‘{‘ Encapsulated PostScript

Adobe:PostScript: File Format Specification

Adobe Developer Support

Version 3.0

1 May 1992

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue

San Jose, CA 95110
http://partners.adobe.com/

PN LPS5002

Copyright [0 1985-1988, 1990, 1992 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is aregistered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems Incorpo-
rated unless otherwise stated. The name PostScript also is used as a product trademark for Adobe Sys-
tems' implementation of the PostScript language interpreter.

Any referencesto a“ PostScript printer,” a“ PostScript file,” or a“PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “ PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

PostScript, the PostScript logo, Display PostScript, Adobe, the Adobe logo, Adobe Illustrator, Tran-
Script, Carta, and Sonata are trademarks of Adobe Systems Incorporated registered in the U.S.A. and
other countries. Adobe Garamond and Lithos are trademarks of Adobe Systems Incorporated. Quick-
Draw and Loca Talk are trademarks and Macintosh and LaserWriter are registered trademarks of
Apple Computer, Inc. FrameMaker is aregistered trademark of Frame Technology Corporation. ITC
Stoneis aregistered trademark of International Typeface Corporation. IBM is aregistered trademark
of International Business Machines Corporation. Helvetica, Times, and Palatino are trademarks of
Linotype AG and/or its subsidiaries. Microsoft and MS-DOS are registered trademarks and Windows
isatrademark of Microsoft Corporation. Times New Roman is aregistered trademark of The Mono-
type Corporation plc. NeXT isatrademark of NeX T, Inc. Sun-3isatrademark of Sun Microsystems,
Inc. UNIX isaregistered trademark of AT& T Information Systems. X Window System isatrademark
of the Massachusetts I nstitute of Technology. Other brand or product names are the trademarks or reg-
istered trademarks of their respective holders.

This publication and theinformation hereinisfurnished ASIS is subject to change without notice, and
should not be construed as a commitment by Adobe Systems I ncor porated. Adobe Systems Incor po-
rated assumes no responsibility or liability for any errorsor inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

Contents

Introduction 5

Guidelines for Creating EPS Files 7
Required DSC Header Comments 7
Conditionally Required Comments 9
Recommended Comments 10
lllegal and Restricted Operators 10
Stacks and Dictionaries 10
Graphics State 11
Initializing Variables 11
Ensuring Portability 12
Miscellaneous Constraints 13

Guidelines for Importing EPS Files 13
Displaying an EPS File 13
Producing a Composite PostScript Language Program 14

File Types and Naming 22
Apple Macintosh File System 22
MS-DOS and PC-DOS File System 22
Other File Systems 22

Device-Specific Screen Preview 22
Apple Macintosh PICT Resource 23
Windows Metafile or TIFF 23

Device-Independent Screen Preview 24
Guidelines for EPSI Files 25

EPS Example 27
Appendix: Changes Since Earlier Versions 31

Index 33

Contents (1 May 92)

Encapsulated PostScript
File Format Specification

The encapsulated PostScript file (EPSF) format is a standard format for
importing and exporting PostScript language files among applicationsin a
variety of heterogeneous environments. This appendix details the format

and contains specific information about the Macintosh® and MS-DOS®
environments. The EPSF format is based on and conforms to the document
structuring conventions (DSC) detailed in the PostScript Document Structuring
Conventions Specification available from the Adobe Systems Devel opers
Association. Proper use of the document structuring conventions is required
when creating a PostScript language file that conforms to the EPSF format.

The main topics of this appendix include creating encapsulated PostScript
(EPS) files, importing EPS files into other PostScript language files, and
optional screen preview images for EPS files. Finally, a detailed example
illustrates the concepts presented throughout this appendix.

Introduction

An encapsulated PostScript file is a PostScript language program describing
the appearance of a single page. Typically, the purpose of the EPSfileisto
be included, or “encapsulated,” in another PostScript language page descrip-
tion. The EPS file can contain any combination of text, graphics, and images,
and it isthe same as any other PostScript |anguage page description with only
afew restrictions. Figure 1 conceptually shows how an EPS file can be
included in another PostScript language document.

Figure 1 Document with an imported EPSfile

OUTDOOR OUTDOOR

EPS File Document Page

Applications that create conforming EPS files must follow the guidelinesin
section section 2" There are two required DSC comments, some condition-
ally required comments, and several programming guidelines to ensure that
the EPSfile can be reliably imported into an arbitrary PostScript language
page description without causing any side effects. An example of aside effect
is erasing the page of the importing document or terminating the print job.

Applications that import EPS files must follow the guidelines in section sec-
tion 3" An application importing an EPS file must parse the EPSfilefor DSC
comments and extract at least the bounding box and resource dependencies
of the EPSfile. The application should also read and display the screen pre-
view, if present. If there is no screen preview provided in the EPSfile, the
application must provide an alternate representation and allow the user to
place and transform the preview on the screen.

The application must then convert the user’s manipulations into the appropri-
ate transformation to the PostScript coordinate system before sending the
document to the printer. The application must also preserve its stacks, current
dictionary, and graphics state before the imported EPS file is executed.

Note that EPS files are a final-form representation. They cannot be edited
when imported into a document. However, the imported EPS file as awhole
may be manipulated to some extent, including transformations such as
tranglation, rotation, scaling, and clipping.

The device-independent nature of the PostScript language makesit an excel-
lent interchange format. However, it normally requires a PostScript language
interpreter to preview an EPS file on screen. Display PostScript systems
alow EPSfiles to be dynamically interpreted, insuring the highest-quality,
on-screen preview regardless of scale, rotation, or monitor type. For other
environments where the Display PostScript system is not available, the

EPS file format allows for an optional screen preview image.

(1 May 92)

21

The format of this preview representation varies from system to system. It
istypically aMacintosh PICT resource, a TIFF file, or adevice-independent
hex bitmap. If the EPS file does not provide apreview image, the application
that includes the EPS file must provide a representation of the preview, such
as agray box that represents the extent of the EPS file. The end user can use
the screen preview to position and size the EPS file in the document.

To support encapsul ated PostScript files effectively, some cooperationis
required among the applications that produce EPS files and those that use
EPS files. Typically, EPSfiles are used by importing (or including) themin
other documents.

All DSC comments in an EPS file communicate information. How an appli-
cation uses thisinformation is up to the programmer of the including applica-
tion. When importing an EPSfile, do not reduce the amount of informationin
the EPS file by improperly removing or altering DSC comments. In general,
the comments indicate what resources and language extensions are used,

and where they are used in the EPS file. Encapsulated PostScript files are
final-form print files that do not know anything about the printer on which
they will be imaged. If they have specific resource needs, such as fonts,
these needs must be carefully preserved and addressed.

Any application that generates PostScript language programs is potentially
both a consumer and a producer of encapsulated PostScript files. It is proba-
bly best not to think that an application is at either end of the chain. If an
application imports an EPSfile, it is responsible for reading and understand-
ing any of the resource needs of the imported EPS file. These needs must be
reflected in the resource usage comments of the composite document the
including application creates. For example, if an imported EPS file uses
Lithos™, but the rest of the document is set in Times-Roman, then by import-
ing the EPS file, the document now also uses the Lithos font. This fact must
be reflected in the composite document’s outermost %%DocumentNeeded-
Fonts: comment. This concept holds true for the %%DocumentNeede-
dResources:, %%LanguagelLevel: and %%Extensions: comments as well.

Guidelines for Creating EPS Files

To be considered a conforming EPSF version 3.0 file, afile must follow the
rules set forth in this appendix, be a single page document that fully conforms
to the DSC version 3.0 or later (described in the PostScript Document

Sructuring Conventions Specifications avail able from the Adobe Systems
Developers Association), and include two required DSC header comments.

Required DSC Header Comments

The two required DSC Header comments are

2 Guidelines for Creating EPS Files 7

% PS- Adobe-3. 0 EPSF-3.0
9%®Boundi ngBox: 11x Ily urx ury

Thefirst required DSC header comment informs the including application
that the file conforms to version 3.0 of the EPSF format as described in this
appendix. Thisisthe version comment.

The second required DSC header comment provides information about the
size of the EPS file and must be present so the including application can
transform and clip the EPS file properly. Thisis the bounding box comment.

The four arguments of the bounding box comment correspond to the lower-
left (lIx, Ily) and upper-right (urx, ury) corners of the bounding box. They are
expressed in the default PostScript coordinate system. For an EPSfile, the
bounding box is the smallest rectangle that encloses all the marks painted

on the single page of the EPS file. Graphics state information, such asthe
current line width and line join parameters, must be considered when calcu-
lating the bounding box. Example 1: shows a minimally conforming EPSfile
that draws a square with aline width of 10 units.

Example 1:

% PS- Adobe-3.0 EPSF-3.0

%/Boundi ngBox: 5 5 105 105

10 setlinewi dth

10 10 noveto

090 rlineto 90 O rlineto 0 -90 rlineto cl osepath
stroke

The marks painted by Example 1:, and how they are positioned with respect
to the PostScript coordinate system, areillustrated in Figure 2. If the line
width were not considered when cal cul ating the bounding box, the bounding
box would be incorrectly positioned by five units on each side of the square,
causing the application to incorrectly place and clip the imported EPS file.
The bounding box specified for this example is correct.

Figure 2 Calculating the correct bounding box

105

10

10 105

(1 May 92)

2.2

Regardless of the coordinate system in which an application operates, there
is aconvenient way to estimate the bounding box: Print the page, then use a
point ruler to measure from the lower-left corner of the paper to the lower-left
corner of the image. Then measure to the upper-right corner, also using the
lower-l€eft corner of the paper asthe origin. These two measurements give the
bounding box and do not depend on any computation.

Conditionally Required Comments

There are severa optional DSC comments that may be conditionally required
for aconforming EPS file. These comments must appear in an EPSfile if
certain features are present—for example, comments to bracket the preview
section or to state that a certain language version or language extensions
must be present in the interpreter.

The %%Begin(End)Preview comments must bracket the preview section of
an EPSfileif the preview is represented in the encapsulated PostScript inter-
change (EPSI) format. See section section 6," for details and an example of
EPSI.

The %%Extensions: comment isrequired if the EPSfile requires a PostScript
language interpreter that supports particular PostScript language extensions
to print properly. For example, the EPS file may contain CMYK language
extension operators and must be sent to a printer that can handle those
operators. In such a case, the EPS file must contain either the
%%Extensions: CMYK or the %%LanguagelLevel: 2 comment.

The %%LanguageLevel: comment isrequired if the EPSfile uses Level 2 fea-
tures without providing conditional emulation. With this information, the
including application can alert the user and avoid any errors that would be
generated if the file were sent to aLevel 1 printer.

If the EPS file uses language extensions or Level 2 features, and it
provides complete emulation of the featuresin terms of Level 1 operators,
the %%Extensions: and %%LanguageLevel: comments are not necessary.
See Appendix D of the PostScript Language Reference Manual, Second
Edition for compatibility and emulation strategies.

If the EPSfile requires any fonts, files, forms, patterns, procsets (procedure
sets), or any other resources, the appropriate DSC comment must appear

in the header comments section of the file. See the PostScript Document
Sructuring Conventions Specifications avail able from the Adobe Systems
Developers' Association.

2 Guidelines for Creating EPS Files 9

10

2.3

24

2.5

Recommended Comments

An application or spooler may optionally use the general header comments
%%Creator:, %%Title:, and %%CreationDate: to provide information about a
document. These header comments are strongly recommended for EPS files.

lllegal and Restricted Operators

There are some PostScript language operators plus statusdict and userdict
operators that are intended for system-level jobs or page descriptionsthat are
not appropriate in an EPSfile. In addition to all operatorsin statusdict and
the operatorsin userdict for establishing an imageable area, the following
operators must not be used in an EPSfile:

banddevice exitserver initmatrix setshared
clear framedevice quit startjob
cleardictstack grestoreall renderbands

copypage initclip setglobal

erasepage initgraphics setpagedevice

If used properly, the following operators are allowed in an EPSfile.
However, use of any of these must comply with the rulesin Appendix |
of the PostScript Language Reference Manual, Second Edition. Improper
use can cause unpredictable results.

nulldevice sethalftone setscreen undefinefont
setgstate setmatrix settransfer

Stacks and Dictionaries

The PostScript interpreter’s operand and dictionary stacks must be left in
the state they were in before the EPS file was executed. The EPS file must
not leave objects on either of these two stacks as aresult of its execution.

All operators placed on the operand stack must be used or removed from the
stack with the pop operator.

It is strongly recommended that an EPS file make all of it definitionsin its
own dictionary. This means an EPS file should create its own dictionary or
dictionaries instead of writing into the importing application’s current dictio-
nary. In Level 1 interpreters, the dictionary the importing application uses
may not have room for the EPS file definitions. Also, to avoid the possibility
of aninvalidrestore error, make sure the EPSfile's dictionary is removed
from the dictionary stack using the PostScript language operator end when
the EPS file has finished using it. Every dictionary that the EPS file places
on the dictionary stack with abegin operator must be removed from the
dictionary stack by the EPS file with a corresponding end operator.

(1 May 92)

Note Do not usetheclear or cleardictstack operatorsto clear the stacksin an
EPSfile. These wholesale cleanup operators not only clear the EPSfile's
operands and dictionaries from the stacks, they may clear other objects
aswell.

The PostScript dictionary lookup mechanism searches the dictionaries that
are on the dictionary stack. Bypassing the dictionary lookup mechanism for
system-level namesisillegal in an EPSfile. Do not use the following type
of code:

/'S systendi ct /showpage get def% Il egal EPS code

It may cause incorrect results in the including application’s PostScript output
by overriding the application’s redefinitions.

2.6 Graphics State

An application importing an EPS file may transform the PostScript coordi-
nate system or alter some other aspect of the graphics state so it is no longer
in its default state. This allows the application to change the appearance of
the EPSfile, typically by resizing, clipping, or rotating the illustration. If the
EPS file makes assumptions about the graphics state, such as the current
clipping path, or explicitly sets something it shouldn’t, such as the transfor-
mation matrix (see section section 2.4”), the results may not be what were
expected.

In preparation for including an EPSfile, the graphics state must be set by the
including application as follows:. current color to black, line caps to square
butt end, line joins to mitered, line width to 1, dash pattern to solid, miter
limit to 10, and current path to an empty path. Also, if printingto aLevel 2
interpreter, overprint and stroke adjust should be set to false. An EPSfile can
assume that this is the default state. It is the responsibility of the application
importing the EPS file to make sure that the graphics state is correctly set.

2.7 Initializing Variables

It is common for PostScript language programs to use short names, such asx,
for variables or procedures. Name-conflict problems can occur if an EPSfile
does not initialize its variables before defining its procedures—in particular,
before binding them. In the following example, the variable x is not initial-
ized before being used in the procedure procl. Because the value of x in the
enclosing program happens to be an operator, bind causes the name x to be
replaced by the operator lineto in procl. This causes astackunderflow error
upon execution.

% PS- Adobe-3.0

...Document prolog of including application...
/x /lineto | oad def % Application defines x to be lineto

2 Guidelines for Creating EPS Files 11

...More of document prolog and setup...

%/Begi nDocunent : GRAPHI C. EPS

...Document prolog and setup for EPS file...

/procl { % Enter deferred executi on node
/x exch def
X 4 noveto

} bind def % x associated with lineto after bind
4 procl % Execut e procl and cause error
...Rest of EPS file...
9%&EndDocunent

...Rest of including application document...

In the following example, the EPSfile correctly initializes the variable x
before defining the procedure procl:

% PS- Adobe-3.0
...Document prolog of including application...
/x /lineto | oad def % Application defines x to be lineto
...More of document prolog and setup...
%Begi nDocunent: GRAPHI C. EPS
...Document prolog and setup for EPS file...
/x 0 def % lnitialize variabl es before defining procs
/procl {
/x exch def
X 4 noveto
} bind def
4 procl % Execute Procl
...Rest of EPS file...
%&EndDocunent
...Rest of including application document...

2.8 Ensuring Portability

12

Although using outside resources, such as fonts, patterns, files, and procsets,
isalowed in an EPS file, the most portable files are those that are self-
contained and do not rely on outside resources. For example, if an EPSfile
requires an encoding other than the default encoding for afont, then the EPS
file should perform the re-encoding.

EPS files must never rely on procedures that are defined in application- or
driver-provided prologs, such as procedures defined in the Apple LaserPrep
file. Such definitions might or might not be present, depending on the actions
of the enclosing program or previous jobs.

Because EPS files should be portable across heterogenous environments,
7-bit ASCII isthe recommended format for datain EPS files. Although
binary datais alowed, use caution when producing data that is expected to
be portable. The use of binary data may make it impossible to print on some
printers across some communication channels. Binary data that has special

(1 May 92)

29

3.1

meaning, such as “flow control” or “marking the end of afile” can causefile
transmission problems in certain communications environments. For exam-
ple, the control-D character is used as an end-of-file indicator in serial and
parallel communications channels. Because this character terminates the job
in serial and parallel environments, it is not prudent to produce an EPSfile
with this character init.

See Appendix D of the PostScript Language Reference Manual, Second
Edition for guidelines about how to take advantage of language extensions
and Level 2 features while maintaining compatibility with Level 1 PostScript
interpreters.

Miscellaneous Constraints

EPS files must not have lines of ASCI| text that exceed 255 characters,
excluding line-termination characters.

Lines must be terminated with one of the following combinations of
characters: CR, LF, CRLF, or LF CR.

CR isthe carriage return character and LF isthe line feed character (decimal
ASCII 13 and 10, respectively).

Guidelines for Importing EPS Files

This section contains guidelines that should be followed when creating an
application that imports EPSfiles. The first part discusses displaying an EPS
file; the second covers producing the PostScript language code for the printer.

This section contains several PostScript language code fragments. A com-
plete code example that implements all of these segmentsisin section section
7

Displaying an EPS File

There are several techniques for including an EPS filein a document. Thefol-
lowing scenarioistypical:

1. When the user imports an EPS file, the application prompts the user to
select the EPS file to be imported.

2. The application opensthe selected file and parsesit for useful information.
If either of the two required header comments is missing, the application
should aert the user that the file is not a conforming EPS file and abort
the import.

3 Guidelines for Importing EPS Files 13

14

3.2

The DSC elementary type (atend) may be used to defer bounding box
data to the end of the EPS file. This means an application may need to
parse through the %%Trailer comments to obtain the bounding box data.

3. If the version and bounding box comments are found, the application
should prompt the user to place the EPSfile. It should then display the
screen preview. If no preview is provided with the EPSfile, the application
must provide a representation of the EPSfile.

If the application must create its own representation, a gray box matching
the extent of the bounding box with some information in it suffices. The
information should at least include the title of the EPSfile. This can be
obtained from the DSC header comment: %%Title:. Other information,
such as %%Creator: and %%Creation-Date:, may also be displayed.

The bounding box comment can be used to help determine scaling factors
and the proportions of the illustration. The including application should
enabl e the user to specify a“placement box” to display the screen preview
or the application-supplied representation of the screen preview if thereis
not a preview present in the EPSfile.

The bounding box can be used to calculate aratio that the application can
useif the user wants to maintain original proportions while specifying a
placement box. Alternately, the application may display the preview full size,
and then allow the user to size and place the graphic as desired. Regardless
of the method used to display the preview initially, the user should have the
option of maintaining the original proportions supplied by the bounding box
or distorting the proportions of the EPS graphic.

Producing a Composite PostScript Language Program

The following guidelines must be considered when producing a composite
PostScript language program that includes an imported EPSfile.

Use save and restore

An application should encapsulate the imported EPS file in asave/restore
construct. Thisalowsall VM the EPSfile uses to be recovered and the graph-
ics state to be restored.

Redefine showpage

The showpage operator is permitted in EPS files because it is present in so
many PostScript language files. Therefore, it isreasonable for an EPSfile to
use the showpage operator, although it is not necessary if the EPS file will
only be imported into another document. The application importing the EPS
fileisresponsible for redefining showpage. showpage may be redefined
using the following code segment:

(1 May 92)

Note

/ showpage { } def

Prepare the Graphics State

In preparation for including an EPS file, the including application must set
the graphics state as follows: current color to black, line caps to square
butt end, line joins to mitered, line width to 1, dash pattern to solid, miter
limit to 10, and the current path should be set to an empty path. This state
can be explicitly set using the following code segment:

0 setgray O setlinecap 1 setlinew dth
0 setlinejoin 10 setnmiterlimt [] O setdash newpath

Also, if printing directly to aLevel 2 printer, the overprint and stroke adjust
graphics state parameters must be set to false. This can be done by condition-
ally using the following code segment:

fal se setoverprint fal se setstrokeadj ust

If the application knows that any given parameter of the current graphics
state is already in its default state, there is no need to execute the related
PostScript language code to reset that parameter.

Push userdict

It is recommended that an application importing an EPS file use the begin
operator to push acopy of userdict on top of the dictionary stack. Ideally,
the imported EPS file should create its own dictionary, but if it does not, and
if the application’s dictionary does not have enough room for the EPSfile's
definitions, adictfull error may result when the EPS file makes its definitions.
After execution of the EPS file, the application should remove the copy of
userdict from the dictionary stack by executing the end operator.

Clear the Operand Stack

The application importing the EPS file must |eave an empty operand stack for
the EPSfile. It isreasonable for the EPS file to expect that the entire operand
stack be available for its own use. If the entire operand stack is needed and is
not available, astackoverflow error may occur. Also, if the operand stack is
empty, an EPS file that inappropriately executes clear will not cause any
problems.

Protect the Stacks

An EPS file should leave the operand and dictionary stacks as they were
before the EPS file was executed. However, this may not always be the
case. So before including the EPS file, the importing application should be
sure to count the number of objects on the dictionary and operand stacks.

3 Guidelines for Importing EPS Files 15

16

Then, after executing the EPSfile, it should make sure the stacks contain the
same number of objects asthey did before the EPSfile was executed. Thefol-
lowing code segment shows how to obtain the count of objects on the
dictionary and operand stacks:

/ Di ct _Count countdictstack def
/ Op_Count count def

Bracket EPS File with Comments

The included EPS file must be bracketed by the %%Begin(End)Document:
comments as described in the PostScript Document Sructuring Conventions
Soecifications available from the Adobe Systems Devlopers' Association.

Handle Special Requirements

If either the %%LanguagelLevel: comment or the %%Extensions: comment is
present in the header comments section of the EPS file, then at print time
the application printing the composite file is responsible for assuring that

the printer can handle the specified language extensions. If the application
determines that the printer does not have the necessary language featuresto
print the document properly, or if the application cannot determine extension
availahility, the user should be notified and prompted for the appropriate
action. Also, if an application has imported an EPS file that requires exten-
sions, the application’s output is now dependent on the same extensions.
This must be reflected in the document’s header comment section.

If any %%DocumentNeededResources: or %%DocumentNeededFonts:
comments are present in the header comments section of the EPSfile, before
printing the document the application must be sure the resources are avail-
able. If any of the resource requirements cannot be handled, the user must
be notified and prompted for an appropriate action. Such an action may
involve having the user locate the resource or allowing the user or document
manager to reroute the print job to a printer that has the required resources.
Also, if an application has included an EPSfile that requires these comments,
the application’s output is now dependent on the same resources. This must
be reflected in the document’s header comment section.

Default Coordinate System Transformation

Before including the EPS file in its page description, the importing applica-
tion must transform the PostScript coordinate system according to the final
user placement of the EPSfile. The order of the transformation sequence
must be:

1. Trandlate the origin to the new user-chosen origin.

2. Rotate, if the user has rotated the EPSfile.

(1 May 92)

3. Scale, if the user has changed the size.

4. Trandate the lower-left corner of the EPS file's bounding box to the
user-chosen origin.

Details on transforming the PostScript coordinate system are below. The first
example isasimple case in which the user coordinate system matches the
default PostScript coordinate system. The second exampleis agenera case
transformation from application space to the default PostScript coordinate
system.

Figure 3 shows an EPS file and its bounding box superimposed on atarget
page. The EPSfileisshown asit would be drawn if the EPSfile were printed
without first transforming the PostScript coordinate system. The placement
box in the upper-right corner of the page shows where the user chose to place
the EPSfile.

Figure 3 EPSfile and placement box

560,560

400,400

100,100

o L
-100,-100

Figure 4 contains three diagrams that show the steps necessary to properly
translate and scale the PostScript coordinate system to achieve the user-
chosen placement on the page.

3 Guidelines for Importing EPS Files 17

Figure 4 Transforming the EPSfile

Translate to new origin Scale to fit placement box Trandlate to final position

Assuming that the bounding box found in the header of the EPSfileis
%%BoundingBox: -100 -100 100 100, the following PostScript language code
fragment properly places the EPS file on the printed page:

400 400 transl ate % Translate to new origin
.8 .8 scale % Scale to fit “placenment box”
100 100 translate % —l1x —lly translate

This transformation code must be inserted into the PostScript stream ahead
of the EPS code being sent to the printer.

Figures H.3 and H.4 and the corresponding PostScript code fragment assume
that the application coordinate system matches the default PostScript coordi-
nate system. The following section discusses a more genera coordinate
system transformation.

General Coordinate System Transformation

Typically, an application transforms the PostScript coordinate system so the
native drawing units of the application space can be used as the operands to
the PostScript language operators defining the page. Consider Figure 5,
which represents an arbitrary application coordinate system and a placement
box for an EPSfile.

(1 May 92)

Figure 5 Application coordinate system plus placement box

To transform the PostScript coordinate system to match the application
coordinate system in Figure 5, an application could execute the following
code fragment:

0 792 transl ate
1 -1 scale

This assumes that each unit of application space is equal to one PostScript
unit. If one unit in application space were equal to five PostScript units, then
the transformation might look like this:

0 792 transl ate
5 -5 scale

Assuming that the coordinate system has already been properly translated
and scaled from the PostScript coordinate system to the application coordi-
nate system as above, then the following steps can be used to place the EPS
filein the user-chosen box:

1. left bottom translate
2. ((right — left)/(urx —lIx)) (top — bottom)/(ury —Ily) scale
3. —(IIx) —(lly) translate

where bottom, left, top, and right are coordinates of the placement box in
application space, and lIx, lly, urx, and ury are bounding box parameters the
EPSfile supplies.

Asafina example, assume that the PostScript coordinate system has aready

been transformed to match the application coordinate system, the EPSfile
bounding box is %%BoundingBox: 20 20 100 100, and the user-chosen

3 Guidelines for Importing EPS Files 19

20

placement box is the box shown in Figure 5 on page 19. Using the formula
and steps above, the transformation before executing the included EPS file
would be as follows:

20 60 transl ate
.5 —.5 scale
—-20 =20 transl ate

Set Up a Clipping Path

The importing application should set up aclipping path around the imported
EPSfile. This can be accomplished by setting a clipping path that corresponds
to the bounding box of the imported EPS file after making the PostScript
coordinate system transformations or by allowing the user to optionally
supply an arbitrary clipping path for special effects.

Discard the Screen Preview

If an EPS file includes a screen preview in EPSI format, the importing appli-
cation should discard the preview before sending the document to a printer.
Although the EPSI preview is represented by PostScript comments and will
not pose a problem when included in the PostScript language file sent to the
printer, it takes extra time to transmit the preview.

If the preview in the EPSfileisin Macintosh PICT format, do not include the
PICT resource in the PostScript |anguage file sent to the printer.

If the preview isin TIFF format or in Microsoft® Windows™ Metdfile for-
mat, take care to extract the PostScript language code that is to be sent
to the printer. See section section 5.2, for details.

If the EPS file does not include a screen preview, the entire EPS file can be
included in the PostScript language file sent to the printer.

Maintain EPSF Version 2.0 Compatibility

The EPSF version 3.0 requires that an EPS file leave the operand and dictio-
nary stacks as they were before the EPSF was executed. However, this was
not explicitly stated in earlier versions of the EPSF format. Therefore, before
including the EPSfile, be sure to count the number of objects on the dictionary
and operand stacks. After executing the EPS file, make sure the stacks con-
tain the same number of objects they did before the EPS file was executed.

Preparation for Including an EPS File

Example 2: shows procedure BeginEPSF, which an application might use to
prepare to include an EPSfile in its print stream. Execute the BeginEPSF
procedure before the EPSfile.

(1 May 92)

Example 2:
/ Begi nEPSF { %def

/'b4d_Inc_state save def % Save state for cleanup
/dict_count countdictstack def % Count objects on dict stack
/op_count count 1 sub def % Count obj ects on operand stack
userdi ct begin % Push userdict on dict stack
/ showpage { } def % Redefi ne showpage, { } = null proc
0 setgray O setlinecap % Prepare graphics state
1 setlinewidth O setlinejoin
10 setmiterlimt [] O setdash newpath
/I anguagel evel where % I1f level not equal to 1 then
{pop | anguagel evel % set strokeadjust and
1 ne % overprint to their defaults.
{fal se setstrokeadjust fal se setoverprint
}ouf
}oif
} bind def

Example 3: shows procedure EndEPSF, which illustrates how to restore the
PostScript state to the way it was before inclusion and execution of the EPS
file. Execute the EndEPSF procedure after the EPSfile.

Example 3:

/ EndEPSF { %def
count op_count sub {pop} repeat % Cl ean up stacks
countdi ctstack dict_count sub {end} repeat
b4 Inc_state restore

} bind def
Example 4: illustrates use of the BeginEPSF and EndEPSF procedures.
Example 4:
Begi nEPSF % Prepare for the included EPS file
left bottom transl ate % Pl ace the EPS file

angle rotate

Xscale Yscale scal e

-lix -lly transl ate

...Set up a clipping path...

%/Begi nDocunent: M/EPSFi | e

...Included EPS file here...

%/&EndDocunent

EndEPSF % Restore state, and cl eanup stacks

3 Guidelines for Importing EPS Files 21

22

4.1

4.2

4.3

File Types and Naming

EPS files have become a standard format for importing and exporting
PostScript language files among applicationsin a variety of heterogenous
environments. This section contains specific information about file types
and naming conventionsin avariety of environments.

Apple Macintosh File System

The Macintosh file type for application-created PostScript language filesis
EPSF. Files of type TEXT are also allowed so users can create EPS files with
standard text editors. However, the DSC must still be strictly followed. A file
of type EPSF should contain a PICT resource in the resource fork of thefile
containing a screen preview image of the EPS file. The file name may follow
any naming convention aslong asthefiletypeis EPSF. If thefiletypeis TEXT,
the extensions .epsf, and .epsi should be used for EPS files with Macintosh-
specific and device-independent preview images, respectively. See sections
section 5, and section 6.”

MS-DOS and PC-DOS File System

The recommended file extension is .EPS. For EPS files that provide an EPSI
preview, the recommended extension is .EPI. Because the name and exten-
sion may be user-supplied, it is recommended that the application provide a
default extension of .EPS or, if the file includes an EPSI preview, the applica-
tion can provide .EPI as the default extension.

Other File Systems

Although naming is file-system dependent, in general the extension .epsf is
the preferred way to name an EPSfile. Likewise, .epsi isthe preferred exten-
sion for the interchange format. In systems where lower-case letters are not
recognized or are not significant, all upper-case |etters can be used.

Device-Specific Screen Preview

The EPS file usually has a graphic screen preview so it can be transformed
and displayed on a computer screen to aid in page composition before print-
ing. Depending on the capabilities of the importing application, the user may
position, scale, clip, or rotate this screen representation of the EPSfile. The
composing software should keep track of these transformations and reflect
them in the PostScript language code that is ultimately sent to the printer.

The exact format of this screen representation is machine-specific. That is,

each computing environment may have its own preferred preview image for-
mat, which istypically the appropriate screen representation for that environ-

(1 May 92)

51

5.2

Note

ment. Also, a device-independent screen representation called EPSI is
specified in section section 6. It is recommended that all applications sup-
port this format.

Apple Macintosh PICT Resource

A QuickDraw™ representation of the EPS file can be created and stored as
aPICT resourcein the resource fork of the EPSfile. It must be given resource
number 256. If the PICT exists, the importing application may useit for
screen display. If the picframe is transformed to PostScript language
coordinates, it should agree with the %%BoundingBox: comment.

Given the size limitations on PICT images, the picframe and bounding box
may nhot always agree. If there is a discrepancy, the %%BoundingBox: must
always be taken as the “truth,” because it accurately describes the area the
EPSfile will image.

Windows Metafile or TIFF

Either a Microsoft Windows Metafile or a TIFF (tag image file format)
section can be included as the screen representation of an EPSfile.

The EPS file has a binary header added to the beginning that provides a sort
of table of contentsto thefile. Thisis necessary because there is not a second
“fork” in the file system as there isin the Macintosh file system.

It is always permissible to have a pure ASCII PostScript language file as an
EPSfile in the DOS environment.

Theimporting application must check the first 4 bytes of the EPSfile. If they
match the header as shown in Table 1, the binary header should be expected.
If the first two match %!, it should be taken to be an ASCII PostScript
languagefile.

Table 1 DOSEPSBinary File Header

Bytes Description

0-3 Must be hex C5DOD3C6 (byte 0=C5).

4-7 Byte positionin file for start of PostScript language code section.
8-11 Byte length of PostScript language section.

12-15 Byte position in file for start of Metafile screen representation.
16-19 Byte length of Metdfile section (PSze).

20-23 Byte position of TIFF representation.

24-27 Byte length of TIFF section.

5 Device-Specific Screen Preview 23

28-29 Checksum of header (XOR of bytes 0-27). If Checksum is FFFF
thenignoreit.

It is assumed that either the Metafile or the TIFF position and length fields
are zero. That is, only one or the other of these two formatsisincluded in the
EPSfile.

The Metafile must follow the guidelines the Windows specification sets forth.
It should not set the viewport or mapping mode, and it should set the window
origin and extent. The application including the EPS file should scale the pic-
ture to fit within the %%BoundingBox: comment specified in the EPSfile.

Device-Independent Screen Preview

This screen preview format is designed to allow EPS filesto be used as an
interchange format among widely varied systems. The preview section of the
fileis abitmap represented as ASCII hexadecimal to be ssmple and easily
transportable. Thisformat is called encapsul ated PostScript interchange for-
mat, or EPSI.

An EPSI fileistruly portable and requires no special code for decompressing
or otherwise understanding the bitmap portion, other than the ability to
understand hexadecimal notation.

The %%BeginPreview: width height depth lines and %%EndPreview com-
ments bracket the preview section of an EPSI file. The width and height fields
provide the number of image samples (pixels) for the preview. The depth
field provides the number of bits of data used to establish one sample pixel of
the previev—typical valuesare 1, 2, 4, 8. An image that is 100 pixelswide
will aways have 100 in the width field, although the number of bytes of hexa-
decimal needed to build that linewill vary if depth varies. Thelines field tells
how many lines of hexadecimal are contained in the preview, so an applica-
tion that does not care may easily skip them. All arguments are integers.

The bit order of the preview image data is the same as the bit order used by
theimage operator. That is, the preview image is considered to exist in its
own coordinate system. The rectangular boundary of the preview image has
its lower-left corner at (0,0) and its upper-right corner at (width, height). The
byte order isfixed and should be (0,0) through (width — 1), then (0,1) through
(width — 1,1), etc.

(1 May 92)

6.1

Guidelines for EPSI Files

The following guidelines are to clarify afew basic assumptions about the
EPSI format, which isintended to be extremely simple because its purpose
isfor interchange. No system should have to do much work to decipher EPS
files. The format is accordingly kept simple and option free.

The preview section must appear after the header comment section, but
before the document prologue definitions. That is, it should immediately
follow the %%EndComments: line in the EPSfile.

In the preview section, O iswhiteand 1 is black. Arbitrary transfer func-
tions and “flipping” black and white are not supported. Note that in the
PostScript language, 0 and 1 have the opposite meaning (0 is black

and 1 iswhite) for the setgray operator.

The preview image can be of any resolution. The size of the imageis
determined solely by its bounding box, and the preview data should be
scaled to fit that rectangle. Thus, the width and height parameters from
the image are not its measured dimensions, but rather describe the amount
of data supplied for the preview. Only the bounding rectangle describes
the dimensions.

The hexadecimal lines must never exceed 255 bytesin length. In cases
where the preview is very wide, the lines must be broken. The line breaks
can be made at any even number of hex digits, because the dimensions of
the finished preview are established by the width, height, and depth values.

All non-hexadecimal characters must be ignored when collecting the data
for the preview, including tabs, spaces, newlines, percent characters, and
other stray ASCII characters. Thisis analogous to thereadhexstring oper-
ator.

Each line of hexadecimal begins with a percent character (%). This makes
the entire preview section a PostScript language comment to be ignored by
the PostScript interpreter. The file can be printed without modification.

Although the EPSI hex preview can be sent to the printer, to shorten trans-
mission time it is recommended that the preview image be stripped out of
the document before transmitting the file to the printer.

The data for each scan line of the image must be a multiple of 8 bitslong.
If necessary, pad the end of the scan line datawith 0's.

6 Device-Independent Screen Preview 25

26

Example 5: isasample EPSI format file. Remember there are 8 bitsto a byte,
and that it requires 2 hexadecimal digits to represent one binary byte. There-
fore, the 80-pixel width of the image requires 20 bytes of hexadecimal data,

whichis (80/ 8) x 2. The PostScript language segment simply draws a box,

as can be seen in the last few lines.

Example 5:

% PS- Adobe- 3.0 EPSF-3.0
%/Boundi ngBox: 0 0 80 24
%% ages: O

%/4r eator: John Smith
%/Cr eati onDat e: Novenber 9, 1990
9%®&EndComent s

%Begi nPreview. 80 24 1 24
Y%-FFFFFFFFFFFFFFFFFFF
%-FFFFFFFFFFFFFFFFFFF
%-FFFFFFFFFFFFFFFFFFF
%-FFFFFFFFFFFFFFFFFFF
Y-FFFFFFFFFFFFFFFFFFF
Y-FFFFFFFFFFFFFFFFFFF
Y-FFFFFFFFFFFFFFFFFFF
Y-FFFFFFFFFFFFFFFFFFF
%-FO000000000000000FF
%-FO000000000000000FF
%-FO000000000000000FF
%-FO000000000000000FF
%-FO000000000000000FF
%-FO000000000000000FF
%-FO000000000000000FF
%-FO000000000000000FF
Y-FFFFFFFFFFFFFFFFFFF
Y-FFFFFFFFFFFFFFFFFFF
Y-FFFFFFFFFFFFFFFFFFF
Y-FFFFFFFFFFFFFFFFFFF
Y%-FFFFFFFFFFFFFFFFFFF
Y%-FFFFFFFFFFFFFFFFFFF
Y%-FFFFFFFFFFFFFFFFFFF
Y%-FFFFFFFFFFFFFFFFFFF
9%ENdPr evi ew
%&EndPr ol og

%4age: "one" 1

4 4 noveto 72 O rlineto 0 16 rlineto -72 O rlineto
cl osepath

8 setlinew dth stroke
9WEOF

(1 May 92)

7 EPS Example

The following example illustrates the proper use of DSC commentsin a
typical page description that an application might produce when including an
EPSfile. For an EPSfilethat is represented as

% PS- Adobe-3.0 EPSF-3.0

%/Boundi ngBox: 4 4 608 407

Wi tle: (ARTWORK. EPS)

%/&reati onDate: (10/17/89) (5:04 PM
%®&EndConmment s

...PostScript code for illustration..

showpage

WECF

the including document’s page description, including the imported EPSfile,
would be represented as

% PS- Adobe-3.0

%/Boundi ngBox: 0 0 612 792

%/ eat or: SoneAppl i cation

%Wditle: (Smith. Text)

%/CreationDate: 11/9/89 (19:58)

%fages: 1

%®ocumnent Fonts: Ti nes-Roman Tinmes-ltalic
%®ocumrent NeededFont s: Ti nes-Roman Tines-ltalic
9%9&EndConment s

%/Begi nPr ol og
/ms {nmoveto show} bind def
/'s I'show | oad def
/I SF { % Fontl|ndex FontSize /Font Nane SF --
findfont exch scal efont dup setfont def
} bind def
/sf /setfont |oad def
frect { %lIx Ily wh %Used to create a clipping path
4 2 roll rnoveto
1 index O rlineto
0 exch rlineto
neg O rlineto
cl osepat h
} bind def

/ Begi nEPSF { %def % Prepare for EPS file
/b4 _Inc_state save def % Save state for cleanup
/di ct _count countdictstack def
/op_count count 1 sub def % Count objects on op stack
userdi ct begin % Make userdict current dict
/ showpage { } def % Redef i ne showpage to be null

7 EPS Example 27

28

0 setgray 0 setlinecap
1 setlinewidth O setlinejoin

10 setmiterlimt [] O setdash newpath

/I anguagel evel where %I1f level not equal to 1 then
{pop | anguagel evel % set strokeadjust and
1 ne % overprint to their defaults

{fal se setstrokeadjust fal se setoverprint
}oif
}oif
}bind def
[EndEPSF { %def
count op_count sub {pop} repeat
% Cl ean up dict stack
countdi ctstack dict_count sub {end} repeat
b4 _Inc_state restore
} bind def
%&EndPr ol og

%/Begi nSet up

%4 ncl udeFont : Ti nmes- Roman
%4 ncl udeFont: Tinmes-Italic
%EndSet up

%Wage: 1 1

%Begi nPageSet up

/ pgsave save def
%EndPageSet up

/F1 40 /Ti nes- Roman SF
...Set some text with F1...

/F2 40 /Tines-ltalic SF
...Set some text with F2...

F1 sf

...Set some more text with F1...

F2 sf

...Set some more text with F2...

Begi nEPSF

65.2 10 transl ate % Position the EPS file
.80 .80 scale % Scal e to desired size
-4 -4 transl ate % Move to | ower |eft of the
EPS

4 4 604 403 rect % Set up clipping path
clip newpath % Set the clipping path

%/Begi nDocunent : ARTWORK. EPS

% PS- Adobe- 3.0 EPSF-3.0

%/Boundi ngBox: 4 4 608 407

wAaitle: (ARTWORK. EPS)
%/&reationDate: (10/17/90) (5:04 PM
9%9&EndConment s

...PostScript code for illustration..

showpage

(1 May 92)

WEOF
%&EndDocunent

EndEPSF

st acks

pgsave restore
showpage
WWECF

% Restore state, cleanup

7 EPS Example

29

30

(1 May 92)

Appendix: Changes Since
Earlier Versions

This content of this document is exactly the same as the specification in
Appendix H of the PostScript Language Reference Manual, Second Edition.

Changes Since Version 2.0

Detailed DSC comment descriptions have been |eft out of this specification.
When devel oping an application that will support EPS files, the DSC version
3.0 (see the PostScript Document Structuring Conventions Specifications
available from the Adobe Systems Devel opers’ Association) should be used
with this specification.

The following conditionally required DSC comments were added to this
specification as of version 3.0:

%%EXxtensions:

%%L anguagelL evel:
%%DocumentNeededResources:
%%l ncludeResource:
%%Begin(End)Document:

Changes Relevant to Applications Producing EPS Files

To help avoid ambiguities, section 2, “ Guidelines for Creating EPS Files,
has been added. This new section has severa guidelines for producing EPS
files. Following these guidelines will help ensure that an EPS file can be reli-
ably included in documents without causing any annoying side effects. Also,
these new rules alow applications to easily determineif an EPSfileis com-
patible with version 3.0 of the EPS file format. The following is an overview
of the new guidelines:

* %%Begin(End)Preview: comments must bracket an EPS| preview.

* Thereisalist of illegal operators that must not be used in an EPSfile.

31

» Thereisalist of restricted operators. If these operators are used in an EPS
file, they must be used in accordance with the guidelines presented in
Appendix | of the PostScript Language Reference Manual, Second Edi-
tion.

» The operand and dictionary stacks must be returned to the state that they
were in before the EPS file was executed.

 |tisstrongly recommended that an EPS file make its definitionsin its own
dictionary or dictionaries.

» AnEPSfilemust not rely on procedures defined outside of the server loop,
such as procedures defined in the LaserPrep file.

Changes Relevant to Applications Importing EPS Files

To help clarify the responsibilities of an application including an EPSfile,
section 3, “Guidelines for Importing EPS Files,” specifies the following new
rules:

» Theincluding application must define showpage as null.
» The application must prepare the graphics state for the EPSfile.
» The application must give the EPSfile a clear operand stack.

» The application must surround the included EPS file by the
%%Begin(End)Document: comments.

32 Appendix: Changes Since Earlier Versions (1 May 92)

Index

A

Apple Macintosh file system
EPSfilesand 22

Apple Macintosh PICT resource
EPSfilesand 23

applications
EPSfilesand 6-7, 31-32

B

%%BeginDocument:
EPSfilesand 16

%%BeginPreview:
EPSfilesand 24

%%6BoundingBox:
EPSfilesand 18

C

changes
EPSF format 31-32
clear
EPSfilesand 11, 15
cleardictstack
EPSfilesand 11
clipping path
EPSfilesand 20
comment(s)
conditionally required for EPS
files 9-7?
recommended for EPSfiles 10
required for EPSfiles 7-9
compatibility
EPSfilesand 20
conditionally required comments
EPSfilesand 9-7?
coordinate system transformation
EPSfilesand 16-20

D

device-independent screen preview
EPSfilesand 24-26
device-specific screen preview
EPSfilesand 22-24
dictionar(ies)
EPSfilesand 10
displaying EPSfiles 13-14
DOSfile system
EPSfilesand 22,23

E

%%EndDocument
EPSfilesand 16
%%EndPreview
EPSfilesand 24
.EPI file extension 22
.EPSfile extension 22
.epsf file extension 22
.epsi fileextension 22
EPS (encapsul ated PostScript) files
creating 7-13, 31-32
device-independent screen
preview and 24-26
device-specificscreenpreview and
22-24
displaying 13-14
example 27-29
filetypesand 22
illegal operators 10
importing 13-?2?, 32
naming 22
preparation for including 20
restricted operators 10
EPSF (encapsulated PostScript file)
format 5-32
background 5-7

33

changesto 31-32
EPSI (encapsulated PostScript
interchange) files
guidelinesfor 25-26

G

graphics state
EPSfilesand 11, 15

image
EPSI filesand 24
importing EPSfiles 13-7?, 32
initializing variables
EPSfilesand 11-12

M

Macintosh file system
EPSfilesand 22

Metafile (Windows)
EPSfilesand 23

N

naming conventions
EPSfile 22

@)

operand stack
EPSfilesand 15

P

PICT resource
EPSfilesand 23
portability of EPSfiles 12
preview
screen 22-26

R

recommended comments
EPSfilesand 10
required comments
EPSfilesand 7-9
restore
EPSfilesand 14

34 Index

S

save
EPSFfilesand 14
screen preview(s)
device-independent 24-26
device-specific 22-24
EPSfilesand 20
showpage
EPSfilesand 14, 32
stack(s)
EPSfilesand 10, 15

T

tag image file format (TIFF)
EPSfilesand 23
transformation(s)
coordinate system 16-20

\Y

variables
initializing 11-12

w

Windows Metafile
EPSfilesand 23

(1 May 92)

	1 Introduction
	2 Guidelines for Creating EPS Files
	2.1 Required DSC Header Comments
	2.2 Conditionally Required Comments
	2.3 Recommended Comments
	2.4 Illegal and Restricted Operators
	2.5 Stacks and Dictionaries
	2.6 Graphics State
	2.7 Initializing Variables
	2.8 Ensuring Portability
	2.9 Miscellaneous Constraints

	3 Guidelines for Importing EPS Files
	3.1 Displaying an EPS File
	3.2 Producing a Composite PostScript Language Program

	4 File Types and Naming
	4.1 Apple Macintosh File System
	4.2 MS-DOS and PC-DOS File System
	4.3 Other File Systems

	5 Device-Specific Screen Preview
	5.1 Apple Macintosh PICT Resource
	5.2 Windows Metafile or TIFF

	6 Device-Independent Screen Preview
	6.1 Guidelines for EPSI Files

	7 EPS Example
	Appendix: Changes Since Earlier Versions
	Index

