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Abstract: Representing and analyzing the complexity of models constructed by data is a difficult
and challenging task, hence the need for new, more effective techniques emerges, despite the
numerous methodologies recently proposed in this field. In the present paper, the main idea is
to systematically create a nested structure, based on a fuzzy cognitive map (FCM), in which each
element/concept at a higher map level is decomposed into another FCM that provides a more detailed
and precise representation of complex time series data. This nested structure is then optimized by
applying evolutionary learning algorithms. Through the application of a dynamic optimization
process, the whole nested structure based on FCMs is restructured in order to derive important
relationships between map concepts at every nesting level as well as to determine the weights of
these relationships on the basis of the available time series. This process allows discovering and
describing hidden relationships among important map concepts. The paper proposes the application
of the suggested nested approach for time series forecasting as well as for decision-making tasks
regarding appliances’ energy consumption prediction.

Keywords: fuzzy cognitive maps; optimization; forecasting time series; evolutionary algorithms;
decision making; appliances energy prediction

1. Introduction

In recent years, fuzzy cognitive maps (FCMs) have become increasingly popular [1]. An FCM can
be defined as a type of recurrent neural network, carrying the main aspects of fuzzy logic. An FCM
allows mimicking a system or a phenomenon with the use of key concepts and causal relationships
among them. FCM models are suitable and particularly useful for modeling and decision-making in
the case of complex systems. They have been used in various application domains, e.g., for pattern
recognition [2], in risk analysis and crisis management [3], as a decision support tool for political
decisions [4], to model an undersea virtual world of dolphins, fish, and sharks [5], for sustainable
socio-economic development planning [6], and to support the decision- making process for photovoltaic
solar energy sector development [7].

FCMs have also been proved as an effective technique for numerical [8] and linguistic [9] forecasting
of time series. In Reference [10], a novel approach based on FCMs and a granular fuzzy set-based
model of inputs were proposed for realizing time series prediction at the linguistic and numerical
levels. In Reference [11], a methodology that joins FCMs with a moving window approach to time
series prediction was developed. The simulation analysis was performed on three different time series
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datasets: rainfall in London, number of births per month in New York City, and Campito tree rings.
In Reference [12], the analysis of FCMs usage was focused to predict water demand based on historical
time series. In addition, recently there have been some novel approaches in the literature attempting to
solve time series prediction problems by combining FCMs with neural networks [13,14].

The initial information of an FCM model is based either on expert knowledge or by using learning
algorithms. In standard methods of FCM learning, concepts are chosen by experts or selected based
on all available data attributes. An enormous amount of data and a big number of concepts may
complicate analysis and decision-making. In this direction, various modifications to standard methods
have been applied aiming to simplify FCM models by reducing the number of concepts [14–16] and the
connections between them [17,18]. These approaches allow obtaining a balance between data accuracy
and model readability. To reduce the complexity and increase the readability of FCMs with a large
number of concepts, clustering methods have been used with the aim to combine similar concepts
based on their dynamic behavior. The related studies have been carried out on ready-made models
of FCMs: FCMs initialized by experts [19] or constructed based on data [6]. Simplifying models,
by reducing the number of concepts as well as clustering them, allows the creation of legible structures
more similar to those created by humans, and making FCMs easier to be analyzed. In the case of a
large number of concepts, a decision-making and analysis problem can be described in the form of a
nested FCM that allows for a more readable representation of knowledge than the classic FCM [5].
For example, in Reference [20], this type of structure was used to evaluate water quality failures.
Nested FCMs could help to understand the underlying problem, support the user to choose at what
level of detail he/she wants to analyze the problem of interest, and represent complex systems in a
more accurate way. Such an approach, as regards the FCMs construction, can provide more readable
and easier to interpret structures, which are closer to human reasoning and inference.

The aim of the current study is to develop an approach for constructing a nested FCM-based
structure that will represent a problem’s complex data in a more elaborate way. The suggested approach
involves the decomposition of each concept at a higher map level into another FCM. The first stage of
the proposed methodology is to cluster concepts (data attributes) based on similarities between them
with the use of the k-means clustering approach [21]. Next, two popular evolutionary algorithms for
learning FCMs (i.e., the Real-Coded Genetic Algorithm (RCGA) [22] and the Structure Optimization
Genetic Algorithm (SOGA) [12]) are applied to find important relationships between concepts at
every nesting level and determine weights of these relationships on the basis of the available data.
The paper recommends applying the proposed nested approach for time series forecasting as well as
for decision-making tasks in the field of appliances’ energy consumption prediction.

Specifically, energy use forecasting has a vital role in energy planning and energy consumption
reduction. As energy costs increase, more effective tools are needed to analyze, manage, and propose
energy use reduction and optimization [23]. In Reference [24], support vector machines have been
deployed for energy consumption prediction in buildings, while in Reference [25], various regression
models were utilized for energy prediction, including multiple linear regression, support vector
machines with radial kernel, random forests, and gradient boosting machines. Gradient boosting
machines and random forests outperformed the multiple linear regression and support vector machines
with the radial kernel, in terms of achieving lower forecasting errors. Additionally, artificial neural
network (ANN), autoregressive integrated moving average (ARIMA), and multiple linear regression
(MLR) models were used in Reference [26] for energy consumption prediction. In Reference [27],
a deep learning model based on an autoencoder was developed that predicts future energy demand
according to different situations.

Moreover, evolutionary FCMs have recently found significant applicability in energy forecasting
and optimization. For example, in Reference [14], historical time series involving energy consumption
data were utilized along with the application of the Structure Optimization Genetic Algorithm
(SOGA) [12] for the automatic construction of an evolutionary FCM. SOGA is an extension of the
Real-Coded Genetic Algorithm (RCGA) [28], which provided the decision-makers with the ability to
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identify the most significant concepts of an examined system and the corresponding relationships
among them. Considering any available historical data, FCM models can be automatically produced
and optimized with the help of the SOGA algorithm application. For example, a two-stage prediction
model for forecasting was introduced in Reference [14], which exploits the competent characteristics
of evolutionary FCMs enriched with those of SOGA and ANNs. Recently, in Reference [13], a new
ensemble-based forecasting approach was proposed for time series analysis, which deals with the
problem of natural gas demand prediction, case studying three major cities in Greece. In this study,
the outstanding capabilities of FCMs and ANNs were highlighted, through the investigation of an
ensemble of the related methods, applied to multivariate time series prediction in natural gas demand
forecasting. Moreover, in Reference [29], an approach based on high order FCMs and high order fuzzy
time series was developed to predict solar energy. Public data from Brazilian solar stations, from the
year 2012 to 2015, were used in simulations. The produced results confirmed the usefulness of the
developed approach.

Traditional energy prediction models mainly focus on the prediction accuracy; however, it is also
important to determine and monitor various other variables (concepts) that affect energy consumption
in order to better understand the energy use behavior and find ways to reduce it. The innovation of
the present work lies on the following issues that highlight the research contribution of the article:

• The paper suggests the construction of an efficient FCM-based nested structure in which each
concept at a higher map level can be decomposed into another more detailed FCM for analyzing
complex data. The proposed approach for optimizing the FCM nested structure is characterized by
high performance and flexibility, especially in problems with a large number of variables/concepts.

• The paper proposes the application of the rigorous SOGA algorithm to fine-tune and determine
the most appropriate nested FCM architecture aiming at an enhanced prediction performance.
Implementing SOGA algorithms allowed the authors to optimize the nested structure by selecting
the most significant concepts from all possible concepts at every nesting level.

A simulation analysis regarding the utilization of the nested structure based on FCMs in appliances
energy use prediction has been also performed. To evaluate the performance of the developed approach,
a detailed comparison between the nested FCM and the standard FCM was conducted. The experiments
were performed with the use of an appliances’ energy consumption prediction dataset [25].

The outline of the paper is as follows. Section 2 describes an overview of the FCM method.
In Section 3, the proposed approach for constructing a nested structure based on FCMs is described.
Section 4 presents the simulation analysis results, which were obtained from applying the proposed
approach to an appliances’ energy prediction dataset. The section also presents a comparative analysis
between the proposed technique and the standard FCM in terms of forecasting performance. Section 5
presents a discussion of the results as well as summarizes the main conclusions of the paper.

2. Fuzzy Cognitive Maps Overview

A fuzzy cognitive map (FCM) has the form of a knowledge graph consisting of nodes (concepts)
and links among them [1]. The concepts are nonlinear and represent variables in a causal system.
They can take values in the range [0, 1]. The directed links that define the relationships between
concepts can be positive or negative taking values between [−1,1]. Figure 1 presents an example of an
FCM for exploring the development of the photovoltaic solar energy sector in Brazil [30], in economic
and political terms.
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Figure 1. Example of a fuzzy cognitive map created from a group of specialists for Brazilian photovoltaic
solar energy development. Republished with permission from Papageorgiou et al. [7]; Published by
MDPI, 2020.

Due to the causal nature of the relationships between the concepts, FCMs are an effective tool for
modeling decision support systems and time series prediction. Concepts’ values undergo a change
over time due to the dynamics of the model. In the current research study, the following popular
nonlinear dynamics model is applied to calculate the values of concepts:

Xi(t + 1) = F


Xi(t) +

n∑
j = 1
j , i

X j(t)·w j,i


(1)

where Xi(t) is the value of the i-th concept at the t-th iteration of the FCM execution, t is discrete
time, i,j = 1, 2, . . . , n, n is the number of concepts, w j,i is the weight that determines the linkage
strength between the j-th concept and the i-th concept taking value in the interval [−1,1], and F(x) is the
sigmoidal transformation function normalizing the concept values to the range [0,1]. Certain concepts
can be defined as decision (output) concepts that should be excluded from further analysis.

FCMs can be created taking into account the experts’ knowledge or using machine learning
algorithms. FCM learning aims at the determination of the weights of the existing linkages between
concepts where data are available. Among the FCM learning methods is the Real-Coded Genetic
Algorithm (RCGA) [10,22], in which each individual in a population is determined according to
a floating-point vector that contains the weights of the connections (linkages) between concepts.
Each individual is then decoded into an FCM model and a fitness function, as described below, is used
for its evaluation [10,22]:

f itnessp(erorrl) =
1

a·erorrl + 1
(2)

where p is the number of an individual in the population, p = 1, . . . , P, P is the population size, l is
the number of a generation, l = 1, . . . , L, L is the maximum number of generations, a is a parameter,
and erorrl is the learning error that can be described as follows:

erorrl =
1
T

T∑
t=1

(Z(t) −X(t))2 (3)
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where t = 1, . . . , T, T is the number of learning records, X(t) is the forecasted value of the decision
(output) concept at the t-th iteration, and Z(t) is the actual normalized value of the decision (output)
concept at the t-th iteration.

The Structure Optimization Genetic Algorithm (SOGA) constitutes a partial extension of the
RCGA algorithm [28]. SOGA allows optimizing the structure of an FCM, during its learning process,
by selecting the most significant concepts and the relationships between them. Each individual in
SOGA is represented by a floating-point vector containing the weights of the relationships between
concepts and by a binary vector of size n containing the information about the concepts incorporated
into the candidate FCM model. The evaluation of a candidate FCM is based on a new learning error.
A large number of concepts and the non-zero relationships between them increase the FCM complexity
providing an additional penalty. The learning error is given by the following function [28]:

erorr′l = erorrl + b1
nr

n2 erorrl + b2
nc

n
erorrl (4)

where erorrl is the learning error type, b1, b2 are the learning parameters, nr is the number of the existing
linkages between concepts, nc is the number of the concepts in the analyzed fuzzy cognitive map,
and n is the number of all possible concepts.

3. The Proposed Approach for Constructing Nested Structure Based on Fuzzy Cognitive Maps

This section describes the proposed approach for constructing a nested FCM structure in which
each concept of a higher level can be decomposed into another FCM model illustrating a more detailed
image of complex data.

3.1. Data Clustering

The first stage of the proposed approach is to cluster data attributes (concepts) based on the
similarity between their values with the use of k-means clustering [21]. It contains the following steps:

1. Determine the number of clusters K via trial and error.
2. Set the output concept as a separate cluster.
3. Initialize K − 1 cluster centers from available data attributes (excluding the output concept).
4. Calculate the distance between concepts values and cluster centers based on the Euclidean distance:

d(A, C) =

√√√ T∑
t=1

(xA(t) − xC(t))
2 (5)

where t = 1, . . . , T, T is the number of records, xA(t) is the value of concept A at the t-th iteration,
and xC(t) is the value of cluster center C at the t-th iteration. The output concept is omitted in
this step.

5. Assign concepts to the closest cluster center.
6. Update the cluster centers based on the values assigned to them.
7. Repeat steps 4–6 until convergence.

3.2. Constructing the First Level of the Nested Structure

The next stage of the proposed approach regards the construction of the most general level of the
nested structure (i.e., the first level of the nested structure). It contains the following steps:

1. For each cluster, calculate the average values for concepts within one group according to the
following formula:

xk(t) =
1
nk

nk∑
i=1

xk
i (t) (6)
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where t = 1, . . . , T, T is the number of records, xk(t) is the general value of the k-th cluster at
the t-th iteration, k = 1, . . . , K, K is the number of clusters, xk

i (t) is the value of the i-th concept
assigned to the k-th cluster at the t-th iteration, and i = 1, . . . , nk, nk is the number of concepts
assigned to the k-th cluster.

2. Normalize the calculated values into the interval [0,1] using the standard min–max normalization.
3. Divide the averaged normalized data into learning records and testing records.
4. Initialize the general FCM with K concepts based on the clustered data attributes.
5. Learn the general FCM with the use of the RCGA and SOGA algorithms based on learning records

in order to determine the relationships between concepts at the first level of the nested structure.

3.3. Constructing the FCM Models for the Second Level of the Nested Structure

The next stage of the proposed approach is to construct the FCM models at the second level of
the nested structure (i.e., the more detailed level of the nested structure). A separate FCM model is
constructed for each cluster (excluding the cluster that corresponds to the output concept) and is used
to predict the output concept. If the first level is sufficient for a given concept, it does not have to be
decomposed into another FCM at the second level. The values for the output concept based on the k-th
FCM model (i.e., the k-th cluster) are calculated according to the following formula:

Xk(t + 1) = F


Xk(t) +

nk∑
i=1

Xi(t)·wi,o +
K−1∑

j = 1
j , k

X j(t)·w j,o


(7)

where Xk(t) is the value of the output concept at the t-th iteration, t = 1, . . . , T, T is the number of
learning records, i = 1, 2, . . . , nk, nk is the number of concepts assigned to the k-th cluster, wi,o is the
weight that determines the strength of the relationship between the i-th concept and the output concept
in the k-th FCM model, Xi(t) is the value of the i-th concept in the k-th FCM model, j = 1, 2, . . . , K− 1, K
is the number of clusters, w j,o is the weight that determines the strength of the relationship between
the j-th general concept (cluster j) and the output concept in the k-th FCM model, and X j(t) is the value
of the j-th general concept of the first level at the t-th iteration.

The learning process of the FCM models at the second level is achieved with the use of the RCGA
and SOGA algorithms considering learning records, in order to determine the relationships between
concepts at the second level of the nested structure [14]. In the case of a large number of concepts in
individual FCM models at the second level, we can further extend the nested FCM by another level.

3.4. Calculating the Forecasted Values for the Second Level of the Nested Structure

Additionally, the FCM models from the second level of the nested structure are proposed to be
used for the calculation of the forecasted values of the output concept (at the second level). The simple
average method was used to calculate the forecasted values of the output concept based on values
generated by the FCM models belonging to the second level. This method assigns the same weight to
every single model [31], whereas it can improve the average accuracy when increasing the number of
the combined single models.

3.5. Testing and Evaluation

The evaluation of the resulting models is accomplished with the use of testing data, which are
unknown to the models. In order to evaluate the one-step-ahead prediction, three common statistical
indicators were used: mean square error (MSE), root mean square error (RMSE), and mean absolute
error (MAE), whose mathematical equations are described below:
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1. Mean Squared Error:

MSE =
1
T

T∑
t=1

(Z(t) −X(t))2 (8)

2. Root Mean Squared Error:

RMSE =
√

MSE (9)

3. Mean Absolute Error:

MAE =
1
T

T∑
t=1

∣∣∣Z(t) −X(t)
∣∣∣ (10)

where X(t) is the forecasted value of the output concept at the t-th iteration, Z(t) is the normalized
actual value of the output concept at the t-th iteration, and t = 1, . . . , T is the number of
the iteration.

3.6. Software

The simulation analysis of the proposed approach for constructing nested FCMs was implemented
in ISEMK (Intelligent Expert System based on Cognitive Maps), a software tool that has been developed
to construct and analyze FCMs [14,28]. The ISEMK tool is a C# application that allows users to construct
FCMs with the use of evolutionary algorithms. In the context of the current research study, a new
module has been implemented in the ISEMK tool, which enables:

• reading data from .data file,
• setting the number of clusters,
• clustering similar concepts with the use of k-means method,
• showing results of clustering,
• calculating the average values for concepts within one group in order to construct the first level

(the most general level) of the nested structure,
• exporting these values to the .data file in order to use them to construct the most general FCM

model with the use of RCGA and SOGA algorithms, and
• exporting the original values of the concepts in each group to separate .data files in order to

construct the FCM models on the second level (the more detailed level) of the nested structure.

Figure 2 presents the implemented module for data clustering.
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Figure 2. Screenshot of the implemented ISEMK (Intelligent Expert System based on Cognitive Maps)
module for data clustering.

4. Case Study

For the purposes of this study, in order to show the functionality of the proposed methodology,
a specific appliances’ energy prediction dataset was considered and analyzed [25]. This dataset contains
energy data recorded for a period of four and a half months from a low energy house, which has been
used as a testbed. A wireless sensor network (ZigBee) was used to monitor house temperature and
humidity conditions, whereas m-bus energy meters were collecting the energy data every 10 min.
Additionally, weather data were provided by a public data repository connected to an airport weather
station nearby. The used data contained the following attributes (concepts):

• Appliances—energy consumption (Wh),
• Lights—light fixtures energy consumption (Wh),
• T1—kitchen temperature (Celsius),
• RH1—kitchen humidity (%),
• T2—living room temperature (Celsius),
• RH2—living room humidity (%),
• T3—laundry room temperature (Celsius),
• RH3—laundry room humidity (%),
• T4—office temperature (Celsius),
• RH4—office humidity (%),
• T5—bathroom temperature (Celsius),
• RH5—bathroom humidity (%),
• T6—outside the building temperature (north side) (Celsius),
• RH6—outside the building humidity (north side) (%),
• T7—ironing room temperature (Celsius),
• RH7—ironing room humidity (%),
• T8—teenager room 2 temperature (Celsius),
• RH8—teenager room 2 humidity (%),
• T9—parents room temperature (Celsius),
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• RH9—parents room humidity (%),
• Tout—outside temperature (Celsius),
• Pressure—pressure (mm Hg),
• RHout—outside humidity (%),
• Windspeed—wind speed (m/s),
• Visibility (km), and
• Tdewpoint—due point temperature (Celsius).

In what follows, the application of the proposed approach for constructing a nested structure
based on FCMs is presented by utilizing this appliances’ energy prediction dataset [25]. “Appliances”
is set as the output concept of the FCM. The normalized data were divided into learning records
(15,000 otal in number) and testing records (4735 total in number). Table 1 presents the sample results
of the clustering data related to the use of the appliances’ energy dataset into 5 clusters.

Table 1. Results of clustering.

Cluster Attributes (Concepts)

Cluster 1 T1 T2 T3 T4 T5 T7 T8 T9
Cluster 2 RH1 RH2 RH3 RH4 RH5 RH6 RH7 RH8 RH9 RHout Visibility
Cluster 3 Pressure
Cluster 4 Lights T6 Tout Windspeed Tdewpoint

Cluster 5 (output) Appliances

The FCM models were constructed with the use of two evolutionary learning algorithms: RCGA
and SOGA. The learning parameters were selected by trial and error in order to minimize prediction
errors. The learning process was repeated 10 times for each parameter configuration. The average values
of the evolution criteria with standard deviation were produced accordingly. Uniform crossover [32]
with crossover probability equal to 0.6, random mutation with mutation probability equal to 0.1,
and ranking selection for parent selection were used in the simulations. The parents of one generation
are completely replaced with the offspring. Elite strategy was applied and the single best individual
was kept. Both population size and the maximum number of generations in the respective case study
were set equal to 100.

Table 2 shows the calculated prediction errors (MAE, MSE, RMSE) for the first and second levels
of the nested FCM. To evaluate the performance of the proposed approach, an extensive comparative
analysis between the nested FCM and the standard FCM was performed. The best models in terms of
having the lowest MSE value were further analyzed so the forecasted values of energy use of appliances
for the second level of the nested structure (second level) would be calculated. Table 3 shows the
obtained prediction errors (MAE, MSE, RMSE) for the best FCM models.

Table 2. Comparison results among the nested fuzzy cognitive map and standard fuzzy cognitive map.

Model Algorithm MAE MSE RMSE

First level SOGA 0.0423 ± 0.0140 0.0058 ± 0.0017 0.0754 ± 0.0099
RCGA 0.0370 ± 0.0015 0.0052 ± 0.0006 0.0720 ± 0.0039

Cluster 1 SOGA 0.0454 ± 0.0099 0.0067 ± 0.0019 0.0814 ± 0.0104
RCGA 0.0424 ± 0.0038 0.0060 ± 0.0006 0.0772 ± 0.0038

Cluster 2 SOGA 0.0453 ± 0.0077 0.0064 ± 0.0009 0.0801 ± 0.0054
RCGA 0.0409 ± 0.0051 0.0060 ± 0.0007 0.0774 ± 0.0045

Cluster 3 SOGA 0.0423 ± 0.0140 0.0058 ± 0.0017 0.0754 ± 0.0099
RCGA 0.0370 ± 0.0015 0.0052 ± 0.0006 0.0720 ± 0.0039

Cluster 4 SOGA 0.0414 ± 0.0036 0.0061 ± 0.0008 0.0778 ± 0.0050
RCGA 0.0373 ± 0.0022 0.0054 ± 0.0005 0.0731 ± 0.0036

Standard FCM SOGA 0.0485 ± 0.0135 0.0072 ± 0.0015 0.0845 ± 0.0086
RCGA 0.0426 ± 0.0025 0.0065 ± 0.0007 0.0807 ± 0.0041
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Table 3. Best results for the nested fuzzy cognitive map and standard fuzzy cognitive map.

Model Algorithm MAE MSE RMSE

First level SOGA 0.0348 0.0045 0.0671
RCGA 0.0348 0.0045 0.0667

Cluster 1 SOGA 0.0369 0.0048 0.0692
RCGA 0.0398 0.0053 0.0731

Cluster 2 SOGA 0.0401 0.0053 0.0730
RCGA 0.0344 0.0052 0.0722

Cluster 3 SOGA 0.0348 0.0045 0.0671
RCGA 0.0348 0.0045 0.0667

Cluster 4 SOGA 0.0351 0.0048 0.0690
RCGA 0.0342 0.0044 0.0666

Second level SOGA 0.0354 0.0047 0.0682
RCGA 0.0334 0.0045 0.0673

Standard FCM SOGA 0.0389 0.0055 0.0740
RCGA 0.0397 0.0054 0.0736

Please notice that the bold values in the above tables represent the best results associated with the
least values of prediction error measures.

Figure 3 depicts the sample nested structure obtained with the use of the RCGA and SOGA
algorithms. The proposed approach based on a genetic algorithm optimization allowed us to construct
the nested fuzzy cognitive map in which each node is an independent FCM model containing similar
concepts. The appliances’ energy usage prediction can be analyzed at the first (the most general) level
or at a more detailed level (with the use of the detailed FCM models constructed for each cluster).
Additionally, the use of SOGA allowed the optimization of the nested structure through the selection
of the most significant concepts in each cluster.

More specifically, clusters 1, 2, and 4 in Figure 3a contain more variables than those in Figure 3b,
which have been selected by applying the SOGA algorithm for FCM learning. Furthermore, the number
of weighted relationships among clusters is less in the optimized nested FCM structure as depicted
in Figure 3b, producing a less complex model for making a prediction. Figure 3b presents the
most significant concepts for the prediction automatically selected by the SOGA algorithm in the
sample experiment.

The most important concepts in each cluster in the nested FCM, as they were produced by the
SOGA optimization approach, are the following: T1- temperature in the kitchen area, in Celsius, T3-
temperature in laundry room area, T5- temperature in bathroom, in Celsius, and T7- temperature
in ironing room, in Celsius (Cluster 1), RH9- humidity in parents room, in %, and RHout- humidity
outside, in %, (Cluster 2), Press (Cluster 3) and Lights, and T6- temperature outside the building
(north side), in Celsius, (Cluster 4). These concepts have a significant impact on appliances to predict
their behavior.

Figure 4 presents the sample results for the forecasting of energy use of appliances. The nested
FCM outperformed the standard FCM in terms of achieving better forecasting results overall.
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Figure 3. Sample nested fuzzy cognitive map obtained with the use of (a) real-coded genetic algorithm
(RCGA) and (b) structure optimization genetic algorithm (SOGA).
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Figure 4. Forecasting results for the best model obtained with the use of the SOGA algorithm.

5. Discussion of Results and Conclusions

In this work, various FCM-based nested architectures were explored, considering the variables that
were carefully determined by using the FCM models defined in Section 3. Through the experimental
analysis, which involved learning and optimization processes, the optimum nested FCM structure was
identified in terms of the overall prediction accuracy.

To further analyze the results of the proposed forecasting approach based on nested FCMs,
and assess its effectiveness as well, a comparative analysis has been carried out with respect to the
forecasting performance, between the proposed technique and the standard FCM, which has already
been applied in similar energy problems as reported in the relevant literature. All the results produced
are gathered in the tables and figures cited in the previous section. In particular, from the results shown
in Table 1, it emerges that the proposed approach allowed the clustering of 26 concepts related to the
use of appliances energy into 5 similar clusters. After a detailed analysis of Tables 2 and 3, as regards
the MAE, MSE, and RMSE errors, it can be concluded that the nested structure based on two levels
(first level and second level) provided lower errors than the standard approach based on a single FCM.

In Figure 3, it can be noted that the proposed optimization approach allowed the authors to obtain
a readable nested structure in which each concept at the first level can be decomposed into another FCM,
providing a more detailed representation of appliances’ energy time series. Evolutionary algorithms
for FCM learning were used to extract important relationships between the concepts at every nesting
level and define corresponding weights as regards the available time series. Additionally, the SOGA
algorithm helped in the optimization of the nested structure through the selection of the most significant
concepts from all possible concepts at every nesting level.

The most important advantageous characteristics of the proposed nested FCM architecture,
according to the results as presented in the previous section, are summarized below. More specifically,
the nested FCM:

• optimizes the FCM structure by selecting the most proper concepts for decision-making;
• finds out the most important relationships between the concepts at every nesting level and

determines the weights of these relationships;
• results in a readable nested structure in which each concept of a first level can be decomposed

into another FCM, providing a more detailed representation of time series;
• facilitates understanding of the concepts affecting the forecast;
• clusters available concepts into similar groups
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The main limitation of the proposed approach is that it could be time-consuming for large datasets,
as it requires the construction of several individual FCM models. However, time series prediction can
be limited only to the most general level of the nested structure.

The main outcomes of this research study are outlined as follows:

(i) The proposed nested FCM method demonstrates excellent performance in the case of clustering
analysis considering the examined variables/concepts of this case study. For the examined
nested structure and after a number of experiments were conducted, a specific configuration
was concluded as the best. In general, the optimum nested FCM model is defined through the
identification of the most important relationships between the concepts at every nesting level and
by determining the weights of these relationships.

(ii) The proposed nested architecture is proven to be superior compared to the standard well-known
FCM model, which has been previously used in prediction problems in the energy domain.

(iii) The proposed nested model exhibits remarkable competence when deployed in appliances energy
prediction since its performance is better (see Tables 2 and 3) and constitutes a flexible tool to
cluster concepts efficiently and, thus, reduce the model complexity.

To sum up, we have developed and suggested a new approach for constructing a nested structure
based on fuzzy cognitive maps. The proposed approach seems to be a promising method for time
series forecasting and decision-making in many scientific domains. It allows the representation of a
readable nested structure in which each concept of a first level can be decomposed into another fuzzy
cognitive map for a more detailed presentation of the analyzed time series. Future work is oriented in
analyzing the application of the developed approach based on various complex time series. Moreover,
we would like to introduce different forecasting models (e.g., artificial neural networks) at the most
detailed level of the nested structure in order to achieve higher prediction accuracy.
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