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a Perfectoid Space?
Bhargav Bhatt

Perfectoid spaces are a class of algebro-geometric
objects living in the realm of p-adic geometry that
were introduced by Peter Scholze [Sch12] in his
Ph.D. thesis. Their definition is heavily inspired by a
classical result in Galois theory (see Theorem 1) due
to Fontaine and Wintenberger, and the resulting
theory has already had stunning applications.

Motivation
Fix a prime number p, and consider the field
L0 := Qp ofp-adic numbers, as well as the fieldL[0 :=
Fp((t)) of Laurent series over Fp. These fields are
formally quite similar: one can represent elements
in L0 as Laurent series in p with integer coefficients,
and a similar description applies to L[0 with t
replacing p. Of course there is no isomorphism
L0 ' L[0 of fields realizing this similarity: L0 has
characteristic 0, while L[0 has characteristic p > 0.
Nevertheless, it is a fundamental insight of [FW79]
that a robust relationship between the two does
exist, at least after replacing L0 with the larger

field L := Qp[p
1
p∞ ] := ∪nQp(p

1
pn ), and L[0 with its

perfection L[ := ∪nFp((t
1
pn )).

Theorem 1 (FW79). The (absolute) Galois groups
of L and L[ are canonically isomorphic.

Theorem 1 gives a correspondence between finite
field extensions of L and L[ which, heuristically, is
established by replacing p with t . For example, the
splitting field of X2 − t over L[ corresponds to the
splitting field of X2 − p over L. This mechanism
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can be somewhat demystified by noticing that the

“integral” subrings Zp[p
1
p∞ ] ⊂ L and Fp[t

1
p∞ ] ⊂ L[

are related by an isomorphism of rings

(1) Zp[p
1
p∞ ]/(p) ' Fp[t

1
p∞ ]/(t)

that carries p
1
pn to t

1
pn . Besides its intrinsic beauty,

this correspondence allows us to transport Galois-
theoretic information between L and L[.

Example 1. Certain invariants are very easy to
compute for L[ on account of the Frobenius auto-
morphism; Theorem 1 can sometimes help transfer
this computation to L. For example, using this
strategy, one deduces that the Fp-cohomological
dimension of the absolute Galois group of L is
≤ 1 because the corresponding assertion for L[ is
classical (Hilbert).

Recall that fields are zero-dimensional varieties
from an algebro-geometric perspective. The goal
of the theory of perfectoid spaces is to extend
Theorem 1 to higher dimensions, i.e., to relate
(certain) algebras over L and L[ in a relatively
lossless manner.

Perfectoid Spaces
Fix L and L[ as in the previous section. To introduce
perfectoid spaces over these fields, it will be useful
to recall some additional structures on L and
L[. Specifically, note that both L and L[ are
equipped with natural norms given by the p-adic
and t-adic metrics respectively. As our subsequent
constructions involve various limiting operations
(such as the extraction of arbitrary p-power roots),
it is convenient to cast all constructions in a slightly
more analytic framework. We will thus pass from
L to its p-adic completion K, and L[ to its t-adic
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completion K[; the analogue of Theorem 1 holds
for K and K[ as completions do not change Galois
groups. The basic definition is:

Definition 1. A perfectoid K-algebra A is a Ba-
nach K-algebra such that the subring A◦ of power-
bounded elements is open and bounded, and the
Frobenius endomorphism is surjective on A◦/p;
one similarly defines perfectoid K[-algebras.

To unravel this definition, let us study some
examples. The simplest example of such an algebra
is K itself. Indeed, the norm on K endows K with
a Banach algebra structure. The subring K◦ is

the p-adic completion
̂

Zp[p
1
p∞ ] and is thus open

and bounded in the (p-adic) topology on K; the
Frobenius on K◦/p is surjective by construction.
This example corresponds to a “point” in the world
of perfectoid K-spaces. The next simplest example
is that of a “line”:

Example 2. Consider the p-adically complete K◦-

algebra A′ := ̂
K◦[X

1
p∞ ], and let A := A′[ 1

p ]. Then
one can endow A with a natural Banach K-algebra
structure such that A◦ = A′ is open and bounded.
Moreover, as we have already extracted arbitrary
p-power roots of X, the Frobenius on A◦/p is sur-
jective, so A is a perfectoid K-algebra; this algebra

is often denotedK〈X
1
p∞ 〉. Similarly,A[ := K[〈X

1
p∞ 〉

is a perfectoid K[-algebra.

It is also easy to build examples in characteristic
p:

Example 3. Let A0 be any K[,◦ algebra. Extracting
p-power roots of all elements in A (i.e., passing to
the perfection) gives a newK[,◦-algebraA0,perf . This

leads to the K[-algebra A := Â0,perf[ 1
t ] by inverting

t in the t-adic completion. One may endow A with
a natural Banach K[-algebra structure to make it
perfectoid. For example, applying this procedure
to A0 := K[,◦[X] produces A[ from Example 2.

Recall from algebraic geometry that affine
varieties are completely described by their rings of
functions, while varieties are built by glueing affine
varieties together. The situation with perfectoid K-
spaces is analogous: the “affine” objects correspond
to perfectoidK-algebras, while perfectoidK-spaces
are built by glueing these “affine” objects together.
Actually, to retain the analytic flavor of Definition 1,
this glueing is carried out in the world of rigid
analytic geometry (incarnated through Huber’s
adic spaces [Hub96]). We will ignore this technical,
but absolutely crucial, point here, and assume that
the notion of a perfectoid K-space, built by glueing
together “spectra” of perfectoid K-algebras, has
been defined. The main theorem concerning these
objects is:

Theorem 2 (Sch12, Theorems 1.9 and 1.11). The
categories of perfectoid K-spaces and perfectoid K[-
spaces are canonically identified; this identification
preserves the étale topology.

To describe this equivalence, observe that (1)
gives a formula describing K[ in terms of K:

(2) K[ ' (limK◦/p)[1
t
],

where the limit is along the Frobenius maps on
K◦/p, and t ∈ limK◦/p is the p-power compatible

system (p
1
pn ). The identification in Theorem 2 is

given by exactly the same formula (for affines): one
sends a perfectoid K-algebra A to the perfectoid
K[-algebra

A[ := (limA◦/p)[1
t
].

The association A , A[ is called tilting, while
the inverse is called untilting; the nomenclature
suggests viewing these operations as carrying us
between the two ends of the following picture,
resulting from (2):

K◦ �
� invert p //

kill p
����

K

K[,◦_�

invert t

��

kill t // // K[,◦/t ' K◦/p

K[.

We have already encountered some examples of
tilting earlier in this note:

Example 4. The field K[ is the tilt of K, as ex-
plained above, which clarifies the notation. Simi-
larly, in Example 2, the ring A[ is the tilt of A.

A more “global” example of tilting is given by:

Example 5. Fix an integer n. Globalizing Example 3
leads to a perfectoid K[-space PnK[,perf obtained

as the perfection of projective space PnK[ over K[.
Its untilt is (roughly) given by PnK,perf := lim PnK ,
where the transition maps raise all homogeneous
coordinates to the p-th power.

The preservation of the étale topology under
tilting is a deep result: it is a simultaneous
generalization of Theorem 1 and of Faltings’s
“almost purity theorem,” the key ingredient of his
fundamental work in p-adic Hodge theory, which
began in [Fal88] and allowed him to prove various
conjectures of Fontaine.

Theorem 2 leads to the following picture sum-
marizing the relationship of perfectoid spaces to
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classical algebraic geometry:

{algebraic varieties/K}

Ψ
��

{algebraic varieties/K[}

perfection

��
{perfectoid spaces/K}

tilt // {perfectoid spaces/K[}
untilt
oo

Here the horizontal arrows come from Theorem 2,
and the right vertical arrow is the globalization of
Example 3. The mysterious dotted arrow Ψ is, in
fact, nonexistent: there is no natural way to attach
a perfectoid K-space to an algebraic K-variety.
This apparent asymmetry can be explained by
noticing that there is a canonical procedure for
extracting all p-th roots in characteristic p (namely,
taking the perfection), while there is no analogous
construction in characteristic 0. Instead, given an
algebraic K-variety X, each time one can somehow
construct a related perfectoid K-space Ψ(X), one
learns a wealth of new information about X. We
discuss some examples of this phenomenon in the
section entitled “Examples and Applications.”

Remark 1. In [Sch12], one finds a slightly more
general version of the theory sketched here: the
field K above is simply an example of a perfectoid
field. For any such K, there is a tilt K[ in charac-
teristic p, and an analogous theory of perfectoid
spaces over these fields (including, in particular,
Theorem 2). An important example is K = Cp (the
completed algebraic closure of Qp) whose tilt K[
is the completed algebraic closure of Fp((t)).

Examples and Applications
The theory of perfectoid spaces is rather young,
but already extremely potent: each class of exam-
ples discovered so far has led to powerful and
deep theorems in arithmetic geometry. We give
a summary of some such examples next, with
notation as in the previous section.
• Given a hypersurface H ⊂ PnK , one can con-

struct a perfectoid space Uε which, essentially, is
the tubular neighborhood of radius ε around the
inverse image of H under PnK,perf → PnK , following
the notation in Example 5. Using Uε and Theorem 2,
Scholze proved Deligne’s weight-monodromy con-
jecture for smooth H in [Sch12] by reducing it to
the analogous statement for a smooth hypersur-
face H′ over the characteristic p field K[ (as the
latter was proven by Deligne en route to the Weil
conjectures).
• Given a positive integer g, one may consider

the moduli spaceAg(p∞) parameterizing abelian
varieties A over K equipped with a trivialization
φ : Z

⊕2g
p ' Tp(A) of their p-adic Tate modules.

This space is rather large and pathological from
the viewpoint of classical algebraic geometry.
Nevertheless, in a recent preprint (titled “On

torsion in the cohomology of locally symmetric
varieties”), Scholze showed thatAg(p∞) is a well-
behaved object: it is naturally a perfectoid K-space.
In fact, he deduced a similar statement for any
Shimura variety (of Hodge type) with full level
structure at p. Using these spaces, he proved
the following two results, which outwardly have
nothing to do with perfectoid spaces (or even local
fields): (a) a cohomological vanishing conjecture of
Calegari and Emerton for Shimura varieties over C
is true (much in the spirit of Example 1), and (b)
one can attach Galois representations to torsion
classes in the cohomology of locally symmetric
spaces, which builds on recent work of Harris-Lan-
Taylor-Thorne, and represents a significant step
forward in the Langlands program.
• We end by touching on a theme that was

largely skirted in the previous section. Namely,
as perfectoid spaces live in the world of analytic
geometry, they actually help study classical rigid-
analytic spaces, not merely algebraic varieties (as
in the previous two examples). In his “p-adic Hodge
theory for rigid-analytic varieties” paper, Scholze
pursues this idea to extend the foundational
results in p-adic Hodge theory, such as Faltings’s
work mentioned above, to the setting of rigid-
analytic spaces over Qp; such an extension was
conjectured many decades ago by Tate in his epoch-
making paper “p-divisible groups.” The essential
ingredient of Scholze’s approach is the remarkable
observation that every classical rigid-analytic space
over Qp is locally perfectoid, in a suitable sense.

The power of perfectoid spaces is only beginning
to be exploited, and more applications will surely
arise!
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