Scientific Annals of Computer Science vol. 20, 2010

“Alexandru Toan Cuza” University of Tagi, Romania

Shape Calculus.
A Spatial Mobile Calculus for 3D Shapes

Ezio BARTOCCI!, Flavio CORRADINI!, Maria Rita DI BERARDINI!,
Emanuela MERELLI!, Luca TESEI!

Abstract

We present a bio-inspired calculus for describing 3D shapes mov-
ing in a space. A shape forms a 3D process when combined with a
behaviour. Behaviours are specified with a timed CCS-like process
algebra using a notion of channel to naturally model binding sites on
the surface of shapes. The calculus embeds collision detection and re-
sponse, binding of compatible 3D processes and split of composed 3D
processes.

1 Introduction

The Shape Calculus has been inspired and motivated by systems biology. In
a near future, systems biology will profoundly affect healthcare and medi-
cal science. The ultimate aim is to design and test “in-silico” drugs giving
rise to individualised medicines that will take into account physiology and
genetic profiles [18]. This implies the existence of detailed digital models of
each human organ and, possibly, of the whole human body considering the
human biological systems together. The advantages of performing in-silico
experiments by simulating a model, instead of arranging expensive in-vivo
or in-vitro experiments, are evident. But of course the models should be as
faithful as possible to the real system.

School of Science and Technology, Computer Science Division, University of Camerino
Via Madonna delle Carceri 9, 62032, Camerino (MC), Italy.
Email: name.surname@unicam.it

A real system is characterized by many biological phenomena, that are
inherently multiscale, i.e. they are characterised by interactions involving
different scales at the same time. Models for describing and simulating bi-
ological systems have comparable resolution regimes and work on different
spatial and temporal scales: in the microscopic approach, molecular dynam-
ics and Monte Carlo methods describe systems at the level of atoms or pro-
teins while, in the macroscopic regime, continuum-based simulations model
complete biological assemblies (but do not contain any explicit molecular in-
formation). Actually, a characteristic of biological complexity is the intimate
connection that exists between different length and time scales - from the
fast nanometre-length scale of molecules to the slow highly structured meter
scale of the whole human body. For instance, subtle changes in molecular
structure as a consequence of a single gene mutation can lead to catastrophic
failure at the organ level, such as heart failure from re-entrant arrhythmias
that lead to ventricular fibrillation. But information flows equally in the
reverse direction: mechanoreceptors at the cell level sense the mechanical
load on the musculoskeletal system and influence gene expression via signal
transduction pathways [21].

The molecular level is surely the scale at which biological systems have
been studied more intensively in the perspective of systems biology, so far.
Within this field, Takahashi et al. underline, in [29], the importance of
considering space when modelling cellular phenomena and in particular bio-
chemical signal cascades. They also highlight that macromolecular crowd-
ing in a limited space can also deeply affect biochemical reactions in the
cell. Since physical concepts like space occupancy, intra-cellular movement,
contacts (collisions) and shape transformation determine biomolecular in-
teractions and therefore cell life, there is the need to provide physical char-
acteristics (shape, mass, size, position) to entities. They can be collocated
in the continuum space, autonomously move and interact with their spatial
neighbour/colliding entities, react accordingly to their specified behaviour
to reproduce the emerging behaviour observable in in-vivo and in-vitro ex-
periments as well as at a higher scale of the same model.

Using a particle-based approach (i.e. there are specific actors that rep-
resent individuals) and adding geometric information (e.g. space, shape) to
a model not only makes it more faithful and close to real biological systems
(at any scale), but also gives the possibility to represent different levels of the
same biological system in a uniform way. This characteristic results to be
very useful in the construction of multiscale models. The main idea is that at

every level of representation, being it organ, tissue, cellular or molecular, it
is always possible to model the system using the same concepts: individual,
moving entities that interact in the 3D space by binding to form complex
entities or just by transforming into different entities by a concept of “re-
action”. Some recent works [10, 9, 11| give evidence of the advantages and
of the feasibility of this approach. The idea of a geometric particle-based
environment for simulation started, in our group, some years ago [12, 13]
in the context of the simulation of biochemical reactions without using the
classical approach of Ordinary Differential Equations. The idea has then
evolved towards the realization of a simulator prototype, called BIOSHAPE,
that embodies spatial 3D information and shape-based interactive entities
[30, 10].

During the development of BIOSHAPE, several questions arose about
how 3D shapes should be considered, how motion should be associated to
them and, most importantly, what kind of interactions should be considered
among entities in order to reproduce typical scenarios of biological (but not
only limited to them) systems at any scale. We found several solutions
about the possible representation of 3D shapes and their movement in a
space, mainly in the computer game world. In this and in related fields, the
problem of reproducing/simulating virtual physical environments has been
intensively studied and a lot of libraries and tools exist to manage space
and to deal with the unavoidable problem of collision detection and collision
response. We mainly refer to [17, 23] and to references therein for a first
glance in this rich and articulated world. However, the possibility to import
good techniques for managing the virtual environment solved only half of
the problem. The specification of the behaviour of the autonomous entities,
and the modalities on which this behaviours should be based, represented
another difficult question to address.

Even if BIOSHAPE embodies the agent-based technology [16] that re-
alizes the abstraction of autonomous agents, we felt the need of defining
a language abstract enough to represent the main behaviours of the enti-
ties and having a formal semantics suitable to describe the evolution of the
system. This consideration has been the main motivation that led to the def-
inition of Shape Calculus. The introduction of a formal calculus gives a very
precise characterization of the environment in which our simulations should
run, with all the advantages that a formal semantics brings to the develop-
ment of the simulator itself. Formal methods have been studied in the past
to describe and analyse (complex) software systems. Thus, several models

and languages exist for specifying systems - based on automata, process al-
gebras and Petri nets - and several verification techniques - model checking
and equivalence checking being the most famous ones - have been introduced
for verifying their qualitative and quantitative properties. Some of the mod-
els include quantitative information such as time, probabilities and costs,
and relative quantitative verification techniques exist. The definition of the
Shape Calculus and its semantics is the first step towards the natural com-
pletion of the framework with formal verification techniques. The objective
is to find the right abstractions and boundaries that permit the application
of existing quantitative model checking or quantitative equivalence checking
techniques to the evolution of a given network of Shape Calculus processes.
Both the simulation approach of BIOSHAPE and the verification approach of
the Shape Calculus can lead to interesting results when applied to a specific
domain. Our long term objective is to coupled them to work in synergy
towards the gaining of quantitative information about a model.

In the Shape Calculus, 3D processes are entities composed of a 3D
shape and a dynamic behaviour. Processes are situated in a space, move
accordingly to personalized motion laws (as, for instance, acceleration in a
gravitational field or Brownian motion or attraction towards a biochemical
gradient), collide and possibly bind with others processes becoming com-
pound 3D processes. The binding depends on channels (a, X), derived from
classical CCS [24] channels, where @ is the channel name, intended as a
type for binding certain species, and X is a certain region on the surface of
the 3D process in which the channel is “active”. The binding corresponds
to communication on these channels. It occurs if and only if the surface
of contact between the two 3D processes belongs to active channels whose
names are co-names a la CCS. Compound processes can split weakly, by
non-deterministically releasing a previously established bond, or “react”, by
splitting urgently in as many pieces as the products of the reaction are. If
communication (i.e. binding) does not occur, the collision of two 3D pro-
cesses is considered elastic, i.e. the shapes bounce and proceed indepen-
dently.

This paper introduces the language of the Shape Calculus with the main
aim of gently and incrementally present all its features and their relative
semantics. We want to discuss the motivations that led us to the choices
we made about the type and the nature of the operators of the language
and it is our purpose to give enough glimpses in order to appreciate the
great variety of scenarios that can be modelled with this language. A more

Figure 1: An example of a network of 3D processes

formal work on the timed operational semantics of the Shape Calculus and
on a first global result of well-formedness of its possible dynamics will be
available in a paper to be published, as the second part of this work. A short
preliminary version of this paper appeared in [5, 6].

The paper is organised as follows. Section 2 gives an overview of the
calculus combining graphical intuition with sample pieces of processes in
order to understand the operators of the calculus and the reasons of their
introduction. Section 3 introduces 3D shapes, shape composition, move-
ment, collision detection and collision response. Section 4 defines behaviours
and 3D processes while Section 5 puts all the pieces together and specifies
networks of 3D processes. Finally, Section 6 presents related works and
Section 7 concludes with ongoing and future work directions.

2 Overview of the Calculus

In this section we give some intuitions about the objects of the calculus
and their possible behaviours. The general idea of the Shape Calculus is to
consider a three-dimensional space in which several shapes reside, move and
interact. Figure 1 shows a possible scenario at a certain time instant: on the
left side there are simple 3D shapes (cubes, cylinders, etc.) or more complex
ones, obtainable by “glueing” two given shapes on a common surface, moving

freely in space. The arrows represent their instant velocity vectors. On the
right side there is a composition of shapes enclosing a certain portion of the
space. Their velocity vector is zero and it is intended to remain zero over
time. These shapes can represent walls to the shapes inside and outside the
enclosed region. Some of the pieces of the “walls” can represent doors that
could open if some specific object hits them. We will call network of 3D
processes a scenario like the one in the figure.

We want to stress that a network of 3D processes (3D network) can
represent different biological systems at different scales. For instance, the
space could be a portion of the cytoplasm of a cell in which some molecules,
of different magnitudes, swim and interact by biochemical reactions. In
this case walls can represent membranes encompassing compartments of the
cell. However, the shapes can easily represent cells composing a tissue. In
this case usually they do not move, but can interact by other shapes that
are sent around as “shaped messengers®. This cellular/tissue scenario has
been adapted in [9] to shown how the phenomenon of bone remodelling can
be easily modelled using shapes and their interactions. The tissue scale
is represented by a 3D lattice of cubes, each of which again can be a 3D
process, while in the cellular scale the specialized cells for bone absorption
and reconstruction are modelled with proper (moving) 3D processes. The
Shape Calculus can also be used to represent populations of animals, like
fish or birds, and their dynamics and interactions in a given environment,
as well as a completely different domain, at a very larger scale, such as
astronomy: planets, comets, stars could be represented by shaped 3D pro-
cesses that move in the cosmos guided by the law of gravitation. Of course,
every model we can imagine has to cope with computational limits of simu-
lation/verification. Experience teaches us that, in general, a particle-based
3D geometric approach, like the one we are proposing, finds a good com-
promise between computational feasibility and faithfulness of the model in
cellular/tissue scenarios or in particular molecular scenarios. Consider, for
instance, the case in which specific molecules are present and active only
in some regions of the space (not well-stirred systems) or when there is a
need of in-silico experiments in which additional molecules are to be added
dynamically. It is well-known that, in these cases, ODE-based approaches
fail because they implicitly assume well-stirredness, they lack of composi-
tionality and they are static as the model has to be completely specified at
the very beginning.

In this paper, we will mostly use biochemical reactions for giving in-

W

s (e.Y,)

w(b,W)
MR

So[B,' {b,W)S [B,']

Figure 2: An example of binding and subsequent weak-split of two 3D pro-
cesses

tuitions and examples. This will help us in introducing all the aspects of
the calculus. Indeed, every species of molecule has a specific shape and we
know from biology that the functions of a molecule are tightly related to
its shape. For instance, in enzymatic reactions, the functional sites that are
active in the enzyme structure, at a given time, determine which substrate
(one or two metabolites) can bind the enzyme and proceed to the catalyzed
reaction.

While time flows, shapes move according to their velocities that can
change over time both due to a specific motion law - for instance as in a
gravitational, electromagnetic, chemical attractive field, or Brownian motion
- and due to collisions that can occur among shapes. Collisions can result
in a bounce, i.e. they are considered elastic collisions. As it often happens
in biology, colliding objects can bind and become a new, compound, object
moving in a different way and possibly having a different behaviour. In
this case we speak of “inelastic” collisions because they are treated with the
physical law for that kind of collisions.

Figure 2 shows a (2D for simplicity) representation of a possible dynam-
ics of an enzymatic reaction. Syntactically, we represent the larger shape,
in this case playing the role of an enzyme, with the 3D process Sy[By| with
shape Sy and behaviour By. The 3D process S1[Bj] represents a metabolite
that is spatially close to the given enzyme. Note that some surfaces of the
shapes are highlighted: they are the channels that the current 3D processes
exhibit to the environment. Channels are specified in the behaviours of pro-
cesses and consist of two components: a channel name and an active surface.

S,[B"]

dg[B]) (SoLB, Kb, W)S,B,'D{a. W,)S:B,] S.1B,"] .
& e 4
gZ
t' ‘!
—_—
0

So[B,'1(b,W)S,[B,'] P({<b=‘1“>=<“swu>})

Figure 3: An example of complex formation and subsequent strong-split

For instance, in Figure 2 (a, X) is an open channel, active on the site X,
whose type is a. Note that (a, X) is a valid channel if X is a portion of
the surface of Sy. In this case, the enzyme has two open channels and the
process is specified as follows: Sp[(b,Y).B| + (a, X).B{]]. The operator +
represents a non-deterministic choice between two alternative communica-
tion channels. This non-determinism is resolved during the evolution of the
system depending on which 3D processes will collide with the enzyme and
where.

Following the evolution proposed in the figure, after some time ¢ elapsed
(represented by the transition i)) and after a detection and resolution of an
inelastic collision (transition —;), we get a compound process represented by
So[By){b, W)S1[B]], where W =Y N Z, i.e. the common surface of contact.
Note that communication is the binding, and it can happen only if there
is a collision between two processes that expose two compatible channels
(name and co-name & la CCS|24]) on their common surface of contact. In
this case, the common surface of contact on which the bond is established
is called W. The name b is a memory for the type of channels that bound.
If the channels were not compatible, the collision would have been treated
as elastic and the two 3D processes would have simply bounced.

If we let, for instance, B} = (¢, Y1).Bother, the component whose shape
is S; opens a new channel (c,Y7). Since the behaviour of a composed 3D
process is the interleaving of the behaviours of the components, the whole
3D process So[Bj](b, W)S1[Bj] does the same.

The third stage of Figure 2 represents the case in which a split occurs.
Note that the behaviour of the processes returns to the initial situation.
This evolution models naturally the behaviour of an enzyme binding with a
substrate: it can happen for some reason that the bond is loose and the two
molecules are free again. We call this event a weak-split. It is not an urgent
event, thus it can be delayed of an unspecified time. This is another source
of non-determinism in the calculus.

Figure 3 shows another possible evolution of So[B](b, W)S[Bj] of Fig-
ure 2. In this case another substrate, process Sz[Bz], binds - on its channel
(@, X1) on the common surface W; - with the compound process. In the
scenario of biochemical reactions, this means that a final complex has been
formed, thus the reaction must proceed and the products must be released.
For modelling this behaviour, the calculus provides a special event that we
call strong-split. Differently from a weak-split, this event must occur as soon
as it is enabled, i.e. when all the involved components can release all the
involved bonds. In this example the involved components are Sy[B(], S1[B]
and Sa[Bj] and the set of bonds is L = {(b, W), (a, W1)}. Note, finally,
that the enzyme returns to its original state, while the metabolites that are
released exhibit a different behaviour according to what they have become.

Our shapes are intended to move in space along time. One of the choices
to be made for the calculus is how the velocity of each shape changes over
time. We believe that a continuous updating of the velocity, that would be a
candidate for an “as precise as possible” approach of modelling, is not a con-
venient choice. The main reason is the well-known compromise between the
benefits of approximation and the complexity of precision. Our choice, also
common in the computer graphics field [17], is to approximate a continuous
trajectory of a shape with a polygonal chain, i.e. a piecewise linear curve
in which each segment is the result of a movement with a constant velocity.
The vertices of the chain corresponds to the updates of the velocity of the
shape. To this purpose we define a global parameter A € RT, called mowve-
ment time step, that represents the period of time after which the velocity
of all shapes is updated. The quantification of A depends on the desired
degree of approximation and also on other parameters connected to collision
detection (see Section 3.2). The time domain T = R is then divided into
an infinite sequence of time steps ¢; such that tg = 0 and t; < ;1 + A
for all ¢ > 0. Figure 4 shows a possible timeline with all relevant events.
From tg to t; a full movement time step passes. This means that all the
shapes moved with their assigned velocities for a time A and, during this

L t,

N S S S
A

A Ftoc1 Ftoc2

oy o
I
T

Figure 4: An example of timeline and the relative position of events

period, neither collisions nor splits (weak or strong) occurred. At the end
of the period, the velocities of all the shapes are updated using the appro-
priate motion law (see Section 3.1). At this point the system would evolve
of another full movement time step, but, from ¢; to ts, this is not possible
because a collision event is detected at a time Ftocl < A. Thus, the system
stops at to, which is t; + F'tocl, resolves the collision event and updates
the velocities of all the processes again. The same happens between o and
t3, but in this case also a weak-split, represented by w, occurs at a time
instant in between. This event does not break the timeline with another ¢;
because there is no need to change any velocity of any shape. Simply, the
3D processes generated by the split physically still touch, but having the
exact same velocity, do not collide. Only at time t3, when their velocities
will be updated, a possible collision can be detected. From t3 to t4 a full
A can pass, meaning that no collisions are detected at time t3 that occur
before a time A. In this case, a strong-split, represented by p, happens at
a time instant in between. Analogously to the weak-split, it does not break
the timeline, but it is worth saying that a strong-split prevents time to pass
further, i.e. it must be performed as soon as it is enabled, differently from a
weak-split, that, even if enabled, can be delayed.

3 3D Shapes

Let us introduce three dimensional shapes as terms of a suitable language,
allowing simpler shapes to bind and form more complex shapes. From now
on, we consider assigned a global coordinate system in a three dimensional
space represented by R3. Let P,V = R? be the sets of positions and veloci-
ties, respectively, in this coordinate system.

10

For convenience we use, throughout the paper, relative coordinate sys-
tems that will always be w.r.t. a certain shape S, that is to say the origin
of the relative system is a reference point p of S. We refer to this relative
system as the local coordinate system of shape S. Given a point p € P, ex-
pressed in the global coordinates, and a set of points U C P, expressed in a
local coordinate system whose origin is p, we define global(U,p) = U +p =
{(u+p) € P|uecU},ie the set of points U expressed in the global
coordinates. Using the local system we can express parts of S - such as a
certain face, a certain vertex, etc. - independently from the actual global
position of the shape.

Definition 1 (Basic Shapes) A basic shape o is a tuple (V, m,p, v) where
V C P is either a sphere, a cone, a cylinder or a convex polyhedron?,
m € RY is the mass of the shape, p € P is the centre of mass® of the shape
and v € V is the vector representing the current velocity of the shape.

We define the following quantities on a basic shape o: the points P(o) =
V', the velocity v(o) = {v}, the mass m(o) = m and the reference point
R(c) =p. The boundary B(c) of o is the subset of points of P(o) that are
on the surface of o*.

The set of all possible basic shapes, ranged over by o,0’,. .., is denoted
by Basic.

Note that we use only very simple basic shapes that can be represented by
suitable and efficient data structures and are handled by the most popular
algorithms for motion simulation, collision detection and collision response
[17]. Moreover, note that we consider only convex shapes. Recall that a
set, of points U C P is convex if and only if for every x, y in U the set
{Ox+(1-XNy)eP|0< <1} is contained in U.

Three dimensional shapes of any form can be approximated with arbi-
trary precision by composing basic shapes in the following sense: the com-
position of two shapes corresponds to the construction of a third shape by
“glueing” the two components on a common surface. Consider the shape
shown in Figure 5(a). It is composed of the basic shape o1 “glued” with the
basic shape g2 on the common surface X, called surface of contact. Note
that no interpenetration between the composing shapes is allowed.

2From a syntactical representation point of view, we assume that V is finitely repre-
sented by a suitable data structure, such as a formula or a set of vertices.

3We actually need only a reference point. Thus, any other point in V' can be chosen.

4Note that we consider only closed shapes, i.e. they contain their boundary.

11

Figure 5: Some examples of 2D composed shapes

This concept can be generalised to the composition of two generic
shapes either basic or compound under the same hypotheses, i.e. they bind
on a common surface, but they do not interpenetrate.

Definition 2 (3D shapes) The setS of 3D shapes, ranged over by S,S’, ...
is generated by the grammar S =0 ’ S(X) S where o € Basic and X C P.

Starting from the same concepts defined for basic shapes, we induc-
tively define the points, the velocity, the mass and the reference point of
a compound shape S = 57 (X)Sy as P(S) = P(S1) U P(S2), v(S) =
v(S1)Uv(S2), m(S) = m(S1)+m(S3) and R(S) = (m(S7)-R(S1)+m(Ss)-
R(S2))/(m(S1)+m(S3))?. The boundary of a compound shape S is defined
as the surface of the resulting shape and is denoted by B(S). More formally,
B(S1(X)S2) = (B(S1) UB(S2)) \ {x € P | x is interior of P(S1 (X) S2)},
where a point x € U C P is called #nterior of U if there exists an open ball
with centre x which is completely contained in U.

In this paper we only consider well-formed 3D shapes, i.e. basic shapes
or compound shapes in which X is a surface of contact, the components do
not interpenetrate and they all must have the same velocity. The concept
of touching without interpenetrating will be useful in the following when
we define collision detection and compound 3D processes. By definition, X
is always on the boundary of both S; and S3. Thus, the set X can be a
single point, a segment or a surface, depending on where the two shapes are
touching without interpenetrating. Most of the time X is a (subset of a)
feature of the basic shapes composing the 3D shape, i.e., a face, an edge or
a vertex. Moreover, the fact that all the basic shapes forming a compound

SFor simplicity, as above, we use the centre of mass as the reference point. Any other
point can be chosen.

12

shape have the same velocity means that the compound shape moves as a
unique body.

Figure 5 shows four examples of compound shapes. Note that while
basic shapes are all convex, compound shapes can be non-convex, as those
shown in figure. Shape in Figure 5(b) is composed of four basic shapes. A
well-formed term representing this shape is ((o1 (X1) 02) (X2) 03) (X3) 04.
Note, for instance, that X is exactly the intersection B(o1)NB(02) and that
is equal to one feature (an edge) of o;. The surface of contact Xy contains
only one point of contact and is subset of B(o1 (X1) 02) N B(o3), i.e. its two
immediate sub-components. Figure 5(¢) is an example of a not well-formed
shape because there is interpenetration between S; and Ss. In Figure 5(d)
there is an example of a well-formed shape in which the intersection of (the
boundaries of) the two components S and So, called X in the figure, is not
a connected set. Recall that a set U is connected if and only if the only pair
of disjoint closed sets whose union is U is the pair (0,U). Note that if the
intersection (the boundaries of) two compound shapes is not connected it is
always a finite union of connected sets. In this case we obtain a shape with
a hole. We admit such shapes in the calculus since they can be formed by
correct bindings of well-formed shapes.

Given a 3D shape S, it can be represented by arranging the basic shapes
and the surfaces of contact in different ways. A structural congruence =g
relation among terms representing shapes can be defined in a natural way.
For instance, the shape of Figure 5(b) can be represented by structural con-
gruent terms, e.g.

((03 <X2> 02) <X1> 01) <X3> g4 Or 01 <X1> (O’4 <X3> (03 <X2> 02)) etc.

Example 1 (A Biological Example) Let us introduce an example of use
of the parts of the calculus introduced so far. The glycolysis pathway is
part of the process by which individual cells produce and consume nutrient
molecules. It consists of ten sequential reactions, all catalyzed by a specific
enzyme. Let us focus on the first reaction that can be described as

glucose, ATP < glucose-6-phosphate, ADP, H*

where an ATP is consumed and a molecule of glucose (GLC) is phosphory-
lated to glucose G-phosphate (G6P), releasing an ADP molecule and a pos-
itiwe hydrogen ion (Hydron). The enzyme catalysing this first reaction is
Hexokinase (HEX). GLC, G6P, ATP, ADP and H" are metabolites. Both
enzymes and metabolites are autonomous cellular entities that continuously
move within the cytoplasm. The transformation of a metabolite into the one

13

Figure 6: The real shape of the unbound Hexokinase and an approximation
via a compound shape

that follows in the “pipeline” of the pathway (in this case, GLC into G6P)
depends on the contact (collision in binding sites) of the right enzyme (in this
example HEX) with the right metabolites, in this example GLC and ATP.
The order of these bindings does not matter. After this binding, the reaction
takes place and the products® are released in the cytoplasm (i.e. a strong-
split is performed). A special case occurs when the enzyme has bound one
melabolite and an environmental event makes it release the metabolite and
not proceed to the completion of the reaction (i.e. a weak-split is performed).

We model the shape of HEX, which we denote Sy, by a polyhedron ap-
proxzimating its real shape and mass (available at public databases (e.g. [2]).
Figure 6 shows an example of such an approximation. Figure 7 shows a net-
work of 8D processes in which there are two Hexokinase 3D processes and
some GLC, G6P, ATP and ADP 3D processes. Note that we use a unique
kind of shape for GLC ad G6P, denoted by Sy, and another unique kind of
shape for ATP and ADP, denoted S,. They can be distinguished only by
their behaviours. Moreover, note that S, and S, are also approzimations of
the real shapes of the metabolite and the ratio of magnitude is respected. The
other annotations present in the figure can be ignored for the moment. They
will be used in Section 4 to further develop the glycolysis example.

5Tn this example we neglect the hydron.

14

S, [HEX |

'
X'gWV

1(.-%4

5%454

,|ADP |

S [ATP | Sg [G6P |
4 4 &
th @ B
g 4
N ¢
S,[HA|(atp, X }S,[AH] 4

= 4 » S,[GIC |

Figure 7: A network of 3D processes for describing the first reaction of the
glycolysis pathway

3.1 Trajectories of Shapes

As mentioned above, given a well-formed term S, it represents shape at a
certain time instant ¢. The velocity of S in that instant is v(S). The updating
of the velocities occurs at every time instant ¢; in which the timeline is broken
up. In the calculus this updating is performed by exploiting a function

steer: T — (S = V)

that defines how to change the velocity of all existing shapes (i.e. all shapes
that are currently moving in the space) at each time ¢. We assume that,
at any given time instant ¢ € T, steert .S is undefined iff the shape S does
not exist and, hence, its velocity has not to be changed. Note that this
approach gives the maximal flexibility for defining motion. Static shapes can
be represented by assigning always 0 to their velocity”. A gravity field can
be simulated by updating velocities accordingly to the gravity acceleration
(see Figure 8). A Brownian motion can be simulated by choosing a random
direction in 3D and then defining the length of the vector w.r.t. the mass
and/or the volume of the shape.

For the sake of simplicity we do not consider, in this paper, movements
by rotations. However, this kind of movement can be easily added (it is

"If we want to represent for instance walls, we also need to assign an infinite value to
the mass of these objects, otherwise they can be moved anyway due to collisions.

15

|
steert. S =[0,——g(i +DAO]m/ s
steert S =| 2\;,({ 140 m S s (=1 +A

v, — steert,S —[0,~0.2450]m/s 20058
v, =steert, S =[0,-0.490]m/ s

)
v, = steer t,5 =[0,-0.7350]m /s

v, = steer t.5 =0, 0.98,0lm/s v v,

Figure 8: An example of updating of the velocity in presence of a gravita-
tional field

present in BIOSHAPE) to our shapes by assigning an angular velocity and a
moment of inertia to a shape and then by performing a compound motion
of translation and rotation along the movement time step.

In Example 1, as we model the molecules at the mesoscale (1078 - 10~7
m), Brownian motion is generally considered a good approximation for their
motion. Thus, the three kind of shapes S, S, and S, all are subject to the
Brownian updating of velocity.

3.2 Collision Detection

Our intent is to represent a lot of shapes moving simultaneously in space
as described above. Inevitably, this scenario produces collisions between
shapes when their trajectories meet. There is a rich literature on collision
detection systems, as this problem is fundamental in popular applications
like computer games. Good introductions to existing methods for efficient
collision detection are available and we refer to Ericson [17] and references
therein for a detailed treatment.

For our purposes, it is sufficient to define an interface between our
calculus and a typical collision detection system. We can then choose one
of them according to their different characteristics, e.g. their applicability
in large-scale environments or their robustness. It must be said, however,
that the choice of the collision detection system may influence the kind of

16

H |
1 i 1y+A/2 vl Qg
Sp gired Sl S Bl gl Gl ST
0. i : i 0~ .

. i (: 4 A\

{ s C [-

4 . \ n

1

1

1

/o /

, .
Interpenetration [l 1] r<A
First time of
contact
(a) (b) (c)

Figure 9: Some steps to determine the first time of contact between two
shapes

basic (or compound) shapes we can use, as, for instance, some systems may
require the use of only convex shapes to be more efficient®.

Typically, a collision detection algorithm assumes to start in a situation
in which shapes do not interpenetrate. Then it tries to move all the shapes
of a little time step - that we have already introduced as movement time
step A - and check if interpenetrations occurred®. If so, it tries to consider
only half of the original time step and repeat the interpenetration check, i.e.
it performs a binary search of the first time of contact t between two or more
shapes, with some degree of approximation. Figure 9 shows these steps. In
case (a) the passage of the whole A results in an interpenetration. Then,
in (b) the passage of A/2 is tried resulting into a non-contact. After some
iterations the situation in (c) is reached.

In addition to the first time of contact, a collision detection algorithm
usually outputs the shapes that are colliding, i.e. are touching without in-
terpenetrating after ¢, and some information about the surfaces or points of
contact.

Let I be a non-empty finite set of indexes and let {S;};er be a set of
well-formed shapes such that for all ¢,57 € I, S; and S; do not interpene-
trate (Def. 2). Roughly speaking, the first time of contact of the shapes

8The basic shapes that we consider in Definition 1 are typically accepted by most of
the collision detection systems.

9Typically, the major efforts of optimisation are concentrated in this step since the
number of checks is, in the worst case, O(NQ) - where N is the number of shapes in the
space - but the shapes that are likely to collide are only those that are very close to each
other.

17

p Yol P

- / 7
sl o7 s s,
(a) (b) (c)

Figure 10: Some situations in which a collision is detected or not detected

S;, denoted Ftoc({S;}icr), is the least number ¢ € T such that, moving
shapes in {S;};cs for ¢ time units, a configuration is reached in which at
least two shapes touch and do not interpenetrate, but an interpenetration
occurs letting any other positive time € elapse.

Note that such a definition allows shapes that are touching without in-
terpenetrating and with velocities that do not make them to interpenetrate
(e.g., the same velocity) to move without triggering a first time of contact.
This possibility, as we mentioned in Section 2, is useful when we split pre-
viously compound shapes. Giving them the same velocity vector after the
split, we are guaranteed that the first time of contact currently in force is
not affected by the split. Figure 10(a) shows a situation in which a collision
is detected, while in cases (b) and (¢) no collision is detected because letting
any time pass, the two shapes will not interpenetrate.

3.3 Collision Response

In this section, we briefly discuss the problem of collisions response [20], i.e.
how collisions, once detected, can be resolved. In what follows we distinguish
between elastic collisions (those in which there is no loss in kinetic energy)
and perfectly inelastic ones (in which kinetic energy is fully dissipated)!©.
After an elastic collision, two shapes will proceed independently to each
other but their velocities will change according to the laws for conservation
of linear momentum and kinetic energy. On the other hand, as a consequence
of an inelastic collision, two shapes will bind together and will move as a
unique body whose velocity is determined by the law for conservation of
linear momentum only.

00ther different kinds of collisions can be easily added to the calculus provided that
the corresponding collision response laws are given.

18

v(Sy) =lemls — y(S§,)=-lcm/s v(Sy) =lem/s v(S)=-lem/s

S | omsy B W

m(S,) =2¢ m(S,) =1g m(S,)=2g m(S,) = lg
v(S,)=—1/3em/s v(S,)=5/3cm/s v(Sy(XNY)S)=1/3cm/s
:_ S : -t | S X b |
I I ! # S, |
(a) (b)

Figure 11: Examples of collision response of elastic and inelastic collision.

In Figure 11(a) it is shown an example of collision response to an elastic
collision along only one dimension. In Figure 11(b) there is another example
of an inelastic collision.

4 3D Processes

In this section we introduce the timed process algebra whose terms describe
the internal behaviour of 3D shapes. This is a variation of Timed CCS [31],
where basic actions provide information about binding capability and split
of shape bonds.

We use the following notation. Let A = {a,b,---} be a countably
infinite set of channels names (names, for short) and A = {a|a € A} its
complementation. Let A = AU A; by convention we assume @ = a for each
name a. Elements in A are ranged over by o, 5, -.

Binding capabilities are represented by channels, i.e. pairs («, X) where
a € Ais a name and X is a surface of contact. Intuitively, a surface of
contact is a portion of space (usually a subset of the boundary of a given
3D shape) where the channel itself is active and where binding with other
processes are possible. Names introduce a notion of compatibility between
channels that we will use in Section 5 to distinguish between elastic and
inelastic collisions. We say that channels (o, X) and (5,Y) are compatible,
written (a, X) ~ (8,Y), if f =a@ and X NY # (. Otherwise, (o, X) and
(8,Y) are said to be incompatible (that we write as (o, X) ¢ (5,Y)). We

19

also introduce two different kinds of actions that represent split of shape
bounds. We distinguish between weak-split actions w(«, X) and strong-split
actions p(«, X) where (o, X) is a channel. With an abuse of notation, we say
that two weak-split actions w(«, X) and w(3,Y") (as well as two strong-split
actions p(a, X) and p(B,Y)) are compatible if so are the channels («, X)
and (8,Y).

As we will see later on in this paper, synchronisations between a pair
of compatible weak-split actions result in a weak-split operation, while syn-
chronisations between multiple pairs of compatible strong-split actions cor-
respond to a strong-split operation. These operations behave differently
w.r.t. to time passing since the latter operation cannot let time pass further,
while the former one can be arbitrarily delayed.

Let C be the set of all channels, w(C) = {w(e, X)| (o, X) € C} and
p(C) = {p(a, X) | {a, X) € C} be the sets of weak-split actions and strong-
split actions, respectively.

Our processes perform basic and atomic actions that belong to the set
Act = C U w(C) U p(C) whose elements are ranged over by wu,u/,---. We
finally assume a countably infinite collection K of process name or process
constants.

Definition 3 (Shape behaviours) The set B of shape behaviours is gen-
erated by the following grammar

B:=nil| (o, X).B|w(a,X).B|p(L).B|et).B|B+B| K

where (a, X) € C, L C C (non-empty) whose elements are pairwise incom-
patible (i.e. for each pair (o, X),(58,Y) € L it is (o, X) # (5,Y)), t € T

and K is a process name in K.

A brief description of our operators now follows. nil is the Nil-behaviour,
it cannot perform any action but can let time pass without limits. A trail-
ing nil will often be omitted, so e.g. we write (a, X).w(a, X) to abbreviate
(a, X).w(a, X).nil. (o, X).B and w(a, X).B are action-prefixing known from
CCS; they evolve in B by performing, resp., the actions («, X) and w(a, X).
A behaviour of the form («, X).B exhibits a binding capability along the
channel (o, X), while w(a, X).B models the behaviour of a shape that, be-
fore evolving in B, wants to split a single bond established via the channel
(o, X). p(L).B is the strong-split operator; it can evolve in B only after
that all bonds established along channels in L have been split. The delay-
prefixing operator €(t).B (see [31]) introduces time delays in 3D processes;

20

peCUw(C)
NILtf PREFt% STRy p
nil ~5 nil w.B ~5 1.B p(L).B ~~ p(L).B
By s B By~ B} >t
Sumy ; DEL; ;
Bi+ By 5 B, + B) e(t').B ~ e(t' —t).B
t
B~ B’
Der—— k¥ p

K B

Table 1: Temporal behaviour of B terms

t € T is the amount of time that has to elapse before the idling time is
over. Finally, B; + B2 models a non-deterministic choice and K is a process
definition.

In the remainder of this paper, we use processes in B to define the
internal behaviour of our 3D shapes. For this reason, we assume that sites
in binding capabilities, as well as in weak- and strong-split actions, are
expressed w.r.t. a local coordinate system whose origin is the reference point
of the shape where they are embedded in.

Definition 4 (Timed operational semantics of shape behaviours)
The SOS-rules defining the temporal transitions relations L C (B xB) for
t € T are provided in Table 1. These transitions describe how processes in
B evolve by letting time t pass. As usual, we write B L B if (B,B') el
and B~ if there is B' € B such that (B,B) €. Similar conventions will
apply later on. Table 2 provides the SOS-rules defining the action transitions
relations £5C (B x B) for u € Act. These transitions describe which basic
actions a shape’s behaviour can perform.

Most of the rules in Table 1 are those provided in [31]. Rules PREF,
and STR; state that processes of the form (o, X).B, w(a, X).B and p(L).B
can be arbitrarily delayed.

The only rules in Table 2 worth noting are those defining the functional
behaviour of the strong-split operator. By Rules STR; and STRg (o, X) €
L implies that p(L).B can do a p(«a, X)-action and evolve either in B (if

21

peCUw(C) B4 B B % B
PREFp—————— DEL,—————— SUM,
uBE% B €(0).B L& B B +B 5 B
B4 B L={{,X
DeEF,———— i K def B SPTy i @ X)>}
K% p p(L).B 222 B
L={{a,XYUL L' 40 B 2N, p
STRo X STR3 %9
p(L).B 2222 p(L)).B p(L).B 2222 p(L). B

Table 2: Functional behaviour of B terms

L ={{a,X)}) or in p(L\{{e, X)}).B (otherwise). Rule STR3 is needed to
handle arbitrarily nested terms, e.g. p({{a, X}).p({(b,Y}).B. Other rules
are as expected.

Now we are ready to define our 3D processes that are simply or com-
pound shapes with a given behaviour expressed as a B-term.

Definition 5 (3D processes) The set 3DP of 3D processes is generated
by the following grammar: P ::= S[B]| ‘ P{a,X)P where S € S, B € B,
a € A and X is a non-empty subset of P.

The shape of each P € 3DP is defined by induction on P as follows:

Basic: shape(S[B]) =S

Comp: shape(P (a, X) Q) = shape(P) (X) shape(Q)

We define v(P) = v(shape(P)) and B(P) = B(shape(P)). Finally, P|v] is
the 8D process we obtain by updating P’s velocity as follows:

Basic: (S[B])[v] = (S[v])[B]

Comp: (P {a, X) Q)[v] = (P[v]) {a, X) (Q[v])

We also write steert P to denote P|steertshape(P)].

Let us model the molecules involved in the reaction of Section 1 as 3D
processes.

Example 2 (3D Processes for HEX, GLC and ATP) Hezokinase can

be modelled as HEX % Sp[HEX] where:

22

HEX = (atp, X}q).HA + (glc, X34) .HG,

HA = w(atp, Xpqa).-HEX + €(tr).(glc, Xng).p({(atp, Xpa). (glc, Yig) }).HEX,
HG = w(glc, X34) . HEX + €(th).(atp, Xna)-p({(atp, Xpa), (glc, Yig) }).HEX,
and Xpq, Yng are the surfaces of contact shown in Figure 7. ATP = S,[ATP]
models an ATP molecule where:

ATP = (atp, Xan)-(e(ta)-p({(atp, Xan)})-ADP + w(atp, Xo1). ATP)
and the surface of contact Xy is the whole boundary B(Sy). The process
modelling a molecule of glucose is similar: GLC = Sy[GLC] where

GLC = (glc, Xgn)-(e(tq).p({(glc, Xqn)}).GOP + w(glc, X4p).GLC
We leave unspecified the behaviours G6P and ADP.

HEX ezhibits two binding capabilities along the channels (atp, Xp,) and
(glc, Yng) with and ATP- and a GLC-molecule, respectively. By perform-
mng an (atp,X;w>—acti0n11, HEX evolves in HA that can do either an action
w(atp, Xna) - and hence come back to HEX - or wait t, units of time, perform
(glc, Yig)'? and then evolve in p({(atp, Xpa), (glc, Yag)}).HEX. At this stage,
we can perform the strong-split actions p(atp, Xpa), p(glc, Yig) and return to
HEX. Notice that, after an (glc, Yig)-action, HEX becomes HG that behaves
symmetrically.

ATP performs a (atp, Xqp)-action, wait t, units of time, and then can
release the bond established on the channel (atp, Xon)— and thus return free
as ATP — or participate in the reaction and become an ADP. As we will
see in Section 5, the result is the split of the complex in the three original
shapes whose behaviours are HEX, ADP and G6P, respectively. We omit the
description of the behaviour of GLC since it is similar to that of ATP.

We are now ready to define the timed operational semantics of 3D
processes.

Definition 6 (Weak timed operational semantics of 3D processes)
Rules in Table 3 define the transition relations 5C (3DP x 3DP) fort e T,
and 5C (3DP x 3DP) for u € Act. We have omitted symmetric rules
for CoMPy1 and COMPyy for the actions of Q. Two 3D processes P and
Q are said to be compatible, written P ~ Q, if P M and Q M for
some compatible channels (a, X), (@, Y); otherwise, P and Q) are incompat-
ible that we denote with P 4 Q. Below, we often write P 7’Z> and P %5 as a

shorthand for P M and P ;M, resp., for any (o, X)

"Whenever HEX and ATP collide, this action corresponds to a ‘real’ binding.
12This means that HEX can also bind with a colliding GLC-molecule.

23

Bw L B

Basicy
S[B] ~ (S +)[B']
PAL5P Qb Q X' =X+ (t-v(P)
COMt

Pla,X)Q % P {a, X") Q'

B By = global(X, R(S))

Basic, oy
ANAIUN

S[B] S[B]
BN By — global(X,R(S))
S[B] w(a,Y)

BAsicy,

S[B']

B p(e,X)

B’ Y = global(X, R(95))
s8] 24 S8

we w(C)Up(C) P& P

BAasicg

COMP,1
Pla,X)Q % P (a,X)Q

Py CB(P(a, X)Q)

CoOMP49

Pla, X) Q 22 P ia, X) Q

Table 3: Functional and temporal behaviour of 3DP terms

Rules in Table 3 say that a 3D process inherits its functional and tem-
poral behaviour from the B-processes we use define its internal behaviour.
Notice that now sites of binding capabilities and split actions are expressed
w.r.t. a global coordinate system (by rules BAsiC., BAsic,, and BASICj).
It is also noteworthy that, due rule COMP,3, some of the («,Y)-actions
performed by either P or @ can be prevented in P (a, X) @ since, due to
binding, the surface of contact Y ¢ B(P (a, X) Q) and, hence the corre-
sponding channel is no more active.

Note that the operational semantics is called weak because it lets time
pass even if a strong-split event is enabled. Later on, we will restrict this
weak behaviour.

24

The operational rules in Table 3 do not allow synchronisation between
components of compound process that proceed independently to each other.
To illustrate this with an example, let us consider P (a, X)(@Q where P =
Splp({a, Xp}).Byl, @ = Sylp({@, X¢}).Byl, X = X, N X, and, for each
i € {p,q}, X] is the site X; w.r.t. a global coordinate system, i.e. X/ =
global(X;,R(S;)). As stand-alone processes, P and) can perform two
compatible strong-split actions, namely p(a, X,) and p(a, X;) and evolve,
resp., in Sp[B,] and Sy[By]. As a consequence, P (a, X) @ becomes either
Sp[Bpl (a, X) Q or P (a,X) Sp[Bgy|. According to the intuition given so far,
P and @ have to synchronise on the execution p(a, X,) and p(a, X;) in order
to split the bond (a, X'). This strong-split operation must produce two inde-
pendent 3D processes, i.e. the network of 3D processes (see Section 5) that
contains both S,[Bp] and S;[B,]. Similarly, weak-split operation are due
to synchronisations on compatible weak-split actions. We roughly describe

how to deal with this kind of behaviours. We first allow synchronisation

X
on compatible split actions by introducing proper transition relations p(a:>)

and &), Intuitively, we want that P (a, X) Q P Sp[Bp) (a, X) S4[By).
Now, to ‘physically’ remove the bond (a, X), we can define a function split
that, given a 3D process and a set C' of shape bonds (e.g. {(a, X)}), removes
all bonds in C and return the network of processes we are interested in.

We also recall that strong-split events can require simultaneous splits
of multiple bonds. In this case, all the components involved in the re-
action must - all together - be ready to synchronise on a proper set of
compatible strong-split actions. Consider e.g. a more complicated ex-
ample (P (a,X)Q) (b,Y)R where P = Sy[p({(a, Xp),(b,Y,)}).Bp], Q@ =
Salp({(@ X)})-Bl, R = S,lp({{b,Y)}).B,J, X = X,N X! and Y = YNY/.
We say that (P (a, X) Q) (b,Y) R is able to complete a reaction to denote that
it can satisfy all ‘pending strong-split requests’, and that the corresponding
strong-split event is enabled. Recall that enabled strong-split events pre-
vent the passage of time. To force this kind of timed behaviour we say that
P4 Qiff P L @ and no strong-split event is enabled in in P. Due to this
restricted timed behaviour, (P (a, X) Q) (b,Y) R cannot let time pass. As
a consequence, P can only synchronize with @) and R and split the bonds
(a,X) and (b,Y) (the order does not matter). These two actions together
correspond to a strong-split event that, once performed as a unique action,
make the whole system able to continue its evolution also from the time
passing point of view.

25

5 Networks of 3D processes

Now we can define a network of 3D processes as a collection of 3D processes
that freely moving in the same 3D space.

Definition 7 (Networks of 3D processes) The set N of networks of 3D
processes 1s generated by the grammar

N:=Nil| P|N|N
where P € 3DP. We say that a network N is well-formed iff each 3D
process composing the network is well-formed and, for each pair of distinct
processes P and Q in the network, shape(P) and shape(Q) do not interpene-
trate. Moreover, we extend the definition of steer on networks in the natural
way, i.e. such that each process of the network is updated simultaneously.

In our running example we construct a network of processes containing
a proper number of HEX, ATP and GLC processes in order to replicate the
conditions in a portion of cytoplasm.

Now, we define the temporal and functional behaviour of networks of
3D processes. Here, we assume that a network of 3D processes performs
basic actions that belong to set {w, p}, where we use w and p to denote,
respectively, weak- and a strong-split of process bonds as a unique action
(at a network level we only see if shape bonds can be split or not). In the
following, we also let elements of the set {w,p} UT to be ranged over by
v, V,, cee

Definition 8 (Temporal and Functional Behaviour of N-terms)
Rules in Table 4 (plus an additional rule symmetric of PAR, for actions of

M) defines the transition relations i)Q N XN forteT and HCNxN for
p € {w,p}. A timed trace from a net N is a finite sequence of steps of the

form
N=Ng3HN L. 25N, =M

We finally write that N LM if there exists a timed trace N = Ny =

n
Ny Zs ... 2% N, = M such thatt = > {v; |v; € RT}.
i=0
A proper semantics that simply applies the rules to resolve collisions
(both elastic and inelastic ones) can now be defined. It can then be used to
formally specify the evolution of a network of 3D processes according to the
timeline scheme that we sketched in Section 2.

26

NLN ML M N & N
EMpPTY;———— PARy4 PARr,

Nil 5 Nil N|ML N | M N|M%E N | M

Table 4: Temporal and functional behaviour of networks of 3D processes

6 Related works

In this section we give an overview of the modelling and simulation languages
and tools that we consider connected with our approach in the area of formal
calculi and of simulation tools for biological systems.

Many process algebras have been proposed in systems biology for mod-
elling biological systems |26, 27, 14, 7, 15], accomplishing different kinds of
abstractions. The common assumption in these calculi is that the systems
are always well-stirred, which means that the positions of entities become
randomly uniform over a contained volume. This distribution is often gen-
erated by several simulation methods [19] based on the theory of stochastic
chemical kinetics. When systems are not well-stirred, the ideal way to sim-
ulate the time evolution of a chemical system would be to use molecular
dynamics, in which the exact positions and velocities of all the molecules in
the systems are tracked. In these cases the concepts of space and time play
a fundamental role, and only recently they have been taken into account in
process calculi for systems biology. BioAmbients |27] considers space as a set
of communicating compartments, while in Spatial CLS [4] and SpacePI [22]
the entities involved are modeled as spheres situated in space. SpacePl [22]
proposes an extension of the m calculus equipped with time and space. In
this algebra processes can communicate if they are sufficiently close, but no
shapes are considered. However, in biochemistry, the shape of an enzyme
plays a very important role in biochemical interactions. The behaviour or
the function of an enzyme is mostly determined by its 3D structure (shape).

Many particle-based approaches, such as MCell [28], Smoldyn [3] and
ChemCell [25], are derivatives of the Smoluchowski model. This model
describes a solution of interacting chemical particles as spheres moving
by Brownian motion until two spheres come within a certain distance of
each other causing them to react. As a consequence, these approaches can
faithfully describe only reaction-diffusion systems where particles are simple
spheres and can be moved altogether only in according to Brownian motion

27

laws, differently from Shape Calculus/BIOSHAPE, where each shape can be
singularly linked to any motion law.

More similarly to Shape Calculus/BIOSHAPE, the particle-based and
single-scale approaches proposed in [1] and in [8] also allow particle geometric
information to be incorporated. In detail, the mesoscopic simulator proposed
in [1] represents biological entities as single particles, spheres or cylinders, or
as compound objects formed from the two. Every basic particle can have a
number of binding sites associated with it. Particles and compound objects
diffuse through the simulation volume using a 3D random walk algorithm.
Bonds between particles are broken and created as determined by the user-
defined rules. A collision detection algorithm establishes whether particles
come sufficiently close to allow bond formation.

The stochastic simulator in [8] handles spatial locality, very low parti-
cle concentrations and collision between particles using a discrete 3D grid.
Particles move within discrete volumes in discrete time steps. An integer-
addressed 3D grid avoids floating-point computation and distance calcula-
tions for enabling highly parallel, large-scale simulations using custom hard-
ware.

7 Conclusions and Future Work

We have defined a Shape Calculus that takes into account space, time,
shapes, movement and collisions among shapes. The features and the capa-
bilities of modelling of the calculus have been presented in an introductory
way, with a running example taken in the biochemical reaction field. An-
other paper is going to appear from the same authors that introduces the
full formal timed operational semantics of the Shape Calculus and a well-
formedness result about possible evolutions of network of 3D processes. As
future work we intend to study the possibility to provide qualitative and
quantitative verification tools for the Shape Calculus. This can be done
by applying both abstractions to some parts of the very large semantics of
a network of 3D processes and by specifying more concrete information to
other parts that are specified at a very high level of abstraction, like the
steer function.

References

[1] Meredys (www.ebi.ac.uk/compneur-srv/meredys.html).

28

2]
3]

4]

5]

[6]

7]

8]

19]

[10]

RCSB - Protein Data Bank (http://www.rcsb.org).

S. S. Andrews and D. Bray. Stochastic simulation of chemical reactions
with spatial resolution and single molecule detail. Phys. Biol., 1(3—
4):137-151, 2004.

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and G. Pardini. Spatial
Calculus of Looping Sequences. Flectronic Notes in Theoretical Com-
puter Science, 229(1):21-39, 2009.

E. Bartocci, F. Corradini, M. R. Di Berardini, E. Merelli, and L. Tesei.
Shape Calculus. A spatial calculus for 3D colliding shapes. Technical
Report 6, Department of Mathematics and Computer Science, Univer-
sity of Camerino, Jan 2010. Available at http://slreport.cs.unicam.
it/6/.

E. Bartocci, M. R. Di Berardini, F. Corradini, M. Emanuela, and
L. Tesei. A Shape Calculus for Biological Processes. In Proceedings of
11th Italian Conference on Theroretical Computer Science (ICTCS’09),
pages 30-33, 2009.

L. Bortolussi and A. Policriti. Stochastic concurrent constraint pro-
gramming and differential equations. FElectronic Notes in Theoretical
Computer Science, 190(3):27-42, 2007.

L. Boulianne, S. Assaad, M. Dumontier, and W. Gross. GridCell: a
stochastic particle-based biological system simulator. BMC Systems
Biology, 2:66, 2008.

F. Buti, D. Cacciagrano, F. Corradini, E. Merelli, M. Pani, and
L. Tesei. Bone remodelling in BioShape. In Proceedings of Interac-
tions between Computer Science and Biology, 1st International Work-
shop (CS2BIO’10), 2010. Available at http://cosy.cs.unicam.it/
bioshape/cs2bio2010.pdf.

F. Buti, D. Cacciagrano, F. Corradini, E. Merelli, and L. Tesei.
BioShape: a spatial shape-based scale-independent simulation environ-
ment for biological systems. In Proceedings of Simulation of Multi-
physics Multiscale Systems, Tth International Workshop (ICCS 2010),
2010. Available at http://cosy.cs.unicam.it/bioshape/iccs2010.
pdf.

29

[11]

D. Cacciagrano, F. Corradini, and M. Merelli. Bone remodelling: a
Complex Automata-based model running in BioShape. In Proceedings
of Cellular Automata for Research and Industry, 9th International Con-
ference (ACRI’10), 2010. Available at http://cosy.cs.unicam.it/
bioshape/acri2010.pdf.

N. Cannata, F. Corradini, E. Merelli, and L. Tesei. A spatial model
and simulator for metabolic pathways. In Proceedings of Bioinformatics
Methods for Biomedical Complex System Applications (NETTAB08),
pages 40—42, 2008.

N. Cannata, F. Corradini, E. Merelli, and L. Tesei. A spatial
simulator for metabolic pathways. In Proceedings of MultiAgent
Systems& Bioinformatics (MAS&BIO’08), pages 31-46, 2008.

L. Cardelli. Brane calculi. In Computational Methods in Systems Bi-
ology, International Conference (CMSB’04), volume 3082 of Lecture
Notes in Computer Science, pages 257-278, 2005.

F. Ciocchetta and J. Hillston. Bio-PEPA: An extension of the process
algebra PEPA for biochemical networks. Electronic Notes in Theoretical
Computer Science, 194(3):103-117, 2008.

F. Corradini and E. Merelli. Hermes: agent-base middleware for mobile
computing. In Formal Methods for Mobile Computing, 5th International
School on Formal Methods for the Design of Computer, Communica-
tion, and Software Systems (SFM-Moby’05), volume 3465 of Lecture
Notes in Computer Science, pages 234-270, 2005.

C. Ericson. Real-time collision detection. Elsevier North-Holland, Inc.,
2005.

A. Finkelstein, J. Hetherington, L. Li, O. Margoningki, P. Saffrey,
R. Seymour, and A. Warner. Computational challenges of systems bi-
ology. IEEE Computer, 37(5):26-33, 2004.

D. T. Gillespie. Simulation methods in systems biology. In Formal
Methods for Computational Systems Biology (SFM’08), pages 125-167.

C. Hecker. Physics, part 3: Collision response. Game Developer Maga-
zine, pages 11-18, 1997.

30

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. Hunter, W. Li, A. McCulloch, and D. Noble. Multiscale model-
ing: Physiome project standards, tools, and databases. Computer,
39(11):48-54, 2006.

M. John, R. Ewald, and A. Uhrmacher. A spatial extension to the w
calculus. Electronic Notes in Theoretical Computer Science, 194(3):133—
148, 2008.

M. C. Lin and S. Gottschalk. Collision detection between geometric
models: A survey. In Proceedings of IMA Conference on Mathematics
of Surfaces, pages 37-56, 1998.

R. Milner. Communication and concurrency. Prentice-Hall, Inc. Upper

Saddle River, NJ, USA, 1989.

S. J. Plimpton and A. Slepoy. Microbial cell modeling via reacting
diffusive particles. Journal of Physics: Conference Series, 16(1):305—
309, 2005.

C. Priami and P. Quaglia. Beta binders for biological interactions. In
Computational Methods in Systems Biology (CMSB’04), pages 20-33,
2004.

A. Regev, E. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioam-
bients: an abstraction for biological compartments. Theoretical Com-
puter Science, 325(1):141-167, 2004.

J. R. Stiles and T. M. Bartol. Monte Carlo methods for simulating re-
alistic synaptic microphysiology using MCell. In E. D. Schutter, editor,

Computational Neuroscience: Realistic Modeling for Experimentalists,
pages 87-127. CRC Press, 2001.

K. Takahashi, S. Arjunan, and M. Tomita. Space in systems biology of
signaling pathways—towards intracellular molecular crowding in silico.

FEBS letters, 579(8):1783-1788, 2005.
BIOSHAPE. (http://cosy.cs.unicam.it/bioshape/).

W. Yi. Real-time behaviour of asynchronous agents. In Proceedings of
CONCUR ’90, volume 458 of Lecture Notes in Computer Science, pages
502-520, 1990.

31

