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ABSTRACT

We present a new method to compute Minimum Orbit Intersadiistances (MOIDs) for ar-
bitrary pairs of heliocentric orbits and compare it with @mni Gronchi’s algebraic method. Our
procedure is numerical and iterative, and the MOID configarais found by geometric scanning
and tuning. A basic element is the meridional plane, usedhitial scanning, which contains one
of the objects and is perpendicular to the orbital plane efdther. Our method also relies on an
efficient tuning technique in order to zoom in on the MOID cgufation, starting from the first ap-
proximation found by scanning. We work with high accuracy #ake special care to avoid the risk
of missing the MOID, which is inherent to our type of approadfe demonstrate that our method is
both fast, reliable and flexible. It is freely available atgldource Fortran code downloadabia our
web page.
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1. Introduction

Close encounters play important roles in several branchBslar System sci-
ence. Forinstance, one may consider comet dynamics imgblbse encounters
between comets and giant planets, the study of meteor sdraathmeteorite de-
livery to the Earth involving orbital evolution into colisn with our planet, and
the identification of those Near Earth asteroids that arpamesible for the current
impact hazard. For all such purposes, attention has beentpahe problem of
computing the global minimum of the Keplerian distance fiorcreferring to two
confocal Keplerian orbitsi.€., the distanced between a point on one orbit and a
point on the other as a function of the two anomalies desugithie points). This
determines how close two orbiting particles may possiblpedo each other in the
absence of gravitational focusing, neglecting long-ramergurbations.
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Methods for finding and calculating the values of those dlohiaima have
been proposed in several previous papers. For instancesjttiaion of comets
approaching giant planets was considered by Sitarski (1868 that of meteor
streams in Earth’s vicinity by Babadzhaneval. (1980). Close approaches be-
tween minor planets were treated by Lazoyi980, 1981). Hootst al. (1984)
concentrated on satellite orbits in view of the rising cancabout inter-satellite
collisions. Dybczyski et al. (1986) discussed limitations and risk of failure asso-
ciated with previous methods and suggested improvements.

When the asteroid impact hazard became an issue in the 188@snterest
also arose in the calculation of minimum approach distatméise Earth. Bowell
and Muinonen (1994) thus introduced the concept of Potgntiazardous Aster-
oids (PHA) with the aid of the above-described minimum distaas applied to an
asteroid and the Earth. This was called the Minimum Orbidsection Distance
(MOID), and PHA were defined as asteroids with MO{.05 a.u. and absolute
magnitudeH < 22.

More recent results include the development of algebraitimes for calculat-
ing MOIDs or — in general — minima of theé? function (.g, Baluev and Khol-
shevnikov 2005, Gronchi 2005). A new numerical-analytizegthod for MOID
computation was introduced by Seggziral. (2011). Currently, Gronchi's computer
code as available on the wls the standard tool for MOID computation. Its per-
formance has been proved to be excellent as regards accretalyility and speed.
Nonetheless, we have seen a need to develop an alternaibraggric method with
special advantages for use in massive computer simulatkswill be shown in a
forthcoming paper (Rickmaat al, in preparation), one such use is for numerical
calculations of average impact probabilities for cometglanet-crossing asteroids
with terrestrial planets.

In this paper we provide the description of our new method @il calcula-
tion and its numerical implementation (Section 2) and a destration of its per-
formance (Section 3). We also subject it to a critical corgmar with Gronchi’s
method (Section 4) and briefly summarize our conclusionst{®e5). The com-
puter source code in Fortran is freely available on theiveb

2. TheMethod

The aim of this section is to describe in some detail all tepsteading to a cal-
culated MOID, using a minimum of formulae and avoiding alladlis of computer
programming. After descriptions of the preparatory phdke, meridional plane
scanning and the technique of zooming in on the MOID, we prteaed discuss
the way in which our method uses these tools in order to maleethat the proper
MOID is identified and calculated with very high accuracy.

Ladams.dm.unipi.ittgronchi/kepdist/kep_dist2.html
2ssdp.chk.waw.pl/MOID
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2.1. Preparing the Calculations

There is no restriction on the two orbits, whose MOID is to ladcualated,
except for the obvious one of being confocal. Each one is eefby five orbital
elements as regards the size, shape and orientation in. 9p&tbeusual notations,
and with reference to the ecliptic and equinox of a standpotle, the elements of
objects4 and ‘B may be written:

aj, e, i, o, Q; — for body 4,
ap,€,i2, 0, Q, — for body B.

Generally, neithei; nor i equals zero, since both orbits may be inclined to
the ecliptic. Our method is constructed to work only for casehere one of the
orbits is not inclined. However, this is not a limitation dagise for any two orbits
we may rotate the reference frame so that one of them is ne&fanglined, and its
perihelion direction is the reference for longitudes.

Doing this, we do not change the MOID, but the orbital eleraentst be re-
calculated. Thus, for any two orbits, the first step is to tethe reference frame
using standard equations of celestial mechanics, sucthbaew frame is defined
by object4. This results in the new set of orbital elements:

aa,ea,0,0,0 — for body 4,
ag, e, ip, s, Qg — for body B,

whereap =aj, en=¢€, ag =ay, €g = €.
2.2.  Scanning the Orbits

This tool yields a preliminary approach to the minima of tietahce function.
Itisillustrated by Fig. 1. In this figure the orbit of obje@t and its plane are colored
blue, while the corresponding for obje® have orange color. Fig. 1 highlights a
particular location of objectB. The Sun is at the origin, the reference plane is
shown as the orbital plane o1, and the polar axis is perpendicular to this. Now,
let us consider a plane through and the polesife., perpendicular to the reference
plane). We call this the meridional plane and indicate itig. B as a light gray
circle.

At this moment,-2 may be situated anywhere on its orbit, but let us consider
the two points, where the orbit crosses the meridional pladkthese, we focus
on the one that is close t8. The Sun,4 and B then form a triangle lying in the
meridional plane.

We denote the distance betweghand B by Dg in this particular case, as
shown in Fig. 1. Knowing the orientation @’s apsidal line, we can specify the
true anomaly ofB, which we callvg. The heliocentric distance @ is thus:

as(1-€f)

rgo= ——>— B 1
B0~ 1 egcosvg (D)
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Fig. 1. lllustrative sketch of the orbital geometry of oliegl and B. Three positions of the merid-
ional plane are indicated along with the orbital planes eftthio objects. The locations of the objects
in these planes and the mutual distances are shown.

and using right-handed Cartesian coordinates as commaefilyedl, we obtain:

X80 = I'80[COSQE COS(WB + Vo) — SINQE SiN(ws + Vo) COSig
YBo = I'Bo[SINQp €O wWs + Vo) + COSQg Sin(wg + Vo) cosig], (2)
Zgo = I'poSiN(ws + Vo) SiNig.

To find the coordinates of, note that its longitude (equal to its true anomaly
by the definition of the reference frame) is the same as thabpct B, defining
the meridional plane. This is uniquely defined by the coatiaxgy and ygo.

Calling it Lo, and using
PBo =4/ Xéo "‘Yéoa (3)

cosLo = Xso/PBo; (@)
SinLo = yBO/pBO-

we have;
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We then derive the heliocentric distance@ffrom:

an(1—€})

o= —"—",—
1+excosky’

and as shown in Fig. 2)g is given by:

Do = \/2%04- (PB0—rA0)2. (6)

Ta0 A T_

Fig. 2. The triangle formed by the SuA, and B in the meridional plane defined by true anomay.

PBo — Tao

Now, as objectB moves along its orbit, its true anomaly changes and the merid
ional plane rotates. For each position we can perform the@ebalculations and
find a mutual, “meridional” distancB, as a function ofs. One such case, marked
by the position of4, is shown in Fig. 1 (medium gray meridional plane). By scan-
ning one full revolution ofB, we are able to identify all local minimBp,;, of the
meridional distance, one of which is situated in the darkygrane of Fig. 1. The
criterion for detecting a local minimum is that we find a vabieD,, that is smaller
than both its preceding and following values in the true aalgreequence.

The step sizév used for the true anomaly @ sets the speed of the scanning.
However, there is an important issue about reliability. /s been discussed at
length in previous literature, the distance function is eimes very complicated
with several critical points (maxima, minima, saddles)d @aur one-dimensional
meridional plane scanning may thus reveal more than onamimi. Furthermore,
there is a risk that it fails to detect an existing minimumttheay even be the
MOID. From previous work concerning the minima of the distafunction — see,
in particular, Gronchet al. (2007) and Segast al. (2011) — we know that there
may be up to four minima for an arbitrary pair of orbits, butpractice there are
mostly two (sometimes one, and very rarely three or fourusltour scanning may
return from one to four local values @in, but we have n@a priori guarantee
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that the MOID is always to be found among those. We will retiarthis problem
below.

In practice, we have found that a scanning step of 0.12 ratbsedo opti-
mal. This is enough to capture all the local minimalxf and leads to a very low
consumption of CPU time.

2.3. Parallel Tuning

After the scanning phase, we typically have a few valueBgf,, but we also
have the true anomalies and full Cartesian coordinatesjettdh4 and B corre-
sponding to those distances. In Fig. 3, the positions inttpreare identified ag\;
and By, respectively, corresponding to one of the two cases. Whéee positions
are situated on a common meridional plane, our goal is nowdeenboth objects
separately along their orbits in order to find the smallesisfige distance between
them, which is no longer a meridional distance.

BZ BZR
B By B,

Fig. 3. lllustration of the parallel tuning method: sketdttize orbital segments (dashed curves) of
objects 4 and B close to the points, where the meridional distance has ad locamum. These
points are joined by a thick, green line. Varied positionghef objects are also shown, corresponding
to a given step in true anomaly, and the mutual distancesharersby thin, dotted lines. The smallest
of these distances is shown by the thick, red line.

The meridional distance betweéqn and B, is denotedDnmin1. Now, let both
A4 and B move to the right or left along their orbits by a given stap in true
anomaly. The four resulting, varied positions are den®gg, A;,, Bir andBy .
Along with A; and B;, we now have six points, which lead to nine values of the
distance betweerl and‘B. One of theseDnmin1) has already been found, and now
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we need to calculate the other eight (indicated by dottesklin Fig. 3). For this
we must use the full Cartesian coordinates of the four vapsitions, whose true
anomalies [ for 4 andv for ‘B) may take the known values féx and B; plus
or minusAv. We thus proceed as follows:

ra=aa(l—&)/(1+eacosl),

7
rg = ag(1—€3)/(1+egcosv). (7)
Xa = racosL,
ya = rasinL, (8)
zn= 0.

Xg = I's[c0SQp CcOgwp + V) — SiNQp Sin(ws + V) cosig| ,
yg = rg[sinQgcogws + V) + cosQp sin(wg + V) cosig|, 9)
Zg = rgsin(wg +V)sSinig.

and finally, the distance is found as:

D= \/(XA—XB)2+(YA—YB)2+(ZA—ZB)2- (10)

After all nine distances have been found, they are compamdithe smallest
one is chosen. Suppose that this corresponds to segwBt, as shown in Fig. 3.
That segment is consequently a better approach to the M@ittte initial one, so
we consider its end points{ and B, ) as the new reference positions, replacing
A; andB;. We may call themA, and By, respectively, and their mutual distance
iS Dmin2.

We now repeat the above procedure, using the same true anstepl This
means that we consider the six poilts, A2, AoL, Bor, B2 andBy, . Forthe case
shown in Fig. 3, only one of these six points is neBg(), and in a general case
no more than two points may be new. After calculation of threaming Cartesian
coordinates, all nine distances are again compared, arshih#lest one selected.
We iterate this procedure times until we find the reference distanBgn, to be
the smallest of the nine. In fact, we work with the distanogesgd when selecting
the optimal pair of points, allowing some extra saving of Cf#tde by avoiding
square root calculations.

At that point, we keepA, and B, as reference positions and decrease the true
anomaly step by a given factor. Using théss = A, and B; = B;,, we go through
the above iterations once more with the smaller step, ag#ihwe find the refer-
ence distance to be the smallest. Then we reset the systenhearshse the step
size again, and the procedure is repeated until the stegfalzebelow a prede-
fined limit. Note that the method described amounts to zogririron the closest,
local minimum of the distance function. The initial stepesadopted in this proce-
dure, which we call “parallel tuning”, is 0.06 rad, and eaeleiebase is achieved by
applying a factor 0.15.
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We have adopted two phases for the parallel tuning, as willdseribed in the
following paragraphs. The initial tuning is the first phaged its target step size is
5.10 6 rad. Then follows the final tuning, which starts from the tteetithe initial
tuning and proceeds to a final target step size, at which theepiure is terminated,
of 1-10 % rad. Note that the mentioned parameter values for the turang been
optimized for maximum speed while retaining perfect raligb(see Section 2.4).
Only the final target step size is adapted to double precisideulations and thus
independent of the optimization.

2.4. Finding the MOID

In principle, our method is to first go through the prepanattep, then apply
the scanning by meridional plane, and thereafter perfomnirthial tuning, starting
from all the local meridional distance minima found durifng tscanning. Using
the results of this initial tuning, where each closest lonalimum of the distance
function is determined at an accuracy~ofl0-8 a.u., we are almost always able to
identify which one is the smallest and then zoom in on it byfthal tuning. As
already mentioned, the scanning finds all local minim&Dgf and if the MOID
would always be close to one of these minima, the high acgwhour parallel
tuning would never fail to identify and measure the MOID.

However, there is an intrinsic problem of the meridionah@acanning method,
namely, that cases exist where a local minimum of the distfumaction yields no
corresponding minimum of the meridional distance. Fromgbiat of view of our
scanning method, these are “invisible minima”. In some esthcases, the MOID
may thus be invisible, and we have to find a way around thislprob

To this end, we have taken advantage of the possibility topawenour results
with those computed by Gronchi’s method. We arranged theutdtom his code
to be in double precision and could thus easily discoveraasles, where our MOID
differed from his. Even if a difference was very small, bull shuch larger than
the usual difference ok 10713 a.u., we could positively identify a case of missed
MOID in our code. Without applying any countermeasures, eeml this to occur
at the level of about one case in 100 000. Moreover, all of thecurred when only
one minimum was detected by the scanning — in itself a rareoong.

This fortunate circumstance led to our solution of the peoll Whenever the
scanning detects only one minimum, we start the parallehtymot from this
minimum, but from several positions of the meridional plaeéined by points that
are evenly distributed along the inclined orbit. Empirigalve found that at least
four points need to be used in order for one of them to lead,umng, to the
invisible minimum in case this exists. The exact choice efdtarting points is not
critical, but using four points we have not found any caseafife. For the sake of
completeness, we need to mention one additional case af tain evenly spread
starting positions. This is the extremely rare situatiohew the initial tuning fails
to distinguish between two nearby minima found by scannNae that the method
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of four starting points is relatively time consuming, andsiwe have to restrict it
to the cases where it is really needed.

Investigating a sample of two million orbit pairs, and usihg methods de-
scribed above including the special treatment of the ondrmim and indistin-
guishable two-minima cases, we did not find a single casesofeiancy between
our MOIDs and those by Gronchi. The agreement is always gerféus, the only
limits to the accuracy are set by the precision of the compand, in our case, by
the terminal step size of the parallel tuning, which is anywaatched to double
precision calculations. However, we have to emphasizeviieadhave no absolute
guarantee against missed MOIDs with our method. We can aylyrst they have
to be non-existent or extremely rare.

3. Checks of Performance

While the reliability and accuracy of our method thus seerbaowell estab-
lished, we obviously have to demonstrate that the resuttote is competitive, as
compared with other existing methods, in terms of CPU timescoption.

As mentioned, we tested our accuracy by comparing our esith those gen-
erated by Gronchi’'s method, which is published for commaominsluding source
codes and is accessiblta the author’s web site (see above). The quality of its per-
formance is well established through numerous applicatidinus, the finding of
perfect agreement between our method and Gronchi’s notwolyides confidence
in our results but gives credence to both methods. Such mgmtehas been one of
our criteria when choosing the above-mentioned valueseofdabhnical parameters
(step sizes) of our code, and this Section provides a few detrations of its speed
and accuracy.

First, we define a fictitious, non-inclined “target” orbit ercesponding to the
above objectq — and calculate the MOIDs between this object and a set oftabou
300000 asteroids from thAU Minor Planet Centerdatabase. Both Gronchi’'s
method and ours are used. In Table 1 we show 20 examples obidstebits of
different types, and in Table 2 we present the results of toaracy test for these
orbits. In addition to the final MOID and its deviation from@ichi's MOID as
found from the double precision output, we also list the $esalvalues ofDmin
found in the scanning phase and their deviations from theMOI

For the target orbit, modeled on asteroid (21) Lutetia, wesehthe following
ecliptic elements (same epoch as the asteroidal elemdtis)nclination and lon-
gitude of ascending node were= Q = 0, and the rest were:
perihelion distanceq = 2.036 a.u.,
eccentricity:e= 0.164,
argument of perihelionw = 2502227 .

Table 2 illustrates the fact that our method finds MOIDs etsaliynequivalent
to those found by Gronchi’s algebraic formulae. By checkiiiterent kinds of
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Tablel
Orbital elements of test asteroids
Test | Asteroid o} e i Q w remarks
No. No. [a.u] [°] [’ [°]
1 1| 2.55343183 0.0777898| 10.58785| 80.35052| 72.14554
2 2| 2.12995319 0.2313469| 34.84268| 173.12520| 310.03850 first
3 3| 1.98948966| 0.2552218| 12.97943| 169.90317| 248.22602 five
4 4| 2.15354370 0.0882196| 7.13426| 103.89537| 150.08873| asteroids
5 5| 2.08388391] 0.1905003| 5.36719| 141.60955| 358.80654
6 65407 | 2.48391159 0.9543470| 119.29902| 39.00301| 357.90012
7 20461 | 2.36382356| 0.9006860| 160.41316| 297.34820| 102.45000| orbits with
8 3200| 0.13964163| 0.8901393| 22.23224| 265.28749| 322.11933| largest
9 2212 0.35420623 0.8363753] 11.68912| 28.13011| 208.66724| eccentricity
10 4197 | 0.52469070 0.7715449| 12.56792| 7.25167| 122.30952
11 P5447| 2.74144856/ 0.1153501| 0.00431| 272.90217| 251.43828
12 U9154 | 2.50571901] 0.1924270| 0.01522| 94.14405| 304.71343| orbits with
13 53910| 2.11312640 0.1215091| 0.02244| 321.26045| 109.96758| smallest
14 G5525| 2.09876663 0.1543590| 0.02731| 88.64817| 67.91991| inclination
15 R4450| 2.67112178 0.1328536| 0.02809| 41.39822| 274.65080
16 61395| 1.99601821] 0.1875129| 1.26622| 238.06043] 31.32645
17 64112 | 2.03086844| 0.1653922| 0.66023| 339.21518 89.47548| orbits with
18 27710 1.77550824] 0.1928808| 3.43901| 140.55651| 216.20834| smallest
19 61096 | 1.96745453| 0.1837814| 3.69269| 98.95749| 227.52626] MOID
20 56127| 2.15731280 0.1007470| 2.91058| 138.77805| 231.93187

orbits, we also have a good indication that in practice gh®no special kind, for
which the agreement is less than perfect. Low inclinatidotsror orbits with very
small MOIDs are no exceptions.

Moreover, even if we would limit ourselves to the scanninggd and skip
the tuning, the resulting, smalleBi,;, values are not far from the correct results.
Of course, they are somewhat larger than the MOIDs, and someetthey may
miss the MOID entirely, though such cases are rare and doppsaa in Table 2.
Moreover, we have found that all MOIDs that are missed by ttensing have
values very close to the “apparent” MOIDs actually detectegianing thaDp,y, is
still a fair approximation.

There are two key features that characterize our method axke fih compet-
itive: (1) the meridional plane scanning that identifies tieima efficiently; and
(2) the parallel tuning that allows to quickly zoom in on th®©ND. Together, they
allow us to perform the MOID calculations reliably, accedgitand with a low con-
sumption of CPU time.
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Table?2

Results of MOID calculations for the test asteroids

Test| Asteroid| remarks MOID [a.u.] D14 | Dmin [a.U.] | A3

No. No. W-R W-R
1 1 0.13455874348909 0 | 0.1346719| O
2 2 first 0.00289925623680 0 | 0.0151316| 12
3 3 five 0.07817951779390 0 | 0.0784614| O
4 4 | asteroids | 0.08735595371552 0 | 0.0878071| O
5 5 0.14532630925408 0 | 0.1455354| O
6 65407 0.26938418933051 0 | 0.2709789| 2
7 20461 | orbits with | 0.54491059333263 0 | 0.5479893| 3
8 3200 largest 0.70855959609279 —48 | 0.7152397| 7
9 2212 | eccentricity| 0.03943927946198 0| 0.1120682| 73
10 4197 0.18225709092897 0 | 0.2183000| 36
11 P5447 0.147668347582283 0| 0.1483890| 1
12 U9154 | orbits with | 0.00010493251317 0 | 0.0102467| 10
13 53910 smallest | 0.00030783183432 0 | 0.0141584| 14
14 G5525| inclination | 0.00098583168214 0 | 0.0084652| 7
15 R4450 0.20707625146740 0O | 0.2087313] 2
16 61395 0.00000003815330 0O | 0.0069443
17 64112 | orbits with | 0.00000419348257 0 | 0.0011561| 1
18 27710| smallest | 0.00000627704688 0 | 0.0402762| 40
19 61096 MOID 0.00000785853673 0 | 0.0043333| 4
20 56127 0.00001189165231 0 | 0.0100350| 10

W-Rdenotes values found by our method, @1d andA3 denote the deviations
of these values of MOID anB i, from Gronchi's MOID in units of 1014 and
103 a.u., respectively.

As a practical test of computing speed, we have chosen fileastaroids as
object 4 (“target object”) and computed their MOIDs with respect tbaher
asteroids from the MPC database as objBdtprojectile object”). For the targets,
our selection waad hocexcept for a preference for space mission targets, and the
projectiles were limited to absolute magnitudds< 16.5 in order to be at least
km-sized. Fig. 4 shows a log-log plot of the cumulative disitions of MOIDs
for the five targets, excluding all MOIDs larger than 1 a.uclEaurve is based on
more than 280 000 MOIDs and needs less than one minute of @RtJam a fast
personal computer.

The curve for (25143) Itokawa stands out by very small numb@rthe small-
est MOIDs, because its orbit is mainly situated interior lte main belt & =
1.32 a.u.). To a lesser extent, the curve for (318) Magdaleowsihe same kind
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Cumulative distribution of asteroids with MOID<MOID,,
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Fig. 4. Cumulative MOID distributions: The number of MOIBesk than a given value is plottes.
that value, considering all km-sized asteroids in the MP@lukse.

of deficiency, being situated mostly exterior to the balt 3.19 a.u.). Note that
for the largest asteroids (Ceres, Vesta and Lutetia) thageantually be projectiles
with MOIDs smaller than the target radius. Of course, theadibn changes con-
tinually if one considers perturbed orbits, but we may statally conclude that at
any time, there is a non-zero number of km-sized main be#iragts among the
currently known ones on such, potentially collisional k=c

We devised one extra check on the accuracy of our MOIDs byitaiog them
in cases where objectg and B are the same. Of course, the result in such a case
must be that the MOID equals zero. In the limited number daktdsat we made,
this was always verified.

4. Critical Comparison of MOID Calculation Tools

The main difference between the two MOID calculation toalder consider-
ation — ours and Gronchi’s — is that our method is numericaeldeon geometry,
while the latter is a computer coding of algebraic formuldewever, we now need
to compare their performance and quality of results.

Let us first describe the disadvantages of our method. Whita&hi's alge-
braic method yields a complete solution, where all minimaxima, and saddles
are accurately found for each pair of orbits, our method gtidyds the MOID. It
would not be difficult to find other critical points with our itid, and indeed there
are special situations where this would be very useful, towiaks not our goal. A
more important disadvantage of our method is the problerh missing MOIDs
(Sections 2 and 3). We have avoided this problem to the efttabtve do not detect
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any missed MOIDs in millions of tests, but one should keepiimdthat the risk of
a miss {.e, calculating the wrong minimum) cannot vanish entirely.

Turning to advantages, we first note that our method does s fixed ac-
curacy and speed, because our downloadable code can easilgdified with re-
spect to the values of the technical parameters. This mag lme@ortant advantage
because, depending on the purpose, one may trade accuresljability against
speed. For single MOIDs, of course the speed does not mattan cases of mil-
lions or more calculationse(g, for mapping purposes) precision may be sacrificed
and speed may be gained by increasing the step sizes. Mordweode may be
further modified so as to avoid the safety measure of tuniog flour positions of
the meridional plane, which is relatively time consuminigthe price of running a
risk to miss the MOID in a few cases.

The accuracy of the open access computer code at Gronchi’siveds 107 a.u.
as given by the number of decimals provided. To find the istciaccuracy, we had
to modify the output commands. Our tests on millions of opiiirs then revealed
that the two methods generally yield the same results tamvith* a.u.

To compare the computing speed between our code and Grsnehg’ used
the Fortran source codes from Gronchi’'s web page and remavedmmands that
could slow down the calculations.@, screen commands). Then we compiled and
ran both programs in the same computer environment, caiegl200 000 MOIDs
between (21) Lutetia and other main belt asteroids. Thdtsasere found in about
9 s to 15 s with our methods.40 s, when using Gronchi’s method. The reason for
the variation when using our code is that the likelihood ofihg to use the safety
measure against missing MOIDs varies with the orbits caredl If we would
turn this feature off, the time consumption would alwaysdsslthan nine seconds.

One interesting advantage of our method is that we can olgaiporary re-
sults. When calculating a MOID, we have a first result alreafigr the scanning
by using the smallest value d@,,. This result usually differs by 1& a.u. or
less from the accurate value. If we look for MOIDs less thamsdhreshold value,
for instance looking for possible impacts, we may thus reiyt@mporary results
and, using some margin, exclude numerous orbits from theofdhe calculation
by noting that they have no chance to satisfy the appliedraoit. This may result
in significant, additional savings of CPU time.

A summary of the above, critical comparison is presentedaibld 3. But in
addition to this, let us mention a final virtue of our methodttbffers interesting
possibilities. This comes from the fact that we always itigase the vicinity of the
MOID points on the two orbits during the calculation. If theOND is so small that
potential collisions may occur, we are then able not onlysialglish this fact, but
also to scan and measure the extent of the surrounding zlamwgrag collisions in
order to estimate the impact probability. This feature wél explored and used in
a forthcoming paper (Rickmaet al, in preparation).



306 A A.

Table3

Selected features of two MOID calculation methods

Gronchi’s method Our method

algebraic method numerical/iterative method

fixed accuracy and speed interchangeable accuracy and speed
test speed on standard CPU coyeest speed on standard CPU core:
40 s per 100000 MOIDs 9-15 s per 100 000 MOIDs
estimated accuracy: accuracy:

~ 1077 a.u. (web page) 104 a.u.

10 a.u. (intrinsic)

always catches the MOID may miss the MOID, but risk: 106
temporary results: temporary results:

impossible possible, allowing to speed up calculations

gives all critical points, without | may obtain other critical points, but with additiona
additional time consumption slight time consumption

5. Conclusions

Let us finally note that, even though our geometric scanniethod may ap-
pear unrelated to recent analytic work on MOID computatioaluding Gronchi's
method, it does rely on and make use of existing knowledgevé\lave shown in
this paper, it is definitely competitive in terms of speed anduracy and is more-
over flexible. In particular, the user may trade one for theeoby simply setting
the values of a few technical parameters (step sizes). Tikare proof that the
scheme that we use (in particular, using the meridionalglathe best among all
possible schemes, but it is not likely that any major improgat could be made.

In terms of practical use in Solar System dynamics, our nethidl certainly
have its major advantages in work involving massive siniitest. If only one spe-
cial MOID is looked for, there is nothing that favors eitheranethod or Gronchi’s,
but the availability of both makes it possible to obtain afukeheck. The real ben-
efit of our method, on the other hand, is likely to occur in &itons where millions
or billions of MOIDs are wanted, and especially if inforn@tiabout the vicinity
of the MOID configuration is also of interest.
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