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ABSTRACT

We present a new method to compute Minimum Orbit Intersection Distances (MOIDs) for ar-
bitrary pairs of heliocentric orbits and compare it with Giovanni Gronchi’s algebraic method. Our
procedure is numerical and iterative, and the MOID configuration is found by geometric scanning
and tuning. A basic element is the meridional plane, used forinitial scanning, which contains one
of the objects and is perpendicular to the orbital plane of the other. Our method also relies on an
efficient tuning technique in order to zoom in on the MOID configuration, starting from the first ap-
proximation found by scanning. We work with high accuracy and take special care to avoid the risk
of missing the MOID, which is inherent to our type of approach. We demonstrate that our method is
both fast, reliable and flexible. It is freely available and its source Fortran code downloadablevia our
web page.
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1. Introduction

Close encounters play important roles in several branches of Solar System sci-
ence. For instance, one may consider comet dynamics involving close encounters
between comets and giant planets, the study of meteor streams and meteorite de-
livery to the Earth involving orbital evolution into collision with our planet, and
the identification of those Near Earth asteroids that are responsible for the current
impact hazard. For all such purposes, attention has been paid to the problem of
computing the global minimum of the Keplerian distance function referring to two
confocal Keplerian orbits (i.e., the distanced between a point on one orbit and a
point on the other as a function of the two anomalies describing the points). This
determines how close two orbiting particles may possibly come to each other in the
absence of gravitational focusing, neglecting long-rangeperturbations.
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Methods for finding and calculating the values of those global minima have
been proposed in several previous papers. For instance, thesituation of comets
approaching giant planets was considered by Sitarski (1968) and that of meteor
streams in Earth’s vicinity by Babadzhanovet al. (1980). Close approaches be-
tween minor planets were treated by Lazović (1980, 1981). Hootset al. (1984)
concentrated on satellite orbits in view of the rising concern about inter-satellite
collisions. Dybczýnski et al. (1986) discussed limitations and risk of failure asso-
ciated with previous methods and suggested improvements.

When the asteroid impact hazard became an issue in the 1990s,new interest
also arose in the calculation of minimum approach distancesto the Earth. Bowell
and Muinonen (1994) thus introduced the concept of Potentially Hazardous Aster-
oids (PHA) with the aid of the above-described minimum distance as applied to an
asteroid and the Earth. This was called the Minimum Orbit Intersection Distance
(MOID), and PHA were defined as asteroids with MOID< 0.05 a.u. and absolute
magnitudeH < 22.

More recent results include the development of algebraic routines for calculat-
ing MOIDs or – in general – minima of thed2 function (e.g., Baluev and Khol-
shevnikov 2005, Gronchi 2005). A new numerical-analyticalmethod for MOID
computation was introduced by Šeganet al.(2011). Currently, Gronchi’s computer
code as available on the web1 is the standard tool for MOID computation. Its per-
formance has been proved to be excellent as regards accuracy, reliability and speed.
Nonetheless, we have seen a need to develop an alternative, geometric method with
special advantages for use in massive computer simulations. As will be shown in a
forthcoming paper (Rickmanet al., in preparation), one such use is for numerical
calculations of average impact probabilities for comets orplanet-crossing asteroids
with terrestrial planets.

In this paper we provide the description of our new method of MOID calcula-
tion and its numerical implementation (Section 2) and a demonstration of its per-
formance (Section 3). We also subject it to a critical comparison with Gronchi’s
method (Section 4) and briefly summarize our conclusions (Section 5). The com-
puter source code in Fortran is freely available on the web2.

2. The Method

The aim of this section is to describe in some detail all the steps leading to a cal-
culated MOID, using a minimum of formulae and avoiding all details of computer
programming. After descriptions of the preparatory phase,the meridional plane
scanning and the technique of zooming in on the MOID, we present and discuss
the way in which our method uses these tools in order to make sure that the proper
MOID is identified and calculated with very high accuracy.

1adams.dm.unipi.it/∼gronchi/kepdist/kep_dist2.html
2ssdp.cbk.waw.pl/MOID
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2.1. Preparing the Calculations

There is no restriction on the two orbits, whose MOID is to be calculated,
except for the obvious one of being confocal. Each one is defined by five orbital
elements as regards the size, shape and orientation in space. With usual notations,
and with reference to the ecliptic and equinox of a standard epoch, the elements of
objectsA andB may be written:

a1,e1, i1,ω1,Ω1 − for bodyA ,

a2,e2, i2,ω2,Ω2 − for bodyB.

Generally, neitheri1 nor i2 equals zero, since both orbits may be inclined to
the ecliptic. Our method is constructed to work only for cases, where one of the
orbits is not inclined. However, this is not a limitation, because for any two orbits
we may rotate the reference frame so that one of them is no longer inclined, and its
perihelion direction is the reference for longitudes.

Doing this, we do not change the MOID, but the orbital elements must be re-
calculated. Thus, for any two orbits, the first step is to rotate the reference frame
using standard equations of celestial mechanics, such thatthe new frame is defined
by objectA . This results in the new set of orbital elements:

aA,eA,0,0,0 − for bodyA ,

aB,eB, iB,ωB,ΩB − for bodyB ,

whereaA = a1 , eA = e1 , aB = a2 , eB = e2 .

2.2. Scanning the Orbits

This tool yields a preliminary approach to the minima of the distance function.
It is illustrated by Fig. 1. In this figure the orbit of objectA and its plane are colored
blue, while the corresponding for objectB have orange color. Fig. 1 highlights a
particular location of objectB . The Sun is at the origin, the reference plane is
shown as the orbital plane ofA , and the polar axis is perpendicular to this. Now,
let us consider a plane throughB and the poles (i.e., perpendicular to the reference
plane). We call this the meridional plane and indicate it in Fig. 1 as a light gray
circle.

At this moment,A may be situated anywhere on its orbit, but let us consider
the two points, where the orbit crosses the meridional plane. Of these, we focus
on the one that is close toB . The Sun,A andB then form a triangle lying in the
meridional plane.

We denote the distance betweenA and B by D0 in this particular case, as
shown in Fig. 1. Knowing the orientation ofB ’s apsidal line, we can specify the
true anomaly ofB , which we callν0 . The heliocentric distance ofB is thus:

rB0 =
aB(1−e2

B)

1+eBcosν0
(1)
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Fig. 1. Illustrative sketch of the orbital geometry of objects A andB . Three positions of the merid-
ional plane are indicated along with the orbital planes of the two objects. The locations of the objects
in these planes and the mutual distances are shown.

and using right-handed Cartesian coordinates as commonly defined, we obtain:

xB0 = rB0
[

cosΩBcos(ωB +ν0)−sinΩBsin(ωB +ν0)cosiB
]

,

yB0 = rB0
[

sinΩBcos(ωB +ν0)+cosΩBsin(ωB +ν0)cosiB
]

,
zB0 = rB0sin(ωB +ν0)siniB.

(2)

To find the coordinates ofA , note that its longitude (equal to its true anomaly
by the definition of the reference frame) is the same as that ofobjectB , defining
the meridional plane. This is uniquely defined by the coordinatesxB0 and yB0 .
Calling it L0 , and using

ρB0 =
√

x2
B0 +y2

B0, (3)

we have:
cosL0 = xB0/ρB0,
sinL0 = yB0/ρB0.

(4)
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We then derive the heliocentric distance ofA from:

rA0 =
aA(1−e2

A)

1+eAcosL0
, (5)

and as shown in Fig. 2,D0 is given by:

D0 =
√

z2
B0 +(ρB0− rA0)2. (6)

Fig. 2. The triangle formed by the Sun,A andB in the meridional plane defined by true anomalyν0 .

Now, as objectB moves along its orbit, its true anomaly changes and the merid-
ional plane rotates. For each position we can perform the above calculations and
find a mutual, “meridional” distanceDν as a function ofν . One such case, marked
by the position ofA , is shown in Fig. 1 (medium gray meridional plane). By scan-
ning one full revolution ofB , we are able to identify all local minimaDmin of the
meridional distance, one of which is situated in the dark gray plane of Fig. 1. The
criterion for detecting a local minimum is that we find a valueof Dν that is smaller
than both its preceding and following values in the true anomaly sequence.

The step size∆ν used for the true anomaly ofB sets the speed of the scanning.
However, there is an important issue about reliability. As has been discussed at
length in previous literature, the distance function is sometimes very complicated
with several critical points (maxima, minima, saddles), and our one-dimensional
meridional plane scanning may thus reveal more than one minimum. Furthermore,
there is a risk that it fails to detect an existing minimum that may even be the
MOID. From previous work concerning the minima of the distance function – see,
in particular, Gronchiet al. (2007) and Šeganet al. (2011) – we know that there
may be up to four minima for an arbitrary pair of orbits, but inpractice there are
mostly two (sometimes one, and very rarely three or four). Thus, our scanning may
return from one to four local values ofDmin , but we have noa priori guarantee



298 A. A.

that the MOID is always to be found among those. We will returnto this problem
below.

In practice, we have found that a scanning step of 0.12 rad is close to opti-
mal. This is enough to capture all the local minima ofDν and leads to a very low
consumption of CPU time.

2.3. Parallel Tuning

After the scanning phase, we typically have a few values ofDmin , but we also
have the true anomalies and full Cartesian coordinates of objectsA andB corre-
sponding to those distances. In Fig. 3, the positions in question are identified asA1

andB1 , respectively, corresponding to one of the two cases. Whilethese positions
are situated on a common meridional plane, our goal is now to move both objects
separately along their orbits in order to find the smallest possible distance between
them, which is no longer a meridional distance.

Fig. 3. Illustration of the parallel tuning method: sketch of the orbital segments (dashed curves) of
objectsA and B close to the points, where the meridional distance has a local minimum. These
points are joined by a thick, green line. Varied positions ofthe objects are also shown, corresponding
to a given step in true anomaly, and the mutual distances are shown by thin, dotted lines. The smallest
of these distances is shown by the thick, red line.

The meridional distance betweenA1 and B1 is denotedDmin1. Now, let both
A and B move to the right or left along their orbits by a given step∆ν in true
anomaly. The four resulting, varied positions are denotedA1R, A1L , B1R andB1L .
Along with A1 and B1 , we now have six points, which lead to nine values of the
distance betweenA andB . One of these (Dmin1) has already been found, and now
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we need to calculate the other eight (indicated by dotted lines in Fig. 3). For this
we must use the full Cartesian coordinates of the four variedpositions, whose true
anomalies (L for A and ν for B ) may take the known values forA1 and B1 plus
or minus∆ν . We thus proceed as follows:

rA = aA(1−e2
A)/(1+eAcosL),

rB = aB(1−e2
B)/(1+eBcosν).

(7)

xA = rAcosL,
yA = rAsinL,
zA = 0.

(8)

xB = rB
[

cosΩBcos(ωB +ν)−sinΩBsin(ωB +ν)cosiB
]

,

yB = rB
[

sinΩBcos(ωB +ν)+cosΩBsin(ωB +ν)cosiB
]

,
zB = rBsin(ωB +ν)siniB.

(9)

and finally, the distance is found as:

D =
√

(xA−xB)2 +(yA−yB)2 +(zA−zB)2. (10)

After all nine distances have been found, they are compared,and the smallest
one is chosen. Suppose that this corresponds to segmentA1B1L , as shown in Fig. 3.
That segment is consequently a better approach to the MOID than the initial one, so
we consider its end points (A1 and B1L ) as the new reference positions, replacing
A1 and B1 . We may call themA2 and B2 , respectively, and their mutual distance
is Dmin2.

We now repeat the above procedure, using the same true anomaly step. This
means that we consider the six pointsA2R, A2 , A2L , B2R, B2 andB2L . For the case
shown in Fig. 3, only one of these six points is new (B2L ), and in a general case
no more than two points may be new. After calculation of the remaining Cartesian
coordinates, all nine distances are again compared, and thesmallest one selected.
We iterate this proceduren times until we find the reference distanceDminn to be
the smallest of the nine. In fact, we work with the distance squared when selecting
the optimal pair of points, allowing some extra saving of CPUtime by avoiding
square root calculations.

At that point, we keepAn and Bn as reference positions and decrease the true
anomaly step by a given factor. Using thusA1 = An and B1 = Bn , we go through
the above iterations once more with the smaller step, again until we find the refer-
ence distance to be the smallest. Then we reset the system anddecrease the step
size again, and the procedure is repeated until the step sizefalls below a prede-
fined limit. Note that the method described amounts to zooming in on the closest,
local minimum of the distance function. The initial step size adopted in this proce-
dure, which we call “parallel tuning”, is 0.06 rad, and each decrease is achieved by
applying a factor 0.15.
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We have adopted two phases for the parallel tuning, as will bedescribed in the
following paragraphs. The initial tuning is the first phase,and its target step size is
5·10−6 rad. Then follows the final tuning, which starts from the result of the initial
tuning and proceeds to a final target step size, at which the procedure is terminated,
of 1·10−14 rad. Note that the mentioned parameter values for the tuninghave been
optimized for maximum speed while retaining perfect reliability (see Section 2.4).
Only the final target step size is adapted to double precisioncalculations and thus
independent of the optimization.

2.4. Finding the MOID

In principle, our method is to first go through the preparation step, then apply
the scanning by meridional plane, and thereafter perform the initial tuning, starting
from all the local meridional distance minima found during the scanning. Using
the results of this initial tuning, where each closest localminimum of the distance
function is determined at an accuracy of≈ 10−8 a.u., we are almost always able to
identify which one is the smallest and then zoom in on it by thefinal tuning. As
already mentioned, the scanning finds all local minima ofDν , and if the MOID
would always be close to one of these minima, the high accuracy of our parallel
tuning would never fail to identify and measure the MOID.

However, there is an intrinsic problem of the meridional plane scanning method,
namely, that cases exist where a local minimum of the distance function yields no
corresponding minimum of the meridional distance. From thepoint of view of our
scanning method, these are “invisible minima”. In some of these cases, the MOID
may thus be invisible, and we have to find a way around this problem.

To this end, we have taken advantage of the possibility to compare our results
with those computed by Gronchi’s method. We arranged the output from his code
to be in double precision and could thus easily discover all cases, where our MOID
differed from his. Even if a difference was very small, but still much larger than
the usual difference of< 10−13 a.u., we could positively identify a case of missed
MOID in our code. Without applying any countermeasures, we found this to occur
at the level of about one case in 100 000. Moreover, all of themoccurred when only
one minimum was detected by the scanning – in itself a rare outcome.

This fortunate circumstance led to our solution of the problem. Whenever the
scanning detects only one minimum, we start the parallel tuning, not from this
minimum, but from several positions of the meridional planedefined by points that
are evenly distributed along the inclined orbit. Empirically, we found that at least
four points need to be used in order for one of them to lead, by tuning, to the
invisible minimum in case this exists. The exact choice of the starting points is not
critical, but using four points we have not found any case of failure. For the sake of
completeness, we need to mention one additional case of using four evenly spread
starting positions. This is the extremely rare situation, when the initial tuning fails
to distinguish between two nearby minima found by scanning.Note that the method
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of four starting points is relatively time consuming, and thus we have to restrict it
to the cases where it is really needed.

Investigating a sample of two million orbit pairs, and usingthe methods de-
scribed above including the special treatment of the one-minimum and indistin-
guishable two-minima cases, we did not find a single case of discrepancy between
our MOIDs and those by Gronchi. The agreement is always perfect. Thus, the only
limits to the accuracy are set by the precision of the computer and, in our case, by
the terminal step size of the parallel tuning, which is anyway matched to double
precision calculations. However, we have to emphasize thatwe have no absolute
guarantee against missed MOIDs with our method. We can only say that they have
to be non-existent or extremely rare.

3. Checks of Performance

While the reliability and accuracy of our method thus seem tobe well estab-
lished, we obviously have to demonstrate that the resultingcode is competitive, as
compared with other existing methods, in terms of CPU time consumption.

As mentioned, we tested our accuracy by comparing our results with those gen-
erated by Gronchi’s method, which is published for common use including source
codes and is accessiblevia the author’s web site (see above). The quality of its per-
formance is well established through numerous applications. Thus, the finding of
perfect agreement between our method and Gronchi’s not onlyprovides confidence
in our results but gives credence to both methods. Such agreement has been one of
our criteria when choosing the above-mentioned values of the technical parameters
(step sizes) of our code, and this Section provides a few demonstrations of its speed
and accuracy.

First, we define a fictitious, non-inclined “target” orbit – corresponding to the
above objectA – and calculate the MOIDs between this object and a set of about
300 000 asteroids from theIAU Minor Planet Centerdatabase. Both Gronchi’s
method and ours are used. In Table 1 we show 20 examples of asteroid orbits of
different types, and in Table 2 we present the results of the accuracy test for these
orbits. In addition to the final MOID and its deviation from Gronchi’s MOID as
found from the double precision output, we also list the smallest values ofDmin

found in the scanning phase and their deviations from the MOID.
For the target orbit, modeled on asteroid (21) Lutetia, we chose the following

ecliptic elements (same epoch as the asteroidal elements).The inclination and lon-
gitude of ascending node were:i = Ω = 0, and the rest were:
perihelion distance:q = 2.036 a.u.,
eccentricity:e= 0.164,
argument of perihelion:ω = 250.◦227.

Table 2 illustrates the fact that our method finds MOIDs essentially equivalent
to those found by Gronchi’s algebraic formulae. By checkingdifferent kinds of
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T a b l e 1

Orbital elements of test asteroids

Test Asteroid q e i Ω ω remarks

No. No. [a.u.] [◦] [◦] [◦]

1 1 2.55343183 0.0777898 10.58785 80.35052 72.14554

2 2 2.12995319 0.2313469 34.84268 173.12520 310.03850 first

3 3 1.98948966 0.2552218 12.97943 169.90317 248.22602 five

4 4 2.15354370 0.0882196 7.13426 103.89537 150.08873 asteroids

5 5 2.08388391 0.1905003 5.36719 141.60955 358.80654

6 65407 2.48391159 0.9543470 119.29902 39.00301 357.90012

7 20461 2.36382356 0.9006860 160.41316 297.34820 102.45000 orbits with

8 3200 0.13964163 0.8901393 22.23224 265.28749 322.11933 largest

9 2212 0.35420623 0.8363753 11.68912 28.13011 208.66724 eccentricity

10 4197 0.52469070 0.7715449 12.56792 7.25167 122.30952

11 P5447 2.74144856 0.1153501 0.00431 272.90217 251.43828

12 U9154 2.50571901 0.1924270 0.01522 94.14405 304.71343 orbits with

13 53910 2.11312640 0.1215091 0.02244 321.26045 109.96758 smallest

14 G5525 2.09876663 0.1543590 0.02731 88.64817 67.91991 inclination

15 R4450 2.67112178 0.1328536 0.02809 41.39822 274.65080

16 61395 1.99601821 0.1875129 1.26622 238.06043 31.32645

17 64112 2.03086844 0.1653922 0.66023 339.21518 89.47548 orbits with

18 27710 1.77550824 0.1928808 3.43901 140.55651 216.20834 smallest

19 61096 1.96745453 0.1837814 3.69269 98.95749 227.52626 MOID

20 56127 2.15731280 0.1007470 2.91058 138.77805 231.93187

orbits, we also have a good indication that in practice, there is no special kind, for
which the agreement is less than perfect. Low inclination orbits or orbits with very
small MOIDs are no exceptions.

Moreover, even if we would limit ourselves to the scanning phase and skip
the tuning, the resulting, smallestDmin values are not far from the correct results.
Of course, they are somewhat larger than the MOIDs, and sometimes they may
miss the MOID entirely, though such cases are rare and do not appear in Table 2.
Moreover, we have found that all MOIDs that are missed by the scanning have
values very close to the “apparent” MOIDs actually detected, meaning thatDmin is
still a fair approximation.

There are two key features that characterize our method and make it compet-
itive: (1) the meridional plane scanning that identifies theminima efficiently; and
(2) the parallel tuning that allows to quickly zoom in on the MOID. Together, they
allow us to perform the MOID calculations reliably, accurately and with a low con-
sumption of CPU time.
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T a b l e 2

Results of MOID calculations for the test asteroids

Test Asteroid remarks MOID [a.u.] ∆14 Dmin [a.u.] ∆3

No. No. W-R W-R

1 1 0.13455874348909 0 0.1346719 0

2 2 first 0.00289925623680 0 0.0151316 12

3 3 five 0.07817951779390 0 0.0784614 0

4 4 asteroids 0.08735595371552 0 0.0878071 0

5 5 0.14532630925408 0 0.1455354 0

6 65407 0.26938418933051 0 0.2709789 2

7 20461 orbits with 0.54491059333263 0 0.5479893 3

8 3200 largest 0.70855959609279 −48 0.7152397 7

9 2212 eccentricity 0.03943927946198 0 0.1120682 73

10 4197 0.18225709092897 0 0.2183000 36

11 P5447 0.14766834758223 0 0.1483890 1

12 U9154 orbits with 0.00010493251317 0 0.0102467 10

13 53910 smallest 0.00030783183432 0 0.0141584 14

14 G5525 inclination 0.00098583168214 0 0.0084652 7

15 R4450 0.20707625146740 0 0.2087313 2

16 61395 0.00000003815330 0 0.0069443 7

17 64112 orbits with 0.00000419348257 0 0.0011561 1

18 27710 smallest 0.00000627704688 0 0.0402762 40

19 61096 MOID 0.00000785853673 0 0.0043333 4

20 56127 0.00001189165231 0 0.0100350 10

W-Rdenotes values found by our method, and∆14 and∆3 denote the deviations
of these values of MOID andDmin from Gronchi’s MOID in units of 10−14 and
10−3 a.u., respectively.

As a practical test of computing speed, we have chosen five real asteroids as
object A (“target object”) and computed their MOIDs with respect to all other
asteroids from the MPC database as objectB (“projectile object”). For the targets,
our selection wasad hocexcept for a preference for space mission targets, and the
projectiles were limited to absolute magnitudesH ≤ 16.5 in order to be at least
km-sized. Fig. 4 shows a log-log plot of the cumulative distributions of MOIDs
for the five targets, excluding all MOIDs larger than 1 a.u. Each curve is based on
more than 280 000 MOIDs and needs less than one minute of CPU time on a fast
personal computer.

The curve for (25143) Itokawa stands out by very small numbers for the small-
est MOIDs, because its orbit is mainly situated interior to the main belt (a =
1.32 a.u.). To a lesser extent, the curve for (318) Magdalena shows the same kind
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Fig. 4. Cumulative MOID distributions: The number of MOIDs less than a given value is plottedvs.
that value, considering all km-sized asteroids in the MPC database.

of deficiency, being situated mostly exterior to the belt (a = 3.19 a.u.). Note that
for the largest asteroids (Ceres, Vesta and Lutetia) there may actually be projectiles
with MOIDs smaller than the target radius. Of course, the situation changes con-
tinually if one considers perturbed orbits, but we may statistically conclude that at
any time, there is a non-zero number of km-sized main belt asteroids among the
currently known ones on such, potentially collisional tracks.

We devised one extra check on the accuracy of our MOIDs by calculating them
in cases where objectsA andB are the same. Of course, the result in such a case
must be that the MOID equals zero. In the limited number of tests that we made,
this was always verified.

4. Critical Comparison of MOID Calculation Tools

The main difference between the two MOID calculation tools under consider-
ation – ours and Gronchi’s – is that our method is numerical based on geometry,
while the latter is a computer coding of algebraic formulae.However, we now need
to compare their performance and quality of results.

Let us first describe the disadvantages of our method. While Gronchi’s alge-
braic method yields a complete solution, where all minima, maxima, and saddles
are accurately found for each pair of orbits, our method onlyyields the MOID. It
would not be difficult to find other critical points with our method, and indeed there
are special situations where this would be very useful, but it was not our goal. A
more important disadvantage of our method is the problem with missing MOIDs
(Sections 2 and 3). We have avoided this problem to the extentthat we do not detect
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any missed MOIDs in millions of tests, but one should keep in mind that the risk of
a miss (i.e., calculating the wrong minimum) cannot vanish entirely.

Turning to advantages, we first note that our method does not have fixed ac-
curacy and speed, because our downloadable code can easily be modified with re-
spect to the values of the technical parameters. This may be an important advantage
because, depending on the purpose, one may trade accuracy orreliability against
speed. For single MOIDs, of course the speed does not matter,but in cases of mil-
lions or more calculations (e.g., for mapping purposes) precision may be sacrificed
and speed may be gained by increasing the step sizes. Moreover, the code may be
further modified so as to avoid the safety measure of tuning from four positions of
the meridional plane, which is relatively time consuming, at the price of running a
risk to miss the MOID in a few cases.

The accuracy of the open access computer code at Gronchi’s web site is 10−7 a.u.
as given by the number of decimals provided. To find the intrinsic accuracy, we had
to modify the output commands. Our tests on millions of orbitpairs then revealed
that the two methods generally yield the same results to within 10−14 a.u.

To compare the computing speed between our code and Gronchi’s, we used
the Fortran source codes from Gronchi’s web page and removedall commands that
could slow down the calculations (e.g., screen commands). Then we compiled and
ran both programs in the same computer environment, calculating 100 000 MOIDs
between (21) Lutetia and other main belt asteroids. The results were found in about
9 s to 15 s with our methodvs.40 s, when using Gronchi’s method. The reason for
the variation when using our code is that the likelihood of having to use the safety
measure against missing MOIDs varies with the orbits considered. If we would
turn this feature off, the time consumption would always be less than nine seconds.

One interesting advantage of our method is that we can obtaintemporary re-
sults. When calculating a MOID, we have a first result alreadyafter the scanning
by using the smallest value ofDmin . This result usually differs by 10−2 a.u. or
less from the accurate value. If we look for MOIDs less than some threshold value,
for instance looking for possible impacts, we may thus rely on temporary results
and, using some margin, exclude numerous orbits from the rest of the calculation
by noting that they have no chance to satisfy the applied criterion. This may result
in significant, additional savings of CPU time.

A summary of the above, critical comparison is presented in Table 3. But in
addition to this, let us mention a final virtue of our method that offers interesting
possibilities. This comes from the fact that we always investigate the vicinity of the
MOID points on the two orbits during the calculation. If the MOID is so small that
potential collisions may occur, we are then able not only to establish this fact, but
also to scan and measure the extent of the surrounding zone allowing collisions in
order to estimate the impact probability. This feature willbe explored and used in
a forthcoming paper (Rickmanet al., in preparation).
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T a b l e 3

Selected features of two MOID calculation methods

Gronchi’s method Our method

algebraic method numerical/iterative method

fixed accuracy and speed interchangeable accuracy and speed

test speed on standard CPU core:test speed on standard CPU core:

40 s per 100 000 MOIDs 9–15 s per 100 000 MOIDs

estimated accuracy: accuracy:

∼ 10−7 a.u. (web page) 10−14 a.u.

10−14 a.u. (intrinsic)

always catches the MOID may miss the MOID, but risk< 10−6

temporary results: temporary results:

impossible possible, allowing to speed up calculations

gives all critical points, without may obtain other critical points, but with additional,

additional time consumption slight time consumption

5. Conclusions

Let us finally note that, even though our geometric scanning method may ap-
pear unrelated to recent analytic work on MOID computation,including Gronchi’s
method, it does rely on and make use of existing knowledge. Aswe have shown in
this paper, it is definitely competitive in terms of speed andaccuracy and is more-
over flexible. In particular, the user may trade one for the other by simply setting
the values of a few technical parameters (step sizes). Thereis no proof that the
scheme that we use (in particular, using the meridional plane) is the best among all
possible schemes, but it is not likely that any major improvement could be made.

In terms of practical use in Solar System dynamics, our method will certainly
have its major advantages in work involving massive simulations. If only one spe-
cial MOID is looked for, there is nothing that favors either our method or Gronchi’s,
but the availability of both makes it possible to obtain a useful check. The real ben-
efit of our method, on the other hand, is likely to occur in situations where millions
or billions of MOIDs are wanted, and especially if information about the vicinity
of the MOID configuration is also of interest.
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