See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/3420461

An Actor-Based Architecture for Customizing and Controlling Agent Ensembles

Article in IEEE Intelligent Systems - April 1999

DOI: 10.1109/5254.757630 - Source: IEEE Xplore

CITATIONS
46

3authors:

“I» Nadeem Jamali
% University of Saskatchewan

48 PUBLICATIONS 252 CITATIONS

SEE PROFILE

Gul Agha

University of Illinois, Urbana-Champaign

376 PUBLICATIONS 13,953 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot LOcational Type Theory View project

ot Mobility-Aware Resource Management and Untracability View project

All content following this page was uploaded by Gul Agha on 21 July 2015.

The user has requested enhancement of the downloaded file.

READS
296

Prasanna Thati
University of Illinois, Urbana-Champaign

19 PUBLICATIONS 560 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/3420461_An_Actor-Based_Architecture_for_Customizing_and_Controlling_Agent_Ensembles?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3420461_An_Actor-Based_Architecture_for_Customizing_and_Controlling_Agent_Ensembles?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Locational-Type-Theory?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mobility-Aware-Resource-Management-and-Untracability?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nadeem_Jamali2?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nadeem_Jamali2?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Saskatchewan?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nadeem_Jamali2?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Prasanna_Thati?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Prasanna_Thati?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Illinois_Urbana-Champaign?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Prasanna_Thati?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gul_Agha?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gul_Agha?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Illinois_Urbana-Champaign?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gul_Agha?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gul_Agha?enrichId=rgreq-1ec2ab352859ed45ab61fbcb046a3873-XXX&enrichSource=Y292ZXJQYWdlOzM0MjA0NjE7QVM6MjUzNzU5Njc0NjQ2NTI5QDE0Mzc1MTI0Mjk0MTI%3D&el=1_x_10&_esc=publicationCoverPdf

An Actor-based Architecture for Customizing
and Controlling Agent Ensembles

Nadeem Jamali, Prasannaa Thati and Gul A. Agha
Department of Computer Science
1304 W. Springfield Avenue
University of Illinois
Urbana, IL 61801, USA

Email: {jamali | thati | agha}@cs.uiuc.edu

Consider a distributed internet-based market place with sellers and buyers
represented by autonomous mobile agents. Individual users of the system may
create agents to purchase or offer goods or services; these agents may travel over
the network searching for bargains or for potential markets. What framework
would best support such a system?

An opportunistic user would always selfishly seek the best deal, which may
translate into having access to as much information as possible (in a managable
form, of course). In a distributed environment, this would mean spawning a
very large number of agents, possibly organized as a tree, to disperse over the
network. In a more volatile market needing local decisions, seller and buyer
agents would want to be omnipresent. In both cases, agents serving the same
interests will often need some type of coordination; an ability to coordinate the
behavior of agents in agent ensembles is a key challenge for Distributed Al

From the perspective of a node hosting such activity, there has to be some
incentive to allow it. Malicious or erroneous agents may threaten the node
not only by attempting to access specific resources, but also by the degree to
which they use them. More importantly, chaotic behavior may emerge from
otherwise reasonable behaviors of agents in a large ensemble. In recent past
there have been examples where outcomes of collections of autonomous processes
have resulted in this kind of phenomena. For instance, a Haitian ferry sank
last September as the passengers rushed to one side to disembark. A 1996
power outage in Oregon caused a cascading outage along the entire US West
Coast because of lack of cooperation among utilities. In our distributed market
example too, seller and buyer agents may be driven in large numbers towards a
new market or a discount sale, possibly causing node and network failures along
the way.

A platform for supporting multi-agent ensembles needs to provide scalable

mechanisms for safe and efficient execution over open networks of computers.
The underlying platform of an agent system must control ways in which re-
sources are accessed and managed by representing resource allocation policies
at the agent level, borrowing ideas from previous work in subject areas as diverse
as operating systems and economics.

1 Defining Agents

A common type of commercially available agents is the personal assistants that
perform a large number of light weight queries in search of some information.
Personal assistants perform functions such as finding the best travel fares, moni-
toring product or stock prices, or searching academic articles related to a certain
area of research. These agents may even have the decision making authority to
make binding contracts on behalf of a user, such as by purchasing something
using a credit card number. Other types of agents use a variety of filtering
mechanisms to make the huge amount of information available over (say) the
Internet more manageable for human consumption. These agents can be seen
as examples of (stationary) personal agents.

In contrast, in an open system, agents may migrate from one node to another
searching for computation environments suitable for completing their tasks at
affordable costs. These agents may also spawn child agents to pursue subtasks.
This makes it important to study ways of controlling the resources that such
agents or their ensembles could use in serving some particular interest. On
the one hand, we need a bounded resources model to control the amount of
computational resources consumed by agents serving an interest; on the other,
we need a bounded autonomy model for allowing coordination among agents.

Agents may be represented as actors (Figure 1). Actors are self-contained,
interactive, autonomous components of a computing system that communicate
by asynchronous message passing [1, 2]. New actors may be created and mail
addresses of actors communicated in messages. We extend the Actor model to
explicitly model the location of agents on particular hosts and the bounded com-
putational resources that they may use. Hosts are actors that manage physical
and logical resources of a node and offer them to agents interested in paying
for them. A wniversal currency is used to pay for the cost of these resources.
The behavior of an agent may be interpreted in a suitable framework, e.g., the
belief, desire, intent model [11]. Agents are persistent, have relatively long-
lived goals describing the functional aspect of what they are doing, and have
computational engines which serve as mechanisms for achieving these goals. In
addition to the functional component, these computational engines include a
resource utilization strategy. Of course, all these aspects of an agent may evolve
dynamically.

Using the basic actor primitives for creating a new agent, sending an asyn-
chronous message to another agent, and changing the agent’s own behavior,

Interface

Thread Interface

State

Procedure

‘ [J
Procedure N
[J
S Messages

Thread
State

L2

Procedure /

Interface
[

NI

Figure 1: Actors encapsulate a thread and state. The interface is comprised
of public methods which operate on the state.

distributed systems can be dynamically configured. New agents can be cre-
ated and connections between agents can be made and broken as computation
proceeds. Thus the Actor model does not require that the structure or shape
of a computational problem be completely determined, or that the execution
resources be fixed, before work on solving it can be initiated.

This model abstracts over issues of low-level synchronization by encapsulat-
ing the state of an object and its execution thread, and limiting communication
to asynchronous message passing.

1.1 Mobility

Consider a knowledge acquisition problem where we want to build a seman-
tic network representing the information available in a large knowledge space,
distributed over a set of independent sites. (Figure 2).

To initiate searches in the subspaces, a new agent can be created at each
site and assigned the task of searching locally. Each of these agents can develop
a semantic network for the information available locally (possibly creating its
own child agents and and assign them local subspaces), and transmits it to the
home site. The home site finally merges the networks collected from all other

= O E@X

Create
Reply| Reply

Node 2 Node 3 ‘ Node 4

Node 1

Figure 2: Knowledge acquisition by agents in a distributed space

sites to produce a final result.

An agent in an open system may want to initiate computation at a different
location for a variety of reasons. The new location may provide a more suitable
computational environment, it may offer cheaper resources, or it may have data
needed by the agent for completing its task.

Although creating agents remotely suffices for the purpose of our example,
consider a variation where a single agent must travel to different nodes, building
the semantic network incrementally, and relying on the network built thus far to
decide where to go next. Mobility seems a more natural abstraction to address
this problem.

True migration as depicted in Figure 3, involves capturing the current com-
putational state of an agent and shipping it over to the remote node’s manager,

Figure 3: Migration of an agent. New location receives the agent’s state and
procedures to create a new agent locally

along with the procedures describing the agent’s behavior. The remote manager
creates a new actor with the behavior and the received state. Similar to true
migration is a language facility for migrating an agent when it is inactive. This
is semantically equivalent to remote creation of an agent given a behavior, but
the two cannot always be interchanged. For example, remote creation may be
cheaper when the amount of information to describe the new agent is less than
the size of the agent itself.

Another important distinction between remote creation and migration is
that the identity of an agent remains unchanged after migration, whereas remote
creation results in creation of a new name. Because of this, an agent requesting
a remote creation would have to wait for the identity of the new agent before
communicating with it. Alternatively, an agent may create a new actor locally
and request to migrate it.

A common abstraction for allowing migration in existing agent system im-
plementations is in the form of possibly dynamic itineraries, which are lists of
node/method pairs, describing the sequence in which the agent must travel to
different nodes, and the methods it must execute at those hosts. This scheme
too does not allow migration in the middle of a method’s execution.

Language constructs for adaptation are also very useful for supporting mi-
gration. In networks of heterogeneous systems, agent may have to migrate to
nodes with different architectures, and a static specification of the behavior may
not always be compatible with the new host. This problem can be addressed
by allowing agent behaviors to analyze and modify themselves as needed.

1.2 Controlling Resources

To support a system where agents can use resources available “elsewhere” in
a satisfactory way, it is important to have some notion of an economy. Such
an economy would provide the basis on which nodes would allow agents to use
their resources, and would serve as an environment that would enable nodes
and agents to get into binding contracts about the services needed.

Resource allocation in multi-agent systems is a problem that raises issues of
reciprocity as well as performance and security concerns. Nodes on the world-
wide web, for instance, may be willing to be part of a multi-agent system if
they receive something in return for allowing foreign agents to use their re-
sources. From the performance and security perspective, agents migrating to a
node may exhibit undesirable resource consumptive behaviors, either individu-
ally, or as ensembles. Similarly, network channels are a scarce resource requiring
controls on how they may be used.

An economic model can be used to protect against resource consumptive
behavior of agents in a multi-agent system [4]. Note that control in agent
systems is not based solely on programming structures, as agents may create or
invoke other autonomous agents. Such autonomy makes it important to devise
explicit mechanisms for controlling the extent to which an expanding group of
agents, working on a single task, can utilize a system’s resources. In an open
distributed system, the problem is compounded by the ability of agents to exist
in a resource space not entirely dedicated to their computations alone. We need
mechanisms to support bounding the resource utilization of individual agents,
or ensembles of agents working together, according to the terms under which
they are allowed access to those resources.

Consider a variation of the distributed knowledge acquisition application
described earlier, where we want to control the degree of resource consumption in
pursuit of the goal. Typical messages to agents will contain values representing
resource allocations for servicing them. Every agent has a resource consumption
strategy that tells it what portion of the available resources may be allocated
to which sub-task. Each agent develops its semantic network only so long as it
has sufficient resource allocation, and stops when just enough resources remain
for transmitting results back to the client.

To implement an economic model, we will use the notion of a universal cur-
rency. Specifically, resource allocation will be measured in a common currency
called Gccu (for global currency unit). Every computational activity must be al-
located GCU’s which may be used in completing the task. Each agent is alloted

some subsistence GCU’s at the time of its creation by its creator, and because
activity in message-based systems is triggered by a message, GCU’s must also
be allocated at the time of sending a message. The GCU’s so transferred are
deducted from the accounts of the creator or the sender, respectively.

The notion of computational resources must be broad enough to include all
entities in the system whose use by one agent can affect the performance of
rest of the system. These may include both physical resources (e.g., processors,
memory, etc.) and logical resources (e.g., threads). The analog of renting seems
to apply more naturally here than that of purchasing.

In addition to the resources consumed while progressing towards accomplish-
ing their goals, individual agents may sometimes be waiting for information from
elsewhere, or for reasons of coordination. Such waiting consumes memory re-
sources which must be accounted for. At the same time, an agent should not
have to pay if the idle wait is increased by the host’s own scheduling choices.
Thus, it is important to represent resources both in terms of individual agents
as well as in terms of the larger application they are serving at a particular
hosting node. Only the delays caused by co-agents in an application should be
charged.

Similarly, it is also important to distinguish between economic boundaries in
an open distributed system and the physical boundaries between computational
nodes. Although resources such as network bandwidth usage depend on physical
boundaries, costs of other resources would more logically vary as one crosses
economic boundaries.

An agent interested in migrating to a particular host must negotiate a con-
tract with the host ahead of the actual migration. Independent of the actual
negotiation protocol, the purpose is to agree on a function that would determine
costs of resources that will be made available, possibly dependent on the state
of the host. Once the contract has been agreed, an agent may arrive at the node
with a certain number of GCU’s. The GCU’s held by an agent may be spent for
purchasing computational resources from the host as it computes, according to
the negotiated contract.

The contract between an agent and its prospective host may also decide the
granularity at which it would be charged for its activity, which would in turn
determine how fine-grained the monitoring would need to be. For example, the
host may offer free memory usage with a more expensive CPU cost, removing
the need for monitoring memory usage. At the same time such decisions may
have important implications. For a node offering free memory usage, an agent
may arrive at the node, spawn a large number of child agents who just sit there
occupying space. But at the same time, as explained earlier, charging for the
time for which memory is in use is non-trivial. An agent may not be charged
for staying on a node longer because of delays caused by the node’s scheduler.
We want to charge the agent only if there is no message in the system for it,
for the time that its co-agents are executing. One way in which this would be
possible would be if the host’s scheduler would schedule an application scheduler

for each application, rather than scheduling individual agents directly. In this
way, the rent for the memory being used can be charged only for the time for
which the application is scheduled. Not charging for memory may hence be a
cost-effective compromise in some cases to avoid excessive overhead involved in
monitoring memory usage.

Application specific schedulers enhanced with a scheme to dynamically as-
sign priorities to agents may also be useful in bounding the autonomy of agents,
allowing them to cooperate by resource sharing. An agent may fine-tune priori-
ties of its child agents or peer agents may themselves choose to lower their own
priorities to allow others, working on more time-sensitive parts of the applica-
tion, to compute faster.

In addition to the costs of resources provided by hosts, one must also model
network bandwidth usage, so that every network communication results in a
cost incurred by the initiator, depending on the size of the message and some
abstraction of the route to be taken.

2 Agent Ensembles

An individual agents is not much more powerful than a conventional sequen-
tial program. However, ensembles of agents exploit parallelism, distribution
and mobility to promise orders-of-magnitude greater computational power than
conventional programs. But dynamicity and uncertainty in such systems poses
a number of problems for the realization of such promise. To allow agent en-
sembles to operate effectively, we need to provide the ability to organize groups
of agents in interesting ways. Specifically, there are three kinds of concerns
we have to address. First, the contexts in which the agent ensembles execute
and interact need to be dynamically customizable. Second, flexible communica-
tion abstractions need to be supported for group level communication. Finally,
the interactions of different, potentially overlapping groups of agents, must be
mediated to ensure shared protocols. We describe a programming model that
provides requisite flexibility.

2.1 Customizing Environments

An agent computing at a node may find the execution environment unsuit-
able for continued computation, for reasons as varied as a need for large amounts
of data available only at a remote site (hence, too expensive to transfer) or real-
time guarantees required for executing a specific piece of code. Although such
reasons for migration may depend on an agent’s functional behavior, it is desir-
able to separate environmental concerns from the agent’s application code. To
achieve this separation, we introduce the notion of a facilitator.

Every agent’s definition includes a dynamic declarative specification of the
requirements attributable to its execution environment. There is a facilitator

associated with each agent, which is triggered when the agent modifies its spec-
ification. The facilitator first determines whether the new requirements can be
satisfied at the local host, by examining the agent’s status, and possibly re-
nogotiating its host contract. If the host cannot satisfy the agent’s new require-
ments, the facilitator begins negotiations with managers of other nodes (e.g.,
facilitator for Agent3 in Figure 4). If there a more suitable node is available,
the facilitator migrates the agent there.

Nodel Node2 Node3

Proxy for = Monitor
resource O Agi\‘ent Status
at Node
—<—> Negotiate

O
— Agent
— Computational Accessto
Resource Resource

O unitof -
L , Migration Kﬁglrtator l'\\lll%(rj\%ger

Figure 4: Agent System Architecture: Agent carries dynamic specification of
its requirements from the computational environment

Environmental requirements specification of an agent comprises specification
of required data, processor time, memory, disk space, and network bandwidth,
availability of these resources, and their costs. An agent may also require special-
ized services from a host: it may need to be mediated, contained, or scheduled
to meet requirements such as security, real-time, or Quality of Service (QoS).

The model we use for separating environmental concerns for the applica-
tion code of agents is reflection. Reflection allows an application to monitor
the execution of the underlying system and to modify it dynamically. Specifi-
cally, facilitators are part of a meta-architecture enabling agents to continuously

interaction with their environment.

Agent migration in this model is transparent to the migrating agent itself.
The facilitator is responsible for completing the transfer, and setting up the
agent’s environment at the new host. This setup may entail obtaining proxy
names for the resources needed by the agent, and customizing the environment
for requirements such as security, real-time etc. Figure 4 gives a representation
of this architecture.

Reflection also enables customizing middleware of the agent’s new host. In
general, models of reflection enable interaction of higher level requirements,
such as real-time constraints, and lower level information about the execution
environment, such as load distribution over a group of processors, or available
network bandwidth.

Because the Actor model allows the state of the computation to be mod-
eled directly, the computation environment called the meta-level architecture
can be represented at an appropriate level of abstraction using the same base
language [15].

In Rosette [14], a commercially developed object-oriented implementation
of an Actor architecture, the architecture has an interface layer and a system
environment. The interface layer provides mechanisms for monitoring and con-
trol of applications, where the system environment contains actor communities
which implement resource management policies, providing monitoring, debug-
ging, resource management, system simulation, and compilation/transformation
facilities. To support reflection of the interface layer, Rosette uses three classes
of resource actors to abstractly implement an actor: container, processor, and
mailboz. Containers model the storage local to actors, in a way similar to frames
in knowledge-based systems.

2.2 Pattern-Based Communication

We need flexible communication abstractions for programming agent ensem-
bles. An agent may need to communicate with a group of agents or an arbitrary
member of a group of agents rather than a particular target agent. In such cases
if the sender must name all the potential recipients then a level of abstraction
is lost. Moreover, it is often necessary to communicate with agents whose ad-
dresses are not previously known. In other words, we need support for a Yellow
Pages service to find addresses of agents of a given type. Traders in an object
request broker architecture perform a similar function. This necessitates a pat-
tern based naming scheme that identifies agents as being members of groups
and allows communication with agents that are not individually known.

The Actorspace model allows an abstract pattern-based specification of a
group of agents [5]. An actorspace associates an agent with specific attributes.
The sender of a message specifies a destination pattern which is matched against
the attributes of agents in the actorspace. The sender may send a message to a
single arbitrary member of a group, or broadcast it to the entire group. More-

10

Negotiators Buyers

© O O
\ Coordinators
Sellers
\ Advertizers
@)

© O© O

—> Broadcast

— > Single Target

Figure 5: A real estate agency application. There are five actorspaces: coordi-
nators, negotiators, buyers, advertizers and sellers. In all the communications
involved the sender need not know the address of the receiver; the sender just
specifies the destination pattern which is matched against the attributes of
agents in the target actorspace.

over, the visibility of attributes is dynamic, thus enabling dynamic group mem-
bership. Finally, meta-level operations may be associated with an actorspace.
For example, an actorspace manager may transparently schedule requests to
ensure load balancing. The model may also be seen as providing a distributed
version of the blackboard[6] system for broadcast communication.

Figure 5 illustrates an example of how actorspaces may be used by a real
estate agency. The application consists of five agent groups: coordinators, nego-
tiators, buyers, advertizers and sellers. The membership of each of these groups
is dynamic. The coordinator agents make all the business decisions such as
which properties to buy or sell, at what price, and when. The negotiator agents
constantly look for real estate on sale and report the best deals to the coordina-
tors. The coordinators broadcast their preferences to all the negotiators. These
preferences include desired characteristics of the property to be bought, its loca-
tion, the maximum acceptable price, etc. Once a coordinator has decided to buy
an estate it must send appropriate instructions to a buyer agent at the location.

11

For this, the coordinator may set the destination pattern of the message to the
appropriate location. The buyers that have registered under this pattern, i.e.,
the ones at the location specified, would then receive the message. A coordina-
tor may also decide to sell estates, in which case it broadcasts instructions to
all advertizer agents. The advertizers visit places to meet potential clients and
report the best deals to the coordinator. The coordinator then agrees upon the
best option and instructs a single seller to sell the estate to the chosen client.
Again, pattern directed communication may be used to contact a seller with
desired attributes such as someone closest to the client’s location. Note that in
none of the interactions described above does the sender of a message need to
know the actual address of the intended receiver.

2.3 Interaction Policies

Company2

Company3

ORGANIZATION AGENTS INTERACTION POLICIES

s @

Company2

padlc
Summit ‘

a
N
N

Figure 6: A conference for diplomatic negotiations. The agents at the confer-
ence agree upon an interaction policy to communicate with one another. Each
agent at the conference in turn uses a specific interaction policy to communi-
cate with the agents back at its company.

An agent application consists of groups of agents carrying out specific tasks
and interacting with one another through a set of interaction policies. Different

12

interaction policies may be appropriate in different groups of agents and they
may also change with time. Apart from providing communication abstractions,
interaction policies may also be used for various other purposes such as fault-
tolerance and coordination.

The implementation of interaction policies can be quite involved: it involves
exchanging a number of messages between participating agents. Current tech-
niques for developing agent applications require developers to implement inter-
action policies and individual agent behaviors together, significantly complicat-
ing code. The lack of modularity in this approach makes it difficult to reason
about code and limits reusability and portability. Moreover, the resulting code
is brittle: modifying an interaction policy to satisfy changing requirements re-
quires modifying the code of each relevant component and then reasoning about
the entire system, essentially from scratch. Dynamic changes in interaction poli-
cies further complicates the situation.

In contrast, meta-level specification of interaction policies through linguistic
constructs called protocols [12, 13], enables separation of interaction code from
agent functionality, and allows dynamic changes in the interaction policies [12].
A protocol is an abstract specification of an interaction policy which can be
instantiated on different groups of agents. When instantiated, a protocol gov-
erns the interaction between a group of agents by imposing a role on each of
the group members. A role, among other things, customizes the behavior of
the underlying mail system, and implements one end of an interaction policy.
An important advantage is that protocols can be instantiated dynamically and
reconfigured by invoking operations defined on them. Moreover, protocols can
be composed. Thus, an agent can be in different roles with respect to different
protocol instances. The protocol abstraction is realized by a reflective approach
described in section 2.1.

Figure 6 illustrates a situation where several groups of agents have different
interaction policies imposed on them. Three companies send their representative
agents to a summit for diplomatic negotiations. Since the companies do not
necessarily trust each other, the summit is held at a trusted brokerage. At
the summit the representatives agree upon a common interaction policy. Each
representative may in turn use a different interaction policy to communicate
with the agents back at its company. For example, each representative may use
an encyprition protocol known only to agents of its own company. Note that
each agent at the summit has two protocol instances imposed on it and hence
is simultaneously in two different roles. Moreover the protocol instances shown
are imposed on the agents only for the duration of the summit.

SIDEBAR: Java-Based Agent Systems

There are various implementation issues relevant to agent systems and cur-
rent systems take different approaches in addressing them. When allowing
agents to migrate from one node to another, the class definition in the agent’s

13

context must somehow be made accessible. Odyssey [3] assumes that the nodes
share a common file system and hence there is no need to transfer class files,
whereas Aglets [2] and Concordia [1] serialize an agent’s class definitions along
with its state when shipping it to a different node. The mechanics of migration
also vary. An aglet may be dispatched or ask to be dispatched to any node
running an Aglet context, allowing it to resume its execution at the remote
host. Odyssey and Concordia use dynamic itineraries for specifying migrations.
Itineraries are lists of host/method pairs which determine the sequence in which
an agent must travel from one host to another and the methods to be executed
at each host. Itinerary based migration cannot occur in the middle of a method’s
execution.

Concordia and Odyssey encapsulate a single thread inside every agent, mak-
ing them closer to actors. Aglets allow multiple threads to execute on a single
agent. Communication is only by synchronous message passing in Odyssey, but
both asynchronous and synchronous messages are supported in Concordia and
Aglets. Aglets preserve the relative order of messages transmitted between any
two agents.

None of these systems directly addresses controlling resource consumption of
agents arriving at a node. Concordia controls resource access based on security
clearance of foreign agents, which being a dynamic property based on the user of
the agent, can be used for controlling resource usage. In general, agent systems
address resource control as a question of whether or not to allow access to certain
resources; not to what extent.

In all the above, scheduling is left upto the Java scheduler, which being not
standardized, is often not fair, potentially starving some agents.

References

[1] Mitsubishi Electric ITA. Concordia: An infrastructure for collaborating
mobile agents. In K. Rothermel and R. Popescu-Zeletin, editors, Mobile
Agents. Proceedings of the First International Workshop, MA ’97, volume 1219
of Springer Lecture Notes in Computer Science, Berlin, Germany, April 1997.
Springer Verlag.

[2] IBM Tokyo Research Lab. Aglets: Mobile Java Agents. (http://www.ibm.
com.jp/trl/projects/aglets).

[3] General Magic. Mobile agent white paper. (http://www.genmagic.com/
agents).

3 Implementing Agent Systems

The authors are developing a prototype based on a Java implementation of
Actors called ActorFoundry. The current version of ActorFoundry provides

14

support for basic actor primitives, migration, and a meta-architecture for cus-
tomizing communication. The primary focus of this effort is to study ways in
which agent ensembles behave and mechanisms by which their behaviors can be
controlled using the notion of an economy.

Events Manager
/ Node Manager
Resource
Manager Scheduler

Agentswith

proxies

Resources

Meta Architecture

~ === = IIIITITITIIITE = === = -

Figure 7: Node architecture

Every node has a node manager that serves as the contact agent for nego-
tiating terms under which an agent may arrive and compute at the node. A
contract determines the rate at which an agent would be charged for various
resources, possibly depending on the state of the node, and is represented by a
list of such functions. Note that there will be separate functions for time/space
of usage of a resource, and for the guaranteed needed for the degree of access
to the resource.

Nodes support the computation and communication needs of agents through
a meta-architecture. Every agent admitted to the system by the node manager
is provided names of proxies for the resources it may access; the proxies are
customised for each agent according to the negotiated contract. For example,
the agent may have specific encryption requirements for communicating with
remote agents. This requirement may be satisfied by including an encryption
module in the communication proxy. The proxies also address security concerns
of the hosting node.

We use an event based model of communication at the node level to monitor
resource usage of agents being hosted by the node. The node scheduler schedules

15

agents for computation according to their contracts, and throws events repre-
senting resource consumption by the agents, along with the meta-architecture.
The resource manager module subscribes to the events it is interested in, and
uses them to update the financial status of agents. The resource manager also
marks agents without any GCU’s remaining in their accounts as garbage.

Agents are identified by their globally unique names, which remain un-
changed as agents move from node to node. When an agent migrates from
a node, that node’s name table is modified to represent the fact. Communica-
tion is both by agent names as well as by advertised behavior patterns. Using
a publication/subscription mechanism, agents may advertise the services they
are willing to offer, and agents looking for such services would be notified when
they become available.

SIDEBAR: Related Work

There are two aspects to programming multi-agent systems — the mechanisms
defining an individual agent’s behavior (its computational engine), and mecha-
nisms to support coordination between agents. Computational engines of indi-
vidual autonomous agents in DAI have traditionally piggybacked on advances
in conventional AI. In addition, DAI research has addressed issues related to
communication and coordination among agents. At the linguistic and system
level, a focus of the DAI research has been to provide the abstractions and tools
necessary to develop agents. We will call a system providing such linguistic and
system level support an agent architecture.

One of the earliest testbeds for building agent architectures was provided
by the MACE system [1], which executed in a distributed memory multipro-
cessing environment. Based on the experience of this research, Les Gasser [2]
outlined the avenues of cooperation between the areas of DAI and concurrent
programming, and how the two fields can be brought closer to each other. The
current proposal draws part of its inspiration from the insights obtained by that
research. More recently, an actor-based DAI system called InfoSleuth [10] has
been developed at MCC.

The term Agent Oriented Programming has been coined by Shoham [7]
to refer to a specialization of Object Oriented Programming (as in actor pro-
gramming), where the state of an actor (now called an agent) contains beliefs,
capabilities, choices and similar mental notions, and the computation consists
of agents’ social interactions with each other, such as informing, offering, ac-
cepting, rejecting, competing, assisting, and so on.

A multi-level architecture for Multi-Agent Systems is described by Werner 8]
where a meta-architecture is defined to formalize users’, programmers’ or de-
signers’ interactions with an open system. Michael Kolb’s CooL (Cooperation
Language) [5] provides a higher level of abstraction with respect to agent design

16

than the actor paradigm, but it gives a knowledge and execution perspective on
agents rather than employing mental states. It is possible to give a high level
specification of cooperation by negotiating a cooperation object (e.g. goal, plan,
schedule) or by synchronizing mutual execution of a plan.

Another context in which the term agent has recently been used is the world
wide web (WWW), and there has been an explosion of interest in building
agents, in this community too. The use of the term agent in DAI and in WWW
has different but related meanings. In both contexts, agents are mobile, per-
sistent pieces of code that execute autonomously. In DAI systems, agents may
be more complex pieces of code exhibiting intelligence, either individually or
collectively; while in the context of the WWW, this is not necessary.

Although Java does provide support for concurrent programming, it is not
based on any formal model of concurrency. It allows multiple threads to run
concurrently, but unlike actors, Java objects and threads are separate entities,
and its passive object model fails to abstract over units of concurrency. The
synchronize primitive provided for enabling safe usage of concurrent threads is
a very low-level facility and its overuse by paranoid programmers often results
in deadlocks. This separation of object and thread also creates a problem for
migration. By providing Actor primitives in the form of a library, the Actor
Foundry [6] developed at OSL attempts to put a discipline for system develop-
ment in Java.

The Mobile Agent Facility Specification by the Object Management Group [4]
makes a case for standardizing areas of mobile agent technology to promote in-
teroperability. These include agent management, transfer, naming (agent as
well as agent system), agent system types and location syntax.

Telescript [9] addresses using a public network as a platform on which third-
party developers can build their applications. This platform is based on a remote
programming paradigm that uses Mobile Agents (MA) that can migrate from a
client to a remote server and execute remotely on behalf of the client.

Cybenko’s group at Dartmouth [3] addresses the issues in implementing
mobile agents in an environment consisting of computers, which are often dis-
connected from the network. Cybenko’s mobile agent system, AgentTcl reduces
migration to a single instruction, provides transparent communication among
agents (hiding all transmission details), and provides a simple scripting language
as the main agent communication language while allowing straightforward ad-
dition of new languages and transport mechanisms.

References

[1] L. Gasser, C. Braganza, and N. Herman. Mace: A flexible testbed for dis-
tributed ai research. In M. N. Huhns, editor, Distributed Artificial Intelligence,
pages 119-152. Pitman - Morgan Kaufmann, 1987.

[2] Les Gasser and Jean-Pierre Briot. Object-based concurrent programming
and distributed artificial intelligence. In Nicholas M. Avouris and Les Gasser,

17

editors, Distributed Artificial Intelligence: Theory and Praxis, pages 81-107.
Kluwer Academic, 1992.

[3] Robert S. Gray. A flexible and secure mobile-agent system. In Mark
Diekhans and Mark Roseman, editors, Proceedings of the Fourth Annual Tcl/Tk
Workshop (TCL ’96), Monterey, California, July 1996.

[4] Crystaliz Inc., General Magic Inc., GMD FOKUS, and IBM Corporation.
Mobile Agent Facility Specification. Technical report, Object Management
Group, June 1997.

[5] Michael Kolb. A cooperation language. In Proceedings: First International
Conference on Multi-Agent Systems, pages 233238, San Francisco, CA, June
1995. AAAI, AAAI Press, MIT Press.

[6] Open Systems Laboratory. The actor foundry: A java-based actor program-
ming environment. Available for download at (hittp://www-osl.cs.uiuc.edu/foundry.html).
[7] Yoav Shoham. An overview of agent-oriented programming. In Jeffrey M.
Bradshaw, editor, Software Agents, pages 271-290. MIT Press, 1997.

[8] Eric Werner. The design of multi-agent systems. In Eric Werner and
Yves Demazeau, editors, Decentralized A.I. 3. Proceedings of the Third Eu-
ropean Workshop on Modelling Autonomous Agents in a Multi- Agent World,
Kaiserslautern, Germany, pages 3-28. North-Holland, August 1992.

[9] James E. White. Mobile agents. In Jeffrey M. Bradshaw, editor, Software
Agents, pages 437-472. MIT Press, 1997.

[10] D. Woelk, M. Huhns, and C. Tomlinson. InfoSleuth agents: The next
generation of active objects. Object Magazine, July/August 1995.

4 Conclusions

The development of programming language constructs to allow high-level de-
scription of behavior for scalable agent ensembles must await a better under-
standing of what we need to represent. What is now better understood is how
to separate the description of agents functional actions from that of other as-
pects such as naming, scheduling, and synchronization. These modularity and
abstraction mechanisms that have been developed in concurrent programming
in general go a long way towards providing the basis for designing and experi-
menting with powerful agent systems.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press, Cambridge, Mass., 1986.

[2] G. Agha, S. Frglund, W. Kim, R. Panwar, A. Patterson, and D. Sturman.
Abstraction and Modularity Mechanisms for Concurrent Computing. /IEEE

18

[11]

[12]

[13]

[14]

Parallel and Distributed Technology: Systems and Applications, 1(2):3-14,
May 1993.

G. Agha, S. Frglund, R. Panwar, and D. Sturman. A linguistic frame-
work for dynamic composition of dependability protocols. In Proceedings
of the 3rd IFIP Working Conference on Dependable Computing for Critical
Applications, September 1992.

Gul A. Agha and Nadeem Jamali. Concurrent Programming for Distributed
Artificial Intelligence. In Gerhard Weiss, editor, Distributed Artificial In-
telligence, chapter 12. MIT Press, 1998. To appear.

C. J. Callsen and G. A. Agha. Open Heterogeneous Computing in Ac-
torSpace. Journal of Parallel and Distributed Computing, pages 289-300,
1994.

L. D. Erman, F. Hayes-Roth, V. R. Lesser, and R. D. Reddy. The Hearsay-I1
speech understanding system: Integrating knowledge to resolve uncertainty.
ACM Computing Surveys, 12(2), 1980.

S. Frglund and G. Agha. A Language Framework for Multi-Object Coor-
dination. In Proceedings of ECOOP 1993, volume 707 of LNCS. Springer
Verlag, 1993.

Svend Frglund. Coordinating Distributed Objects: An Actor-Based Ap-
proach to Synchronization. MIT Press, 1996.

Open Systems Laboratory. The Actor Foundry: A Java-based ac-
tor programming environment. Awailable for download at (hitp://www-
osl.cs.utuc.edu/ foundry).

M.J. Shaw and M.S. Fox. Distributed artificial intelligence for group deci-
sion support. Decision Support Systems, 9:349-367, 1993.

Munindar P. Singh. Multiagent Systems. Number 799 in Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1994.

D. Sturman and G Agha. A Protocol Description Language for Customizing
Failure Semantics. In The 13th Symposium on Reliable Distributed Systems,
Dana Point, California. IEEE, October 1994.

Daniel C. Sturman. Modular Specification of Interaction Policies in
Distributed Computing. PhD thesis, University of Illinois at Urbana-
Champaign, May 1996.

C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will, and G. Agha.
Rosette: An Object Oriented Concurrent System Architecture. Sigplan
Notices, 24(4):91-93, 1989.

19

[15] N. Venkatasubramanian and C. L. Talcott. Reasoning about Meta Level
Activities in Open Distributed Systems. In Principles of Distributed Com-
puting, 1995.

20

https://www.researchgate.net/publication/3420461

