
Abstract
Data de-identification reconciles the demand for release of 
data for research purposes and the demand for privacy 
from individuals. This paper proposes and evaluates an 
optimization algorithm for the powerful de-identification 
procedure known as -anonymization. A -anonymized 
dataset has the property that each record is indistinguish-
able from at least  others. Even simple restrictions of 
optimized -anonymity are NP-hard, leading to significant 
computational challenges. We present a new approach to 
exploring the space of possible anonymizations that tames 
the combinatorics of the problem, and develop data-man-
agement strategies to reduce reliance on expensive opera-
tions such as sorting. Through experiments on real census 
data, we show the resulting algorithm can find optimal -
anonymizations under two representative cost measures 
and a wide range of . We also show that the algorithm 
can produce good anonymizations in circumstances where 
the input data or input parameters preclude finding an 
optimal solution in reasonable time. Finally, we use the 
algorithm to explore the effects of different coding 
approaches and problem variations on anonymization 
quality and performance. To our knowledge, this is the first 
result demonstrating optimal -anonymization of a non-
trivial dataset under a general model of the problem.

1.     Introduction
Industries, organizations, and governments must satisfy 

demands for electronic release of information in addition to 
demands of privacy from individuals whose personal data 
may be disclosed by the process. As argued by Samarati 
and Sweeney [11], naive approaches to de-identifying 
microdata are prone to attacks that combine the data with 
other publicly available information to re-identify repre-
sented individuals. For example, consider a dataset of 
patient diagnoses that has been “scrubbed” of any personal 
identifiers such as name or social security number. While 
no record contains any single identifying value, many 
records are likely to contain unique value combinations. 
Imagine for instance a represented individual who is the 
only male born in 1920 living in some sparsely populated 
area. This individual’s age, gender, and zip code could be 
joined with a voter registry from the area to obtain his 
name, revealing his medical history.

To avoid such so-called linking attacks while preserving 
the integrity of the released data, Samarati and Sweeney 
have proposed the concept of -anonymity [11]. A -ano-
nymized dataset has the property that each record is indis-
tinguishable from at least  other records within the 
dataset. The larger the value of , the greater the implied 
privacy since no individual can be identified with probabil-
ity exceeding  through linking attacks alone.

The process of -anonymizing a dataset involves apply-
ing operations to the input dataset including data suppres-
sion and cell value generalization. Suppression is the 
process of deleting cell values or entire tuples. Generaliza-
tion involves replacing specific values such as a phone 
number with a more general one, such as the area code 
alone. Unlike the outcome of other disclosure protection 
techniques that involve condensation [1], data scrambling 
and swapping [6,7], or adding noise [2], all records within 
a -anonymized dataset remain truthful.

De-identifying data through common formulations of 
-anonymity is unfortunately NP-hard if one wishes to 

guarantee an optimal anonymization [8]. Algorithms that 
are suitable for use in practice typically employ greedy 
methods [6,13] or incomplete stochastic search [5,16], and 
do not provide any guarantees on the quality of the result-
ing anonymization.

We propose a practical method for determining an opti-
mal -anonymization of a given dataset. An optimal anon-
ymization is one which perturbs the input dataset as little as 
is necessary to achieve -anonymity, where “as little as is 
necessary” is typically quantified by a given cost metric. 
Several different cost metrics have been proposed 
[5,6,10,14], though most aim in one way or another to min-
imize the amount of information loss resulting from the 
generalization and suppression operations that are applied 
to produce the transformed dataset. The ability to compute 
optimal anonymizations lets us more definitively investi-
gate the impacts of various coding techniques and problem 
variations on anonymization quality. It also allows us to 
better quantify the effectiveness of stochastic or other non-
optimal methods.

We perform experiments to illustrate the feasibility of 
our approach. We demonstrate that despite the problem’s 
inherent hardness, provably optimal -anonymizations can 
be obtained for real census data under two representative 
cost metrics -- in most cases within only a few seconds or 
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minutes. Some parameter settings (specifically, very small 
values of ) remain challenging; but even under these con-
ditions, the algorithm can still be used to produce good 
solutions very quickly, and constantly improving solutions 
throughout its execution. This anytime quality allows it to 
be used to obtain good anonymizations even when an opti-
mal anonymization is out of reach.

Our algorithm departs from previous proposals in a vari-
ety of ways. First, previous proposals [6,10,13] suggest 
starting from the original dataset and systematically or 
greedily generalizing it into one that is -anonymous. Our 
algorithm instead starts with a fully generalized dataset 
(one in which every tuple is identical to every other) and 
systematically specializes the dataset into one that is mini-
mally -anonymous. While this choice may seem arbi-
trary, it is in fact an essential ingredient to the approach. 
Second, our algorithm uses a tree-search strategy exploit-
ing both cost-based pruning and dynamic search rearrange-
ment. These techniques have proven successful in data-
mining and machine learning domains [3,9,15], but to our 
knowledge have not been applied to the problem of -ano-
nymization. Third, we propose novel data-management 
strategies to reduce the cost of evaluating a given anony-
mization. Computing the cost of a -anonymization can 
involve scanning if not sorting the entire input dataset. We 
show how sorting and scanning costs can be dramatically 
reduced. Combined, this suite of techniques allow signifi-
cant reduction in data management overhead as well as a 
taming of the combinatorial state explosion. For example, 
the census dataset used in our experiments has a state-
space size of . Despite this, our algorithm identifies a 
provably optimal -anonymization after exploring only on 
the order of up to a few hundred thousand states. Other 
optimal algorithms proposed in the literature are suitable 
only for input datasets with trivially small domains.

2.     Related Work
While there are several -anonymization algorithm 

proposals in the literature [5,6,8,10,12,13,16], only a few 
are suitable for use in practice. Iyengar [5] shows how to 
attack a very flexible (and highly combinatorial) 
formulation of -anonymity using a genetic algorithm. The 
algorithm may run for hours, and because it is an 
incomplete stochastic search method, it cannot provide any 
guarantees on solution quality. The -argus algorithm of 
Hundpool and Willenborg [6] computes the frequency of 
all 2 and 3-value combinations of dataset values, then 
greedily generalizes values and suppresses outliers in order 
to achieve -anonymity. The datafly approach of Sweeney 
[12] is another greedy approach that generates frequency 
lists and iteratively generalizes those combinations with 
less than  occurrences. Like incomplete stochastic 
approaches, iterative greedy approaches such as -argus 
and Datafly offer no solution quality guarantees. Sweeney 
[12] and Samarati [10] have both proposed complete algo-
rithms for -anonymization. Sweeney’s algorithm exhaus-
tively examines all potential generalizations to identify the 
optimal (or “preferred”) generalization that minimally sat-

isfies the anonymity requirement, acknowledging the 
approach is impractical even on modest sized datasets. 
Samarati proposes an algorithm to identify all “k-minimal” 
generalizations, among which reside the optimal k-anony-
mizations according to certain preference criteria. While 
the algorithm exploits binary search and a monotonicity 
property on the generalization lattice to avoid exhaustively 
searching the entire generalization space, the number of k-
minimal generalizations itself remains exponential and can 
easily become too large to enumerate efficiently.

Winkler [16] has proposed using simulated annealing to 
attack the problem but provides no evidence of its efficacy. 
On the more theoretical side, Meyerson and Williams have 
recently proposed an approximation algorithm that 
achieves an anonymization within  of optimal. 
The method remains to be tested in practice. The table 
below summarizes this set of known approaches to the 
problem in terms of practicality and solution guarantees.

3.     Preliminaries
A dataset  is a multi-set of tuples  each com-

prising a sequence of  values . The set of 
values that may appear in position  of a tuple is called the 
domain for attribute , and is denoted .

The problem of (k-)anonymizing a dataset has been for-
malized in a variety of ways. In some formulations 
[6,8,14], anonymization is achieved (at least in part) by 
suppressing (deleting) individual values from tuples. In 
others [5,10,14], every occurrence of certain attribute val-
ues within the dataset is replaced with a more general value 
(for example, the zip codes 95120-95129 might be replaced 
with 9512*). Some generalization based formulations also 
allow entire tuples to be suppressed to avoid excessive gen-
eralization due to outliers [5,10].

The exact way values can be generalized also differs 
among formulations. Iyengar [5] provides a flexible gener-
alization model based on imposing an order on the attribute 
domains (if one is not already implicit or explicit) and 
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Algorithm Practical? Guarantee

Sweeney-Datafly Y none

Sweeney-MinGen N optimal

Samarati-AllMin N optimal

Iyengar-GA Y none

Winkler-Anneal possible none

Meyerson-Approx possible, but only 

for small  using 
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 of 
optimal

our proposal Y optimal
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allowing generalizations defined by partitionings that 
respect the ordering. Iyengar shows that generalization 
models based on value hierarchies [10,14] map to this 
approach, though hierarchies effectively impose additional 
constraints on the particular partitionings that may be con-
sidered. Flexible value generalization schemes such as 
Iyengar’s provide more choice in anonymizing the data, 
which can result in better information preservation. But 
such choice comes at the cost of a significant increase in 
the number of allowable states that must be searched to 
identify an optimal or near-optimal solution. Nevertheless, 
because the value generalization formalization of Iyengar 
encompasses and extends many others (with the exception 
of those involving cell level suppression), we adopt his 
framework in this paper.

An attribute generalization for an attribute with ordered 
value domain  is a partitioning of the attribute domain 
into intervals  such that every value of 
appears in some interval, and every value in an interval 
precedes every value in the intervals following . For 
example, a generalization of an “age” attribute that ranges 
over ages [1],[2],..,[30] might be 

. For purely categorical 
domains, the domain ordering must be supplied by the user. 
As Iyengar notes, should a generalization hierarchy be 
available, this ordering should correspond to the order in 
which the leaves are output by a preorder traversal of the 
hierarchy. An attribute generalization  can be applied to a 
value  within the domain of the attribute, denoted by 

, to return the interval in which  belongs.
We will denote each interval within an attribute general-

ization with the least value belonging to the interval. This 
allows specifying attribute generalizations much more suc-
cinctly. For example, the age generalization from the para-
graph above is specified as . Together with the 
ordered attribute domain, this representation is complete 
and unambiguous.

An anonymization of a dataset set  is a set of attribute 
generalizations  consisting of exactly one gener-
alization per attribute of . These generalizations are said 
to transform  into a new dataset 

where value  denotes the th value of tuple  from 
dataset . More intuitively, an anonymization injectively 
maps each and every value in the original dataset to a new 
(generalized) value. In practice a database may also consist 
of columns that need not be subject to generalization. For 
instance data that has never before been disclosed publicly 
cannot be used in linking with outside data sources and 
may in some cases be exempted from the anonymization 
process. We assume without loss of generality that each 
and every column contains potentially publicly linkable 
information and must therefore be generalized to achieve 
anonymity.

In transforming a dataset , an anonymization is said to 
induce new equivalence classes of tuples that are defined 
by applying the tuple equality operator over transformed 
tuples. Put another way, each induced equivalence class 

consists of a maximal set of tuples that are equivalent 
within the transformed dataset.

DEF 3.1: (K-ANONYMIZATION WITHOUT SUPPRESSION) A 
-anonymization of a dataset  is an anonymization of 
 such that the equivalence classes induced by the 

anonymization are all of size  or greater.

We also say that a (transformed) dataset is -anony-
mized if every equivalence class of tuples is of size  or 
greater.
3.1  Modeling Tuple Suppression

In some cases, outliers in a dataset may necessitate sig-
nificant generalization in order to achieve a -anonymiza-
tion, resulting in unacceptable information loss. To fix this 
situation, we may choose to suppress outlier tuples by 
deleting them. More formally, given an anonymization 
of dataset , we say -transforms  into the dataset 

 where  is the result of:
(1) transforming  into  using  as defined before, 
followed by,

(2) deleting any tuple from  belonging to an induced 
equivalence class of size less than .

Note then that any -transformed dataset is always -
anonymized. An anonymization is said to -suppress (or 
just suppress when  is clear from the context) those tuples 
removed from  to form .
3.2  Problem Statement

The problem of -anonymity is not simply to find any 
-anonymization, but to instead find one that is “good” 

according to some quantifiable cost. The problem of opti-
mal -anonymity is to find one that is known to be “best.” 

More precisely, when suppression is allowed, we are 
searching for an anonymization that produces the “best” -
transformed dataset, as determined by some cost metric. 
Such an anonymization is said to be optimal. Since -ano-
nymization without suppression can be modeled in the sup-
pression-based framework by imposing an infinite cost 
whenever suppression is required, from here on we focus 
on the case where suppression is allowed. We will note 
specific impacts of the suppression-free case where appro-
priate.
3.3  Modeling Desirable Anonymizations

Each of the works cited earlier provides its own unique 
metrics for modeling desirable anonymizations. Our algo-
rithm is for the most part metric agnostic. We propose it in 
a manner whereby it can be instantiated to use a particular 
metric by defining a simple cost-bounding function. To 
keep the presentation concrete, we will show how cost-
bounding is accomplished with two example metrics. The 
strategies used should be easily adaptable to other metrics, 
which are almost all variants of the two considered here.

Cost metrics typically tally the information loss result-
ing from the suppression or generalizations applied. Each 
anonymization can thus be thought of as imparting a “pen-
alty” on each tuple that reflects the information loss associ-
ated with its transformation or suppression. Naturally, most 
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cost metrics will penalize a suppressed tuple at least as 
much as any generalization of the tuple.

The first metric we use is one that attempts to capture in 
a straightforward way the desire to maintain discernibility 
between tuples as much as is allowed by a given setting of 

. This discernibility metric assigns a penalty to each tuple 
based on how many tuples in the transformed dataset are 
indistinguishable from it. If an unsuppressed tuple falls into 
an induced equivalence class of size , then that tuple is 
assigned a penalty of . If a tuple is suppressed, then it is 
assigned a penalty of , the size of the input dataset. This 
penalty reflects the fact that a suppressed tuple cannot be 
distinguished from any other tuple in the dataset. The met-
ric can be mathematically stated as follows:

In this expression, the sets  refer to the equivalence 
classes of tuples in  induced by the anonymization .
The first sum computes penalties for each non-suppressed 
tuple, the second for suppressed tuples.

Another interesting cost metric we use was originally 
proposed by Iyengar [5]. This metric can be applied when 
tuples are assigned a categorical class label in an effort to 
produce anonymizations whose induced equivalence 
classes consist of tuples that are uniform with respect to the 
class label. This classification metric assigns no penalty to 
an unsuppressed tuple if it belongs to the majority class 
within its induced equivalence class. All other tuples are 
penalized a value of 1. More precisely:

The minority function within the above statement 
accepts a set of class-labeled tuples and returns the subset 
of tuples belonging to any minority class with respect to 
that set. As before, the first sum from this expression 
penalizes non-suppressed tuples, and the second one sup-
pressed tuples. Iyengar has shown that this class-conscious
metric produces anonymized datasets that yield better clas-
sification models than do class-oblivious metrics [5].

Since suppressing a tuple is a rather drastic operation, it 
may be desirable to impose a hard limit on the number of 
suppressions allowed [10]. This can be modeled within 
both metric expressions by adding a condition that imposes 
an infinite cost should the number of suppressed tuples (the 

sum of all equivalent class sizes that are less than )
exceed this limit.

4.     A Set Representation for Anonymizations
In this section, we set up the problem by precisely defin-

ing the space of anonymizations for a given dataset as the 
powerset of a special alphabet. Searching for an optimal 
solution then reduces to identifying the subset of the alpha-
bet that represents the anonymization with the lowest cost. 

As we have noted in Section 3, a generalization of an 
attribute value domain can be represented as the set of val-
ues containing only the least value from each interval. 
Recall that an anonymization is a set of generalizations, 
one for each attribute column of the dataset. We can 
impose a total order over the set of all attribute domains 
such that the values in the th attribute domain ( ) all 
precede the values in any subsequent attribute domain (
for ). Values inside a value domain must already be 
ordered, and this order is preserved by the total order. The 
idea is best illustrated through example. Figure 1 shows the 
resulting total value ordering of a 3-attribute table contain-
ing a pre-partitioned Age attribute, a categorical Gender 
attribute, and Marital Status attribute. Given such an order-
ing, we can unambiguously represent an anonymization as 
the union of the individual generalizer sets for each 
attribute. Since the least value from each value domain 
must appear in the generalizer for that domain, these values 
can be omitted without causing ambiguity. In the example 
from Figure 1, these values are 1 (age=10-29), 4 (gen-
der=M) and 6 (Marital Status=Married).

Let us denote the least value in attribute domain  as 
. We now have that the powerset of the following alpha-

bet  precisely defines the entire set of anonymizations 
of the given dataset:

Conveniently, the empty set  always represents the 
most general anonymization in which the induced equiva-
lence classes consist of only a single equivalence class of 
identical tuples. The set  represents the most specific
anonymization -- it transforms the dataset into one identi-
cal to the original dataset. Given an anonymization, adding 
a new value further specializes the data, and removing 
some value generalizes it.

Example: Consider the anonymization  defined 
by the value ordering in Figure 1. After adding in the 
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implicit least values, we have that this anonymizer 
represents the following generalizations: , ,
and . These in turn represent the following 
value intervals used for transforming the dataset: 

, ,

5.     A Systematic Search Strategy
We have framed the problem of identifying an optimal 

-anonymization as one involving searching through the 
powerset of  for the anonymization with lowest cost. 
Searching the set of all subsets of a given alphabet is a 
problem to which various generic search methods may be 
applied. Our decision to frame the problem as a powerset 
search problem was motivated by the success of these 
methods in solving other NP-hard problems such as (maxi-
mal) itemset mining and rule induction [3,9,15].

One such generic search method is the OPUS frame-
work [15]. OPUS extends a systematic set-enumeration-
search strategy [9] with dynamic tree rearrangement and 
cost-based pruning for solving optimization problems. The 
set-enumeration search strategy is a straightforward 
method of systematically enumerating all subsets of a 
given alphabet through tree expansion. For example, the 
set-enumeration tree for the alphabet is dis-
played in Figure 2.

Any node in a set enumeration tree can be represented 
by the set enumerated by the node, which we call the head 
set. In the context of -anonymization, the head set repre-
sents an anonymization whose cost is to be tested. We call 
the set of values that can be appended to the head set to 
form a child the tail set. The tail set is actually an ordered 
set; the ordering specifies in what order children are to be 
expanded. For the example tree in the figure, the tail order-
ing is lexicographic. Note that the first child of a node 
inherits all but the first (unpruned) tail values from its par-
ent. Subsequent children inherit one fewer tail value until 
the last (right-most) child, which inherits no tail values, 
and hence has no children of its own. We call the set 
formed by taking the union of the head and tail sets the 
allset of that node. The allset represents the “most specific” 
state that can be enumerated by a node’s descendants. Fig-
ure 3 annotates each node from the tree in Figure 2 with the 
ordered tail sets. It also illustrates the effect of pruning a 
tail value, which we will elaborate on in the following sub-
section.

Naively, we can search for the optimal anonymization 
by fully traversing the set-enumeration tree over  using 
some standard traversal strategy such as depth-first search. 
At each node in the tree, the cost of the anonymization rep-
resented by the head set is computed and compared against 
the best cost anonymization identified so far. If the cost is 
lower than the best cost found so far, the anonymization 
and its cost are retained. Since set enumeration is system-
atic and complete, once the algorithm terminates, we are 
guaranteed to have identified an optimal anonymization. 

Unfortunately, the powerset of an alphabet  is of size 
. This large a state space implies that for such an algo-

rithm to be practical, heuristics and admissible pruning 
strategies must be applied to keep the expected runtime 
from approaching the worst case. The following sections 
describe the specific pruning and heuristic reordering strat-
egies we have devised.
5.1  Pruning Overview

At each node in the search tree, our algorithm first tries 
to prune the node itself. Failing that, the algorithm attempts 
to prune values from the tail set of the node. Pruning tail 
values when the node itself cannot be pruned may mark-
edly reduce the search space since it reduces the branching 
factor of the node and all its children that would have oth-
erwise inherited the pruned value. For example, consider 
the result of pruning the value  from the tail of node 
from the example tree (Figure 3). In this example, remov-
ing value 3 prunes four nodes. More subtly, pruning a tail 
value can improve cost lower-bounding, leading to addi-
tional pruning beneath the node. 

To guarantee optimality, a node can be pruned only 
when the algorithm can precisely determine that none of its 
descendants could be optimal. This determination can be 
made by computing a lower-bound on the cost achievable 
by any node within the subtree rooted beneath it. If the 
lower-bound exceeds the current best cost, the node is 
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Figure 2.  Set enumeration tree over alphabet {1,2,3,4}.

Figure 3.  Set enumeration tree with explicit tail set representation, 
depicting the effect of pruning value 3 from the tail of node 
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pruned. For pruning tail values, we apply the same bound-
ing function but to an “imaginary” node as follows: given a 
node  with tail set , if the imaginary node consisting of 
head set  and tail set  for some  is prun-
able according to our bounding function, then  can be 
removed from the tail set  of node  without affecting 
search completeness [3]. Pruning tail values reduces the 
size of a node’s allset. Because allset size often impacts the 
quality of the cost lower-bound, it can be advantageous to 
recompute lower-bounds should the allset change. Our 
implementation recursively attempts to prune tail values 
whenever the allset is reduced.
5.2  Computing Cost Lower-Bounds

Cost lower-bounds must be computed in a way that is 
specific to the particular cost metric being used. However, 
the methods we use to obtain bounding functions are gen-
eral, and can be easily applied to most metrics in the litera-
ture.

An excellent starting point to lower-bounding costs 
involves exploiting the fact that tuple suppression costs 
increase monotonically as we descend into the tree. By vir-
tue of the tree expansion policy which appends values to 
the head set  when expanding a child of  in the search 
tree, the set  represents the most general anonymization 
that will be considered by the current node  and any of 
its descendants. This implies that if the anonymization 
suppresses a set of tuples , then the set of tuples sup-
pressed by any descendant is guaranteed to contain .
Stated more formally:

OBSERVATION 5.1: At a node  in the search tree, the set 
of tuples suppressed by the anonymization  is a subset 
of the set of tuples suppressed by any descendant of .

Given this fact, we can compute a lower-bound on the 
cost achievable by any node in the subtree rooted at  by 
totaling the suppression cost that will be imparted by the 
tuples  suppressed by . For the discernibility metric, 
this is given by the value . For the classification 
metric, the total penalty is . For the variants involving 
hard limits on the number of suppressed tuples, when 
exceeds the limit, the penalty is instead .

Lower-bounding by totaling the cost of suppressed 
tuples is a good start, but it’s possible to improve the lower-
bound by also adding in a lower-bound on the penalty 
resulting from tuples that aren’t suppressed by . One way 
to do this is to consider the effect of the allset anonymiza-
tion. Recall that the allset is the union of the head and tail 
sets of a given node, and therefore represents an anony-
mization that is strictly more specific than any other anony-
mization to be considered within the current subtree. Given 
this, we note the following fact:

OBSERVATION 5.2: For a node  with allset , the equiva-
lence classes induced by  are subsets of the equiva-
lence classes induced by any descendant of .

This observation lets us lower-bound the size of an 
equivalence class which a tuple will fall into. Let us now 
consider the impacts of this observation on each cost met-

ric individually. For the discernibility metric, the observa-
tion implies that a tuple  that is not suppressed by  must 
be penalized at least the value  where  is the equiva-
lence class induced by  and contains . This lower-bound 
is as good as we can do if . If  falls into an induced 
equivalence class of  that is smaller than , then the pen-
alty imparted on it by some descendant of  will be either 

 (for nodes where  is suppressed) or some value that is 
at least  (since unsuppressed tuples are always penalized 
a value of  or higher). We have now determined a lower-
bound on the cost imparted by every tuple under the dis-
cernibility metric. For a tuple , let us denote the equiva-
lence class induced by the allset  that contains  as .
We can state the discernibility metric lower-bound for-
mally as follows:

{
For the classification metric, instead of penalizing on a 

tuple by tuple basis, we will bound the cost by penalizing 
each of the allset induced equivalence classes. Recall that 
for a set of class labeled tuples, the  function 
returns the tuples belonging only to the minority classes 
with respect to that set. The majority() function can be 
defined analogously as returning only those tuples belong-
ing to the majority class. Given this notation, we prove the 
following claim:

CLAIM 5.3: For any two sets of class labeled tuples  and 
, the following statement holds: 

.

Proof: Note that

To illustrate the proof technique, let us first consider the 
case where there are only 2 classes. In such a case, the 
contribution of  to the minority class of  is 
either  or , and the contribu-
tion of  to the minority class of  is either 

 or . The claim follows then 
from the fact that when there are only two classes, 

 for any set of tuples .

For the case where there are more than 2 classes, we 
have that the contribution of  to the minority class of 

 is either  or it is 
 for some set 

. More precisely, we know that  is the set of 
tuples in  that have the same class label as the major-
ity class in . Clearly,  is a subset of 

 and therefore disjoint from .
Furthermore, we know that . We 
thus have that:
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We repeat the exact argument with  in place of  to 
show that its contribution to the minority class of 

 is at least , and the claim fol-
lows. 

This fact leads to the following classification metric 
lower-bound for a node  with allset :

{
In the equation above, when an induced equivalence 

class  is suppressed by , we mean that the tuples in 
are suppressed by anonymization . By Observation 5.2,
either all tuples in an equivalence class  induced by the 
allset are suppressed by , or none of them are.
5.3  Useless Value Pruning

Another pruning technique we use is to prune tail values 
representing specializations that can be easily determined 
to have no hope of improving anonymization cost. Before 
formally defining this concept, we illustrate the effect of 
specialization on the induced equivalence classes of an 
anonymization. Recall that descending to a child of any 
node involves adding exactly one tail value to the anony-
mization. This new value will “split” some interval of the 
anonymization into two new intervals. The impact on the 
node’s induced equivalence classes is that some of them 
will split into two new classes, with the rest remaining 
unaffected, as illustrated in Figure 4.

Example: Consider again the example dataset 
consisting of age, gender, and marital status. Suppose 
we go from the root node ( ) to the child node .
The root node induces a single equivalence class 
consisting of all tuples (since all columns are fully 
generalized). The child  corresponds to specializing 
on the gender attribute since the value “F” for Female is 
the fifth value along the total order. The single 
equivalence class of the parent node is thus split into two 
equivalence classes, one consisting of all males, and one 

consisting of all females.

Note that specializing doesn’t typically split all existing 
equivalence classes. For instance, we may split an existing 
age interval consisting of ages from  into the 
ranges . In this case, all equivalence 
classes consisting of tuples with ages in the range of 50 and 
up will not be affected by the specialization.

More formally now, given a node  and some value 
 from , specializing  with value  results in splitting 

some (typically proper) subset of -induced equivalence 
classes into new equivalence classes. If these new equiva-
lence classes are all less than size , then the effect of the 
specialization is only to suppress tuples without changing 
the status of those that remain unsuppressed. Furthermore 
this effect of specializing on  holds for any descendant of 

 in the tree. We call any such tail value  of a node 
 whose only effect is to split induced equivalence 

classes into only suppressed equivalence classes a useless
value with respect to  (see Figure 4 and its caption for 
an illustration.)

CLAIM 5.4: Consider the set of descendants of a given node 
 whose anonymizations have the best cost among 

all other descendants of . If the cost metric always 
penalizes suppression of a tuple at least as high as any 
generalization, then there exists a member of this set 
whose anonymization contains no useless values with 
respect to .

Proof: We prove the claim by showing that if there exists a 
best-cost descendant containing useless values, then 
removing the useless values must produce an anony-
mization of equivalent cost. Since this new anonymiza-
tion is itself a descendant of , the claim follows.

If a best cost descendant anonymization  contains a 
useless value , consider the anonymization 
formed by removing  from . By definition of use-
less value, this anonymization induces a set of equiva-
lence classes identical to those of  except that some 
equivalence classes suppressed by  are merged. 
Recall that we assume only that the metric assigns a 
penalty to any suppressed tuple that is at least as high as 
the penalty assigned to any generalization of the tuple. 
Of those tuples affected by removing  from the anony-
mization, some may remain suppressed (in which case 
the penalty remains unchanged) and others may become 
unsuppressed (in which case the penalty is unchanged or 
may decrease). The anonymization  must therefore 
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Figure 4.  A sorted dataset with its tuple equivalence classes demarcated. Dashed lines il-
lustrate the splitting effect on equivalence classes resulting from adding a single value to the 
represented anonymization. If the new equivalence classes created by these splits are all of 

size less than ,then the value is called a useless value.k
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have a cost that is at least as good as that of . Since 
 is known to be of best cost among all of the descen-

dants of , the cost of  must in fact be equiva-
lent to that of . This process of removing useless 
values can be repeated to create a best-cost anonymiza-
tion without any useless values, thereby proving the 
claim.

A simple corollary of this claim is that any useless value 
can be immediately pruned from the tail set without com-
promising the algorithm’s ability to discover an optimal 
solution.

We note that the definition of useless value can in many 
cases be broadened if we are willing to assume additional 
properties of the cost metric. Consider a value  such that 
for any equivalence class split by specializing on , at least 
one of the resulting splits is of size less than . Note that 
such values subsume the set of previously defined useless 
values. It can be shown that for both CM and DM metrics, 
any member of this more liberally defined set of values 
cannot possibly improve the cost of any descendant anony-
mization and can be pruned.
5.5  Tail Value Rearrangement

Recall that the tail set ordering affects the specific tree 
that will be enumerated. Before expanding the children of a 
given node , our algorithm reorders its tail values in a 
manner that vastly increases pruning opportunities. While 
reordering strategies can be tailored to the specific cost 
metric used, we found one generic strategy to work well for 
both of our sample metrics. Given a node , for each tail 
value , the strategy counts the number of equivalence 
classes induced by  that are split by specializing on .
Tail values are sorted in decreasing order of this metric. 
Any ties are then broken by the smaller value of 
over all equivalence classes  induced by the anonymiza-
tion .

This reordering strategy works well because specializa-
tions which have few positive effects stay in the tail sets the 
longest. If a node’s tail consists of many such unproductive 
values, the lower-bounding techniques can often eliminate 
the node from consideration.

The impact of value rearrangement should not be under-
estimated. Without a good rearrangement strategy, good 
anonymizations will be scattered uniformly throughout the 
search tree, and it becomes impossible to prune significant 
portions of the search space.
5.6  Putting it All Together.

Pseudo-code for the K-OPTIMIZE algorithm is provided 
in Figure 5. While the procedure computes only the cost of 
an optimal anonymization, it can be trivially extended to 
also return the optimal anonymization itself. For clarity, we 
do not pass the dataset as an argument, and treat it as 
implicit. 

The algorithm is initially invoked as K-OPTIMIZE( , , 
, ) if no upper-bound on the best cost is known. In 

some cases, an upper-bound might be known from the cost 
of an anonymization determined by another algorithm, or 
from a previous run of K-OPTIMIZE with a higher value of 

. In such a case, this cost can be provided in place of 
for better performance.

The main loop of K-OPTIMIZE implements a depth-first 
traversal of the set-enumeration tree. Note that it attempts 
to re-prune the tail after each recursive call; when returning 
from a recursive call, the algorithm has determined the best 
cost of any subnode that contains the value  used to 
extend  for that call. It can thus remove  from the tail to 
reduce the size of the allset. Because the lower-bound com-
putations are dependent on allset equivalence classes, a 
reduced allset may allow additional pruning opportunities. 
This logic is also why The PRUNE function recursively 
calls itself if it is able to successfully prune any tail value. 
We omit pseudo-code for PRUNE-USELESS-VALUES, REOR-
DER-TAIL, COMPUTE-COST, and COMPUTE-LOWER-BOUND
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Figure 5.  The K-OPTIMIZE procedure for computing the cost of an optimal k-anonymization.

K-OPTIMIZE( , head set , tail set , best cost )
;; This function returns the lowest cost of any
;; anonymization within the sub-tree rooted at
;;  that has a cost less than  (if one exists).
;; Otherwise, it returns .

PRUNE-USELESS-VALUES( , )
MIN( , COMPUTE-COST( ))

PRUNE( , , )
REORDER-TAIL( )

while  is non-empty do
the first value in the ordered set 

;; preserve ordering
K-OPTIMIZE( , , , )
PRUNE( , , )

return 
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PRUNE( , head set , tail set , best cost )
;; This function creates and returns a new
;; tail set by removing values from  that
;; cannot lead to anonymizations with cost
;; lower than 
if COMPUTE-LOWER-BOUND( , , ) 

then return 

for each  in  do

if PRUNE( , , ) 
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since their high-level descriptions follow directly from the 
previous discussion. The next section details data struc-
tures we have developed to support efficient execution of 
these operations.

6.     Data Structures
6.1  Categories of Induced Equivalence Classes

A challenging aspect of implementing K-OPTIMIZE is in 
efficient cost and bound computation. As we have defined 
the algorithm, we require the three following categories of 
induced equivalence classes for computing costs and their 
bounds at a given node :

(Category 1) the equivalence classes induced by the 
head anonymization ,
(Category 2) the equivalence classes induced by the 
anonymization  for each tail value , and
(Category 3) the equivalence classes induced by the 
allset anonymization.
Head equivalence classes are required for lower-bound-

ing and for determining the cost of the current node. The 
next category of equivalence classes is required for tail 
value pruning and reordering. The allset equivalence 
classes are required for cost lower-bounding. Even though 
we have focused on two specific metrics, we note that this 
information would be required for computing and bound-
ing most others.
6.2  Incremental Maintenance of Head Classes

A simple though slow approach to identifying equiva-
lence classes induced by an anonymization is to first sort 
the dataset according to an equality function that compares 
the tuples in their transformed state. Then, equivalence 
classes can be demarcated by simply scanning the dataset 
to detect class boundaries. Rather than resorting to multiple 
dataset sorts per node as such a simple approach would 
imply, our implementation incrementally maintains the 
equivalence classes induced by the head set anonymiza-
tion.

A child node is expanded by adding a tail value to the 
head set. Recall from Section 5.3 that the effect of such 
additional specialization is to split a subset of the existing 
induced equivalence classes into two, as depicted in Figure 
4. Instead of sorting the dataset to identify the newly 
induced equivalence classes after expanding a child, our 
implementation identifies the relevant equivalence classes 
from the parent node and splits them according to the inter-
val imposed by the new tail value.

In addition to supporting child expansion, the incremen-
tal structure needs to be able to recover the state of equiva-
lence classes when backtracking from a child to its parent. 
To facilitate rapid recovery of the parent node’s state, each 
time the algorithm splits an equivalence class, a pair of 
pointers to the newly split equivalence classes is placed on 
a stack. When time comes to backtrack, these pairs are 
popped off the stack, and the equivalence classes desig-
nated by each pair are merged back into a single class. This 
stack-based recovery is more efficient than the alternative 

of explicitly scanning equivalence classes in order to iden-
tify which ones must be merged to recover the parent state.

So maintained, this structure provides the set of cate-
gory 1 equivalence classes induced by the current node at 
any point during the search. 
6.3  Obtaining Tail and Allset-Induced Classes

Category 2 equivalence classes must be computed for 
each tail value . In our implementation, this involves spe-
cializing the classes induced by the head anonymization for 
each tail value. We could perform the specialization by 
explicitly splitting the head equivalence classes in the usual 
way, followed by a recovery phase that immediately 
merges them before going on to the next tail value. Instead, 
the algorithm determines the resulting sizes of each split 
for each tail value without explicitly performing it.

Obtaining the category 3 allset equivalence classes is 
the most problematic since the allset typically contains 
many values. If the number of tail values is small, our 
implementation will apply the previous incremental spe-
cialization procedure repeatedly (one for each tail value) to 
determine the equivalence classes induced by the allset, 
followed by an immediate stack-based recovery. If there 
are many values in the tail set (> 20), then we have found it 
is more efficient to determine the allset equivalence classes 
by individually sorting and demarcating the already materi-
alized equivalence classes induced by the head set. Since 
each equivalence class is generally much smaller than the 
entire dataset, each equivalence class sort exhibits signifi-
cantly better locality than a complete dataset sort, yielding 
better performance. Correctness of this sorting optimiza-
tion follows from Observation 5.2.

7.     Evaluation
7.1  Experimental Setup

One goal of our experiments is to understand the perfor-
mance of K-OPTIMIZE. Beyond this, the ability to quickly 
identify optimal solutions allows exploring many other 
interesting aspects of -anonymization. For instance, we 
have noted that several variations on the problem have 
been proposed, including whether to allow (a bounded 
number of) suppressions, or whether to allow the algorithm 
to partition ordinal domains without hierarchy restrictions. 
Which variations are worthwhile in the sense that they pro-
duce “better” solutions? What is the impact of such exten-
sions on performance? Another goal of the experiments is 
to begin addressing such concerns.

The dataset used in our experiments was the adult cen-
sus dataset from the Irvine machine learning repository, 
since this dataset is the closest to a common k-anonymiza-
tion “benchmark” that we are aware of. This dataset was 
prepared as described by Iyengar [5] to the best of our abil-
ity. It consists of 9 attributes (8 regular and one class col-
umn) and 30,162 records, and contains actual census data 
that has not already been anonymized. The so-coded 
dataset (“adult_fine”) supports partitioning of the age col-
umn at a very fine grain (one value for each unique age 
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rounded to the nearest year). This resulted in a searchable 
alphabet ( ) of over 160 values.

To understand the performance and cost impacts of 
using a coarser initial partitioning, we also experimented 
with another coding of the dataset (“adult_coarse”) in 
which the age column was “pre-generalized” into 15 
unique values, each consisting of a 5 year age range.1 This 
reduced the alphabet to a more manageable but still chal-
lenging 100 unique values. (Recall that this results in a 
state space of size .) Coarser partitionings reduce the 
flexibility given to the algorithm in determining an anony-
mization.

The algorithm was implemented in C++. All run-times 
are from a dedicated 2 processor, 2.8 GHZ Intel Xeon class 
machine running Linux OS (kernel version 2.4.20) and gcc 

v3.2.1. Only one processor was used by the algorithm dur-
ing each run. We used the qsort C library function provided 
by gcc for all sorting operations.
7.2  Results

We explored the impacts of the following dimensions on 
performance and solution quality:
• The setting of . Specifically, we used values of 1000, 

500, 250, 100, 50, 25, 10, and 5.
• The number of suppressions allowed. Specifically, we 

ran the algorithm with no suppressions allowed, a limit 
of 100 suppressions, and with no restriction (denoted inf)
on the number of suppressions.

• The impact of seeding the algorithm with a non-infinite 
cost.

• The impact of a coarse versus fine partitioning of the age 
column.

• The cost metric used (CM or DM.)
The first graphs (Figure 6a) show the runtime when 

there is no cost seeding. Note that the algorithm performs 

1 Though we used this simple equidistant pre-partitioning strategy for all 
experiments, a domain discretization approach that considers the class 
column [4] might be a better approach when using class-conscious met-
rics such as the classification metric.
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extremely well across all values of  when no suppressions 
are allowed. As we allow more suppressions, algorithm 
performance degrades rapidly with smaller . As expected, 
the vastly increased search space resulting from fine parti-
tioning of the age column requires significantly more time, 
though the algorithm still successfully identifies the opti-
mal anonymization for all but a very few cases. We noticed 
that the higher the limit on suppressions, the more slowly 
the algorithm converged on a good solution. This sug-
gested to us that seeding the algorithm with a good initial 
score might substantially improve its overall performance 
when the suppression limit was high. We verified this was 
indeed the case (Figure 7b) by seeding the algorithm with 
the optimal cost identified by the no suppression runs. The 
runtimes plotted in this figure add the cost required to find 
the no suppression optimal solution with the cost required 
to find the optimal solution after seeding. More perfor-
mance improvements might be possible if we were to seed 
with the best solution score identified by the suppression-
free run after some fixed amount of time, since the suppres-
sion-free algorithm typically identified good (though not 
necessarily optimal) solutions very quickly.

Regarding cost of the optimal solutions (Figure 6b), we 
found that the finely partitioned age column allowed for 
significant improvements in cost for both metrics. Interest-
ingly, for all cases, allowing an infinite number of suppres-
sions did not improve the cost of the optimal solution at all, 
which is why the sup_limit=inf plots are omitted in these 
graphs. The coarsely partitioned dataset benefited more 
from allowing suppressions, but significant benefits from 
suppressions appear only at smaller settings of . For the 
CM metric, we plot only the results for , since opti-
mal solution cost for higher settings of  was identical 
across all other parameter combinations.

7.3  Comparison with Other Algorithms
While none of the other optimal algorithms in the litera-

ture can feasibly handle the census dataset used in our 
experiments, incomplete methods are known to perform 
well in practice on this data despite their lack of any quality 
guarantees. We therefore compared the effectiveness of K-
OPTIMIZE to various incomplete methods. These methods 
included simulated annealing, genetic algorithms, and 
greedy (hill-climbing) algorithms. We found that purely 
greedy approaches, though they executed quite quickly, 
typically produced highly sub-optimal anonymizations. 
Genetic algorithms and simulated annealing produced ano-
nymizations of higher quality, but converged too slowly. 
The approach we found to work best was a new iterated 2-
phase hill-climbing method we concocted to combine the 
virtues of both greedy and stochastic methods. This algo-
rithm begins by generating a random anonymization. It 
then enters a generalization phase in which values are itera-
tively removed (always selecting the one that most 
improves the cost) until the cost can no longer be 
improved. Next, it switches to a specialization phase in 
which values are iteratively added (again always selecting 
the one providing the biggest cost improvement) until no 
improvement is possible. The algorithm repeatedly exe-
cutes these two phases until neither phase is capable of 
improving the score (implying a local minimum is 
reached.) At this point, the anonymization cost is recorded, 
and the algorithm repeats the entire process. This algorithm 
has no explicit stopping criteria and instead continuously 
attempts to improve on the best solution found until 
stopped by the user.

Note that the specialization phase of this algorithm can 
be optimized according to the strategies provided in Sec-
tion 6, and similar approaches applied for optimizing the 
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generalization phase. However, the implementation evalu-
ated here uses only dataset sorting for cost computations.

When left to run long enough, this new stochastic 
approach is typically capable of finding an optimal anony-
mization even though it is of course incapable of guaran-
teeing its optimality. The graph in Figure 7b depicts the 
cost of the best solution found by both this stochastic 
approach and K-OPTIMIZE (labeled “complete”) at a given 
point during their execution. We ran K-OPTIMIZE with a 
zero suppression limit followed by a seeded run with no 
suppression limit. Likewise, the stochastic approach was 
allowed to consider solutions with no limit on the number 
of suppressions. Note that while K-OPTIMIZE was not 
designed for rapidly finding a good solution, it performs 
similarly to the stochastic method for this purpose, and 
finds the optimal solution three times more quickly (5359 
vs. 14104 seconds.) The figure depicts the case where 

 on the finely partitioned dataset; results for other 
parameter settings were qualitatively similar. We believe 
an improved implementation of this new stochastic 
approach that reduces reliance on sorting operations will 
prove attractive in practice when provable optimality is 
either out of reach or not a requirement.

8.     Conclusions and Future Work
We have proposed an algorithm that identifies provably 

optimal anonymizations of real census data under a flexible 
and highly combinatorial model of attribute value generali-
zation. We framed the problem as one that involves search-
ing the power-set of a special alphabet of domain values, 
and attacked it through a tree-search strategy that explores 
anonymizations beginning from the most general to more 
specific. The algorithm incorporates node pruning through 
cost lower-bounding and dynamic tree rearrangement 
through tail value reordering. In addition, we implemented 
data-management strategies that avoid repeatedly sorting 
the entire dataset for markedly reduced node evaluation 
times. We used the algorithm to quantify the effects of var-
ious parameter settings and data preparation methods on 
performance as well as anonymization quality. We also 
used the approach to evaluate effectiveness of stochastic 
methods for -anonymization, and proposed a new iterated 
2-phase greedy algorithm that outperforms other incom-
plete methods.

A desirable feature of protecting privacy through -
anonymity is its preservation of data integrity. Despite its 
intuitive appeal, it is possible that non-integrity preserving 
approaches to privacy (such as random perturbation) may 
produce a more informative result in many circumstances. 
Indeed, it may be interesting to consider combined 
approaches, such as -anonymizing over only a subset of 
potentially identifying columns and randomly perturbing 
the others. We believe that a better understanding of when 
and how to apply various privacy-preserving methods 
deserves further study. Optimal algorithms will be useful in 
this regard since they eliminate the possibility that a poor 
outcome is the result of a highly sub-optimal solution 
rather than an inherent limitation of the specific technique.
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