 24 and Apr
21), it remains locked to the same time between spring
and autumn (14:36 SET for both, averaged between
Apr 15-29 and Oct 3-28, respectively). These results, in
combination with those from the database, suggest
that the incomplete adjustment of activity in larks and
the nonadjustment in owls continues beyond the four re-
corded post-transition weeks and throughout the
months of DST. Our results also suggest that the circa-
dian clock does not adjust to the DST transition in
spring—especially in late types. Notably, the strongest
reduction of average sleep duration (for 8 consecutive
weeks; Figure 1B) follows the spring transition.

What could trigger the severe effect of DST on sea-
sonal adaptation of the human clock? It is unlikely that
midsleep tracks dawn throughout the summer, espe-
cially at higher latitudes. It is, however, equally unlikely
that the abrupt cessation of dawn tracking, shown
here, reflects a threshold beyond which the clock cannot
advance (corresponding to a wake-up time around 7:30
SET, 8:30 DST). We have previously shown that the hu-
man clock is predominantly entrained to the natural
light-dark cycle (zeitgeberN) and that social time affects
this entrainment [1]. Behaviorally induced light-dark cy-
cles (e.g., by sleeping in a dark room with our eyes
closed; zeitgeberB) may compete with zeitgeberN,
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Figure 4. Relationship between Natural and

Behavioral Light-Dark Cycles with and with-

out DST

The relationship between the natural light-

dark cycle (dawn, zeitgeberN; solid curve)

and the behavioral light-dark cycle (created

by the use of artificial light and sleeping in

dark rooms with closed eyes, zeitgeberB, ex-

emplified by an arbitrary wake-up time at

7 a.m.; dotted line) changes systematically

with season (A). DST affects only zeitgeberB

by advancing the social clock by 1 hr in spring

and delaying it in autumn (B). The 1 hr ad-

vance corresponds to traveling 15� westward

within the same time zone. DST transitions

have large effects on the seasonal relation-

ship between the two zeitgebers. This phe-

nomenon becomes more apparent if natural

dawn is drawn with respect to local time (con-

sistent with social wake-up times) (C). The

seasonal progression of the phase relation-

ship between the two zeitgebers is delayed

by 4 weeks in the spring and by 6 weeks in the autumn (vertical gray arrows). Hence, we repeat almost 20% of the seasonal progression of

the two zeitgebers every year. In addition, DST artificially changes the amplitude of the phase relationship in summer (horizontal white arrows

in [B] and [C]), which mimics a translocation of 17� latitude. The diagrams are drawn for the dawn times in Frankfurt/Main (50�70N/8�410E), which

roughly corresponds to the average coordinates of the 50 subjects’ places of residence. In this case, the longitudinal and latitudinal transloca-

tions would mean moving from Frankfurt to Morocco in spring and back in autumn. The amplitude of the relationships as well as the degree of

their perturbations by DST increase with latitude.
especially in large cities where people efficiently shield
themselves from environmental signals. We show here
that zeitgeberB (sleep time, represented by midsleep)
adjusts to DST, and therefore the ‘‘small’’ 1 hr time
change induced by DST may have a much larger effect
on our biological timing system (Figure 4). The seasonal
progression in phase relationship between the two zeit-
gebers is pushed back by the equivalent of 4 and 6
weeks in spring and autumn, respectively. The large au-
tumn setback is reflected in the sudden, strong delay
(Figures 1A, 3A, and 3B). Assuming that the clock tracks
dawn similarly in spring and autumn, the current transi-
tion from DST to standard time in late October is sched-
uled 1 month too late. In addition, DST reduces the sea-
sonal amplitude of the relationship between the two
zeitgebers (Figures 4B and 4C). DST-induced changes
are theoretically equivalent to geographical transloca-
tions. The amplitude of the relationships as well as the
degree of their perturbations by DST increase with lati-
tude (notably, all equatorial countries either never intro-
duced or abandoned DST). The examples shown in Fig-
ure 4 are based on the location of Frankfurt. The 1 hr DST
advance in spring corresponds to traveling 15� west-
ward and the reduction of amplitude corresponds to
traveling 17� latitude southward. Thus, DST translocates
the inhabitants of Central Germany to Morocco in spring
and back in autumn, without changing time zone or cli-
mate.

In some animals, the circadian clock adopts a fixed
phase in long photoperiods under laboratory conditions
while they track dawn in short photoperiods [22, 23]. The
interruption of seasonal adjustment in summer shown
here, however, exactly coincides with the DST transi-
tions and, therefore, suggests an additional effect of
DST rather than a purely natural phenomenon. This
would mean that DST severely affects our seasonal
timing. Like other animals, humans are seasonal [24, 25]
(in birth rates, mortality, suicide rates, etc.). However,
seasonality in humans has drastically declined in indus-
trialized countries over the last 60 years [26]. The main
reason for this is probably increased shielding from nat-
ural zeitgebers, but DST might constitute an additional
factor for the dissociation of human biology from the
seasons.

Experimental Procedures

Subjects, Study Design, and Instruments

The study included the autumn DST transition (night of Oct 28/29,

2006; study period, Oct 3–Dec 3) and the spring DST transition (night

of Mar 24/25, 2007; study period, Feb 19–Apr 29). Volunteers (au-

tumn: n = 51, 34 F/29 M; spring: n = 49, 32 F/17 M; age: 18–59 yr,

mean 34.5 yr) were recruited by word of mouth from Germany, Italy,

Switzerland, France, Slovakia, The Netherlands, and Luxembourg.

43 subjects participated in both transitions and 6 new subjects

were recruited for the spring study. Prerequisites were informed

consent, regular daytime employment, no diagnosed psychiatric

diseases or sleep disorders, and no traveling during the study pe-

riods. Delivery of questionnaires, logs, and actimeters were sched-

uled 1 week prior to the actual start of each study period, so that

all participants were able to complete the full 8 weeks in autumn

and spring. As a reward, subjects participated in a lottery, whereby

any subject could win 250 EUR in each study period.

At the onset, participants completed an abbreviated version of the

Munich ChronoType Questionnaire [2] (MCTQ; see Supplemental

Data), which we developed to assess chronotype in a highly quanti-

tative manner. The questionnaire contains questions about sleep

times on both work and free days. Chronotype is then expressed

as the time of midsleep on free days (MSF) because free-day sched-

ules are less confounded by social obligations such as regimented

work. The MSF is corrected for sleep debt accumulated over the

work week (MSFsc). MSFsc is a reliable marker for chronotype and

correlates significantly with the daily rhythms of activity and physiol-

ogy (e.g., melatonin, cortisol, or body temperature, recorded in con-

stant routines) [18].

Every morning, directly after awakening, the following items were

estimated and entered into the supplied sleep logs (see Supplemen-

tal Data): time spent outside during the prior day, bedtime, time of
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preparing for sleep, sleep latency, subjective alertness at bedtime

(0 to 10), time of wake up, time of getting up, use of an alarm clock,

subjective sleep quality (0 to 10), subjective alertness at wake up (0 to

10), and whether it was the morning of a work or a free day. Time

spent outside did not significantly contribute to DST adjustment,

possibly because no significant differences were found in time spent

outside among the subjects. All subjects continually wore water-

proof actimeters (Daqtometer by Daqtix GbR, Oetzen Germany)

around their wrists, storing movement accelerations every minute.

Subjects kept a protocol indicating when not wearing the actimeter.

Data Analysis

Sleep and activity data were analyzed separately for work and free

days (in many subjects, free days were not restricted to weekends,

and some subjects also worked on Saturday or Sunday). Data were

also analyzed separately for three chronotype groups based on mid-

sleep on free days corrected for sleep debt (MSFsc) as determined

by the MCTQ (early: MSFsc < 3.5, Nautumn/Nspring = 11/12; intermedi-

ate: n = 20/16; late: MSFsc > 4.5, n = 19/15) [1]. As a single reference

point for sleep, daily midsleep times were calculated from the sleep

logs and were averaged for each week. Activity data, from wake up

to sleep onset (as determined by the activity profiles), were consol-

idated to 10 min bins and also averaged for each week (the Sunday

after the actual time change was excluded). For the determination of

the activity’s phase, we chose the center of gravity method [27]

(CoAct), which is independent of the individual shape of the activity

profile (see gray areas and squares in Figure 2). For further analysis,

the weekly phases of both midsleep and CoAct for each subject

were expressed as deviation from their average over the 4 weeks

preceding each of the transitions (baseline). An additional average

was calculated for weeks 7 and 8 in each study period (final relative

phase). Figure 3A shows the averaged deviations from baseline of

the entire cohort, and Figure 3B shows those for the three groups

of chronotypes.

Supplemental Data

Two figures are available at http://www.current-biology.com/cgi/

content/full/17/22/1996/DC1/.
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