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Abstract. Edge computing provides physical resources closer to end users, becom-
ing a good complement to cloud computing. With the rapid development of contain-
er technology and microservice architecture, container orchestration has become a
hot issue. However, the container-based microservice scheduling problem in edge
computing is still urgent to be solved. In this paper, we first formulate the container-
based microservice scheduling as a multi-objective optimization problem, aiming
to optimize network latency among microservices, reliability of microservice ap-
plications and load balancing of the cluster. We further propose a latency, relia-
bility and load balancing aware scheduling (LRLBAS) algorithm to determine the
container-based microservice deployment in edge computing. Our proposed algo-
rithm is based on particle swarm optimization (PSO). In addition, we give a handling
strategy to separate the fitness function from constraints, so that each particle has
two fitness values. In the proposed algorithm, a new particle comparison criterion is
introduced and a certain proportion of infeasible particles are reserved adaptively.
Extensive simulation experiments are conducted to demonstrate the effectiveness
and efficiency of the proposed algorithm compared with other related algorithms.

Keywords: edge computing, microservice, container orchestration, multi-objective
optimization, particle swarm optimization.

1. Introduction

Recently, the emerging edge computing paradigm is seen as an effective solution to the
problem of big data, which brings the processing to the edge of the network [1]. It has the
advantage of shorter response time and can save bandwidth and energy required for data
transmission in cloud computing [2, 3]. At the same time, microservice architecture [4]
has become increasingly popular in the process of application design and development,
which is commonly used to develop cloud native applications. However, there are few
researches on microservice scheduling in edge computing.

As a lightweight virtualization technology, container is the perfect tool to encapsu-
late and deploy microservices. With the development of container technology and the
widespread use of microservice architecture, some practical container scheduling strate-
gies have been proposed. However, there are still some important problems to be solved
in container-based microservice scheduling in edge computing. Current container cluster
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management tools, including Docker Swarm, Apache Mesos, and Google Kubernetes, on-
ly implement simple strategies of assigning containers to physical nodes. These strategies
only consider physical resources usages [5], without implementing optimization strate-
gies for the reliability of applications, network transmission latency, etc. It is possible for
researchers to obtain better results in terms of network transmission latency, reliability of
microservice applications and load balancing of the cluster.

Container scheduling in edge computing is a typical NP-hard problem. Such problems
must be addressed using heuristic algorithms. Particle swarm optimization (PSO) is one of
the most common heuristic algorithms. Many researchers have adopted PSO to solve the
problem of task scheduling or scientific workflow scheduling in distributed computing.
Thus, we propose a method to implement a container resource scheduling strategy by
using PSO algorithm.

In order to tackle the container-based microservice scheduling problem in edge com-
puting, we first formulate it as a multi-objective optimization problem, in which network
transmission latency among microservices, reliability of microservice applications and
load balancing of the cluster can be optimized. Then we propose a latency, reliability and
load balancing aware scheduling algorithm for microservice scheduling system to deter-
mine the deployment of container-based microservices. The main contributions of this
paper are as follows:

- We mathematically model the container-based microservice scheduling problem in
edge computing to reduce network transmission latency among microservices, im-
prove reliability of microservice applications and balance the cluster load, the re-
source capacity constraints of edge nodes are also considered.

- An LRLBAS algorithm based on particle swarm optimization (PSO) is proposed
to solve the multi-objective optimization problem for container-based microservice
scheduling. It can be used to separate the fitness function from constraints, so that
each particle has two fitness values. The new comparison criterion for particles is
introduced and a certain proportion of the infeasible particles are reserved adaptively.

- Several experiments are done to evaluate the proposed algorithm. The experiment
results demonstrate that our algorithm generally outperforms the other two methods
in terms of objectives, fitness value and optimization speed when the number of user
requests is large. And it can obtain optimization results with relatively little running
overhead when the number of user requests is small.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 describes the system architecture and analytical models. Section 4 pro-
vides the problem formulation. Section 5 presents the implementation of our LRLBAS
algorithm. Section 6 illustrates the experimental settings and the experimental results.
Section 7 summarizes this paper and raises the future work.

2. Related Work

Resource management optimization is a hot research topic in the field of distributed com-
puting. In this paper, the related research is presented in three main parts: container or-
chestration, multi-objective optimization in resource management and scheduling meth-
ods based on particle swarm optimization (PSO) algorithm.
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First, some related works on container orchestration are showed here. Adam et al. [6]
present Two-stage Stochastic Programming Resource Allocator (2SPRA). It optimizes
resource provisioning for containerized n-tier web services in accordance with fluctua-
tions of incoming workload to accommodate predefined service-level objectives (SLOs)
on response latency and reduces resource over-provisioning. Li et al. [7] propose an op-
timal minimum migration algorithm (OMNM) which reduces the unnecessary migration
of containers. By fitting the growth rate of Docker containers in the source server, the
model can estimate the growth trend of each Docker container and determine which con-
tainer needs to be migrated. The algorithm aims to reduce the number of the migration
and improve the utilization ratio of the resource, while ensuring the load balancing of
the cluster. Kaewkasi and Chuenmuneewong [8] present a container scheduling algorithm
based on Ant Colony Optimization (ACO), aiming to balance the resource usages and fi-
nally lead to the better performance of applications. Their approach is compared with the
results obtained with a greedy algorithm. Guerrero et al. [9] propose a genetic algorithm
approach, using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to optimize
container allocation and elasticity management. Their approach is compared with the con-
tainer management policies implemented in Google Kubernetes. Tao et al. [10] introduce
a schedule algorithm based on fuzzy inference system (FIS), for global container resource
allocation by evaluating nodes’ statuses using FIS. The algorithm aims to derive optimal
resource configurations and improve the performance of the cluster. However, only the
paper [9] considers the use of microservice architecture, but Guerrero et al. do not include
the network transmission latency among container-based microservices in their models.

Second, in the research of resource management optimization in distributed comput-
ing, there may exist multiple conflicting objectives, and researchers need to optimize these
objectives simultaneously. Therefore, there have been many researches on multi-objective
optimization methods in this field. Guerrero et al. [11] present an approach based on
NSGA-II to optimize the deployment of microservice applications using containers in
multi-cloud architectures. The optimization objectives are three: cloud service cost, net-
work latency among microservices, and time to start a new microservice when a provider
becomes unavailable. Azimzadeh and Biabani [12] present a multi-objective optimiza-
tion method for resource management and task assignment based on genetic algorithm, in
order to reduce execution time and enhance reliability of service. Langhnoja and Joshi-
yara [13] propose a novel scheduling algorithm called multi-objective based Integrated
Task scheduling which aims to solve task scheduling problem of cloud computing, con-
sidering three optimization objectives: execution time, execution cost and load balancing.
Mireslami et al. [14] propose a multi-objective resource allocation model when deploying
a Web application in cloud, considering deployment cost and quality of service (QoS)
simultaneously. The algorithm aims to minimize cost, maximize QoS and get a balanced
trade-off between the two conflicting objectives. Zhang et al. [15] introduce an adaptive
container scheduler based on integer linear programming, which considers three factors:
the container host energy conservation, the container image pulling costs from the im-
age registry to the container hosts, and the workload network transition costs from the
clients to the container hosts. Lin et al. [16] establish a multi-objective optimization mod-
el for the container-based microservice scheduling, and propose an ant colony algorithm
to solve the scheduling problem. The algorithm aims to optimize cluster service reliabili-
ty, cluster load balancing, and network transmission overhead. However, all of these work
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above focus on resource management in cloud, rather than the emerging edge computing
paradigm. The work of Lin et al. [16] is the most similar one to our approach, but they
do not provide a rigorous mathematical representation of the data transmission latency
among microservices.

Third, as an intelligent algorithm, particle swarm optimization (PSO) is one of the
most commonly used scheduling algorithms in the field of resource scheduling. Zhang
and Yang [17] propose a task scheduling algorithm based on an improved PSO, which can
schedule efficiently, shorten the task completion time and improve the utilization of re-
sources in cloud computing. Pan and Chen [18] establish a resource-task allocation model
and propose an improved PSO algorithm to achieve resource load balancing in the cloud
environment. Chou et al. [19] propose the dynamic power-saving resource allocation (D-
PRA) mechanism based on a particle swarm optimization algorithm, aiming to improve
energy efficiency for cloud data centers. Verma et al. [20] propose a hybrid PSO algorithm
based on non-dominance sort for handling the workflow scheduling problem with mul-
tiple objectives in the cloud. Li et al. [21] propose a security and cost aware scheduling
(SCAS) algorithm based on PSO for heterogeneous tasks of scientific workflow in cloud,
aiming to minimize the total workflow execution cost while meeting the deadline and
risk rate constraints. Li et al. [22] propose a PSO-based container scheduling algorithm
of Docker platform, which aims to solve the problem of insufficient resource utilization
and load imbalance. The algorithm distributed application containers on Docker hosts,
balance resource usage, and ultimately improve application performance. However, on-
ly the paper [22] focuses on container scheduling, the paper [17], [18], [19], [20], [21]
focus on task scheduling or workflow scheduling. Moreover, when solving constrained
optimization problems, only the paper [21] separates the fitness function from constraints
and adopts a novel comparison criterion of particles.

Despite a large number of solutions and implementations mentioned above, researches
on container-based microservice scheduling in edge computing environment are still very
limited. In this paper, we describe it as a multi-objective optimization problem and an
LRLBAS algorithm based on PSO is implemented to solve it. This paper aims to optimize
the network transmission latency among microservices, the reliability of microservice
applications and the load balancing of the cluster simultaneously.

3. System Architecture and Analytical Models

As shown in Fig. 1, the system is mainly divided into two layers. The User Layer is used
to send service requests to microservice applications. The Edge Cloud Layer consists of
physical resources that are used to process requests from users. Users send their requests
to microservice applications deployed on Edge Cloud. Then, the physical resources are
allocated to related microservices encapsulated in containers by microservice scheduling
system (MSM).

Container-based microservice scheduling in edge computing can be characterized by
properties from three components, i.e., application model, network model, and computa-
tion model. The application model refers to the container-based microservice application
being scheduled, the network model describes the infrastructure used to execute the mi-
croservice application, and the computation model corresponds to what we attempt to
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Fig. 1. System architecture

optimize. For convenience of reference, we summarize and tabulate the parameters and
their descriptions used in the models in Table 1.

3.1. Application Model

We consider an application A developed by microservice architecture. A is modeled as a
directed graph Ga = ⟨ms set,ms relation⟩, where ms set = {ms1,ms2, . . . ,msm}
is the set of microservices of application A; ms relation is the set of dependencies a-
mong the microservices. When the execution of microservice msi requires the result
generated by another microservice msk, the dependency between them is established,
denoted by (msi,msk) ∈ ms relation.

Microservice msi is characterized as a tuple ⟨calc needi, str needi,max linki⟩,
where calc needi represents the computing resources required by one request for mi-
croservice msi; str needi is the storage resources required by one request for microser-
vice msi; max linki is the maximum number of requests for one instance of microser-
vice msi. In addition, pre seti is the preceeding set of microservices that provide data
for microservice msi to execute, and when a microservice msk ∈ pre seti, there exists
(msi,msk) ∈ ms relation.

Application A receives service requests from users. User requests for microservice
msk is mainly divided into two parts. One is the direct requests from users, denoted by
direct reqstk; the other is the indirect requests from other microservices. The number
of indirect requests from microservice msi to msk is denoted by link(msi,msk), so the
total number of requests for microservice msk is calculated as linkk = direct reqstk +
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∑m
i=1∧msk∈pre seti

link(msi,msk); trans(msi,msk) denotes the size of data transmit-
ted in a request between microservice msi and msk. We do not consider the network
transmission latency associated with direct requests from users to microservices. In addi-
tion, scalek is the number of instances of microservice msk in the cluster. According to
the number of requests for microservice msk and the maximum number of requests for
one instance of microservice msk, scalek can be calculated as ⌈ linkk

max linkk
⌉.

3.2. Network Model

The underlying edge computing environment for running microservice applications is
modeled as a fully-connected directed graph Ge = ⟨node set, link set⟩, where node set
= {node1, node2, . . . , noden} is the set of edge nodes; link set represents the set of
directed links between edge nodes. Each communication link li,j between nodei and
nodej is related to bandwidth bi,j and network distance di,j .

Edge node nodej is characterized as a tuple ⟨calcj , strj , failj⟩, where calcj is the
computing resource capacity of edge node nodej ; strj indicates the storage resource
capacity of edge node nodej ; failj represents the failure rate of edge node nodej .

3.3. Computation Model

Network Transmission Latency among Microservices. The network transmission la-
tency among microservices is related to four key factors: the number of requests between
two interoperable microservice instances, the size of data transmission in a request be-
tween the two microservice instances, the bandwidth and the network distance between
the edge nodes where the two microservice instances are allocated. Considering that both
consumer microservices and provider microservices may have multiple container-based
instances, we allocate the requests between the two microservices evenly among their
instance pairs. This is formalized in Equation (1):

trans latency =
m∑

k=1

n∑
q=1

yk,q

m∑
i=1∧msk∈pre seti

n∑
p=1

yi,p ∗ lc(i, k, p, q), (1)

where:

lc(i, k, p, q) =
link(msi,msk)

scalei × scalek
× (

trans(msi,msk)

bq,p
+

dq,p
c

). (2)

Here, lc(i, k, p, q) represents the network transmission latency between one instance
pair of microservice msi and msk deployed on edge node nodep and nodeq respectively,
yi,p denotes the number of instances of microservice msi deployed on edge node nodep,
and c is the propagation rate of the electromagnetic wave over the channel, approximately
3× 108m/s.

Average Number of Failures for Microservice Requests. The average number of fail-
ures for microservice requests measures the reliability of microservice applications, which
is related to two key factors: the number of requests for microservices and the failure rates
of edge nodes. Considering that edge nodes in the cluster may break down for some rea-
son, microservices deployed on these edge nodes will not available and user requests will
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fail. This is mathematically modeled in Equation (4), which is used in [15]:

fail reqst =
n∑

j=1

m∑
i=1

yi,j × failj
linki
scalei

. (3)

where yi,j denotes the number of instances of microservice msi deployed on edge node
nodej .

Imbalance Degree of Resource Usages of Edge Nodes. The imbalance degree of re-
source usages of edge nodes measures the load balancing of the cluster. In this paper,
we consider the computing resources and storage resources simultaneously, so balancing
cluster resource load is a Multi-Resource Load Balancing (MRLB) problem. To deal with
the load balancing of the cluster, the standard deviations of utilization rate of physical re-
sources in edge nodes are calculated, and then used as coefficient value for the utilization
rate of corresponding resource in each node [15]. The maximum value of resource utiliza-
tion rate with coefficient among edge nodes reflects the worst case about load blancing
of the cluster. So, the imbalance degree of resource usages of edge nodes is formalized in
Equation (4):

imbalance =
Max(util1, util2, . . . , utilj , . . . , utiln)

σcalc + σstr
1 ≤ j ≤ n, (4)

where:
utilj = Max(σcalc × calc usagej , σstr × str usagej), (5)

calc usagej =
m∑
i=1

yi,j
linki × calc needi
scalei × calcj

, (6)

str usagej =
m∑
i=1

yi,j
linki × str needi
scalei × strj

. (7)

Here,σcalc, σstr represents the standard deviation values of utilization rate of comput-
ing resources and storage resources of edge nodes in the cluster respectively; utilj is the
bigger value of resource utilization rate with coefficient of edge node nodej ; calc usagej ,
str usagej are the utilization rate values of computing resources and storage resources
of edge node nodej .

4. Problem Formulation

4.1. Multi-Objective Optimization Model

According to the three objective functions mentioned in Section 3.3, we establish the
following multi-objective optimization model of container-based microservice scheduling
in edge computing.

min trans latency, (8)

min fail reqst, (9)
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min imbalance, (10)

subject to :
m∑
i=1

yi,j
linki
scalei

calc needi − calcj ≤ 0 ∀nodej , (11)

m∑
i=1

yi,j
linki
scalei

str needi − strj ≤ 0 ∀nodej . (12)

Equation (8)-(10) represent the three optimization objectives respectively: minimizing
the network transmission latency among microservices, minimizing the average number
of failing requests for microservices and minimizing the imbalance degree of resource
usages of edge nodes. Equation (11)-(12) represent the computing and storage resource
constraints of edge nodes respectively.

Table 1. Summary of parameters and their descriptions

Parameters Descriptions
Ga = ⟨ms set,ms relation⟩ microservice application
m the number of microservices in the application
msi microservice with id. i
(msi,msk) ∈ ms relation dependency link from microservice msi to msk
calc needi computing resources required by one request for mi-

croservice msi
str needi storage resources required by one request for microser-

vice msi
max linki the maximum number of requests for one instance of

microservice msi
pre seti preceeding set of microservices of microservice msi
direct reqsti the number of direct requests for microservice msi

from users
link(msi,msk) the number of indirect requests from microservice msi

to msk
linki the total number of requests for microservice msi
trans(msi,msk) size of data transmitted between microservice msk and

msi
scalei the number of instances of microservice msi
Ge = ⟨node set, link set⟩ edge computing environment
n the number of edge nodes in the cluster
nodej edge node with id. j
calcj computing resource capacity of edge node nodej
strj storage resource capacity of edge node nodej
failj failure rate of edge node nodej
li,j communication link between edge node nodei and

nodej
bi,j bandwidth of link li,j
di,j network distance of link li,j
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4.2. Fitness Function

Based on the aforementioned multi-objective optimization model, we use linear weighted
sum method to modify the multi-objective optimization problem into a single-objective
optimization problem and construct the fitness function of this paper as follows:
f(X) = w1 × φ(trans latency) + w2 × φ(fail reqst) + w3 × φ(imbalance). (13)

where X is a scheduling scheme that maps microservices to edge nodes; w1, w2, w3 ≥ 0
and w1 + w2 + w3 = 1. For the weight coefficients of optimization objectives, the most
important objective generally has the maximum weight coefficient value according to the
user preferences. φ(l) is a normalized function for optimization objectives, defined as:

φ(l) =
l − lmin

lmax − lmin
. (14)

In this paper, we repeatly do experiments on the three optimization objectives for 30
times, and replace the maximum and minimum values of the three objectives with their
corresponding empirical constant values.

According to the analysis above, we formally define a container-based microservice
scheduling problem in edge computing environment: given a directed graph structured mi-
croservice application Ga = ⟨ms set,ms relation⟩, a fully-connected edge computing
environment Ge = ⟨node set, link set⟩, we wish to find a schedule X: msi → nodej ,
∀msi ∈ ms set, ∃nodej ∈ node set, such that minimizes the fitness function under
the resource capacity of edge nodes. The problem can be formally described by Equation
(15): 

find X = {x1, x2, . . . , xD} ,
which min(f(X)),

subject to :

m∑
i=1

yi,j
linki
scalei

calc needi − calcj ≤ 0 ∀nodej ,

m∑
i=1

yi,j
linki
scalei

str needi − strj ≤ 0 ∀nodej .

(15)

where D is the dimension of the schedule scheme X .

5. LRLBAS Algorithm Implementation

The above defined problem is a typical NP-hard problem. So, we consider using heuris-
tic algorithms to obtain its near-optimal solution. Particle swarm optimization (PSO) is a
frequently used heuristic algorithm, which is developed by Kennedy and Eberhart [23].
In this work, our latency, reliability and load balancing aware scheduling (LRLBAS) al-
gorithm is based on PSO.

The basic idea of PSO is to search the optimal solution through the cooperation and
information sharing among individuals in a population. Suppose that one population has
N particles and the searching space is D dimensional. For a particle Pi(i = 1, 2, . . . , N),
it has three typical parameters that are the position Xi = (xi1, xi2, . . . , xiD), velocity
Vi = (vi1, vi2, . . . , viD) and its optimal position pbesti = (pi1, pi2, . . . , piD). In the kth
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iteration of PSO, the velocity and position of particle Pi will be updated by the following
two equations:

V k
i = wk · V k−1

i + c1 · r1 · (pbesti −Xk−1
i ) + c2 · r2 · (gbest−Xk−1

i ). (16)

Xk
i = Xk−1

i + V k
i . (17)

where c1 and c2 denote learning factors, r1 and r2 are random numbers from the range of
[0,1], wk is called inertia weight that influences search capability of particles, gbest is the
current global optimal position.

Shi and Eberhart [24] define the inertia weight w as a decreasing function, that is

wk = wstart − (wstart − wend) ·
k

M
. (18)

where wstart and wend are the initial value and ending value of inertia weight w, M
indicates the maximum number of iterations in PSO.

5.1. Non-linear Inertia Weight

To better balance the global and local search abilities of particles, a novel method for
updating the inertia weight w is used [25], as shown in Equation (19):

wk = wend + (wstart − wend) · sin(
π

2

√
(1− k

M
)3). (19)

Compared with the linear inertia weight in Equation (18), the non-linear inertia weight
in Equation (19) is larger at the beginning period, which can promote global search in
the early stage of the optimization process. When the number of iterations gradually ap-
proaches the maximum value M , the non-linear inertia weight is smaller than the linear
inertia weight, which can improve local search in the late stage of the optimization pro-
cess.

5.2. Constraints Handing

To deal with the constraints, we adopt a strategy similar to that in [20]. Our constraint
handling strategy separates the fitness function from constraints, so that each particle has
two fitness values. In addition, a new comparison criterion for particles is introduced and
a certain proportion of the infeasible particles are reserved adaptively.

In this paper, the general form of our problem is expressed in Equation (20):
min f(X) s.t. gj(X) ≤ 0 j = 1, 2, . . . , q (20)

After separating the fitness function from constraints, the original problem can be
transformed into Equation (21):

fitness(i) = f(X), violation(i) =

q∑
j=1

max(0, gj(x)) i = 1, 2, . . . , N (21)

Here, the former formula represents the fitness value of particle Pi in a certain itera-
tion, namely the first fitness value; the latter is the constraint violation value of particle
Pi, that is, the second fitness value. The constraint violation value of a feasible solution is
0.
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Then, we use the following comparison criteria for particles: firstly, a constant β is giv-
en. (1) Between two feasible particles Pi and Pj , compare their fitness values fitness(i)
and fitness(j), the smaller one is better; (2) between two infeasible particles Pi and Pj ,
compare their constraint violation values violation(i) and violation(j), the smaller one
is better; (3) between the feasible particle Pi and the infeasible particle Pj , if violation(j)
is smaller than β , then compare their fitness values fitness(i) and fitness(j), the small-
er one is better; otherwise, particle Pi is better.

During the optimization process, the proportion of infeasible solutions changes dy-
namically. If the proportion becomes too large, most particles will move towards infea-
sible solutions. If the proportion becomes too small, our algorithm will not work very
well and the optimization efficiency will be compromised. So, we hope the proportion of
infeasible solutions can fluctuate around a fixed value p. Based on the above comparison
criteria, we can know that the larger the value of constant β, the larger the proportion of
infeasible solutions is likely to be. To keep the proportion around p, the following adaptive
adjustment strategy for β is used: (1) when the proportion is smaller than p, β = 1.5β;
(2) when the proportion is larger than p, β = 0.5β; (3) when the proportion is equal to p,
the value of β does not change.

5.3. Algorithm Implementation

Based on implementation steps mentioned above, we design the LRLBAS algorithm
based on PSO for microservice applications. The implementation of our algorithm is
shown as the pseudo-code of Algorithm 1.

This algorithm first initializes position (i.e., the scheduling scheme), velocity of all
particles and other necessary parameters (see lines 1-7). Next, update velocity, position,
inertia weight and the value of β (see lines 10-14). Then, evaluate the fitness value and
constraint violation value of each particle according to constraints handling, update the
optimal solution of each particle and select the global optimal solution (see lines 16-19).
Finally, the algorithm returns the near-optimal scheduling scheme (see line 21).

6. Performance Evaluation

6.1. Experimental Setup

In this paper, the test data set is shown in Table 2 and Table 3. The microservice applica-
tion in this test data set is composed of 17 microservices.

Table 2 shows the number of requests and the amount of data transmission among
microservices when the microservice application receives a unit of user service request-
s (represented as 1.0reqs). Here, (-,msi) represents users consume microservice msi
directly. For convenience, we use linki,k and transi,k to denote link(msi,msk) and
trans(msi,msk), respectively.Table 3 shows the parameters of microservices in the ap-
plication; linki represents the number of requests for microservice msi when the mi-
croservice application receives 1.0reqs; scalei is the number of instances of microservice
msi in the cluster.

Some details about the experimental setup are shown in Table 4. Table 4(a) presents
parameters of our LRLBAS algorithm. Parameter settings for the edge node cluster are
described in Table 4(b).
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Algorithm 1 LRLBAS algorithm based on PSO
Input: related information about the microservice application, a set of edge nodes, maximum

number of iteration M , size of particle swarm N .
Output: the near-optimal scheduling solution Xbest.
1: for i = 1 to N do
2: Randomize the initialization of scheduling Xi, search velocity Vi and some other necessary

parameters;
3: end for
4: for i = 1 to N do
5: Set current position of scheduling Xi as pbesti;
6: end for
7: Select the best near-optimal scheduling plan of minimum fitness from N scheduling plans as

gbest;
8: for j = 1 to M do
9: for i = 1 to N do

10: Update the velocity of particle Vi by Equation (16);
11: Update the position of particle Xi by Equation (17);
12: end for
13: Update the inertia weight wk by Equation (19);
14: Compute the ratio of infeasible solutions and update ;
15: for i = 1 to N do
16: Evaluate the fitness value and the violation value of scheduling plan Xi according to

constraints handling;
17: Compare the current particles fitness evaluation with pbesti. If current value is better

than pbesti, then update pbesti;
18: end for
19: Select the best near-optimal scheduling plan of minimum fitness from N scheduling plans

as gbest;
20: end for
21: return Xbest

In addition, this paper assume that three objectives are equally important, so their
weight coefficients w1, w2, w3 are all set as 1/3.

6.2. The Comparison of both Objectives and Fitness Value

In this paper, we compare the LRLBAS algorithm with other scheduling algorithms in-
cluding the original PSO (OPSO) based scheduling algorithm and the directional and
non-local-convergent PSO (DNCPSO) based scheduling algorithm proposed in [25]. The
main principles and steps of the two algorithms are shown below.

(1) Original PSO (OPSO). The original PSO has been described in Section 4 and proved
to be a useful intelligent heuristic algorithm. It searches the optimal solution through
the cooperation and information sharing among individuals in a population.

(2) Directional and non-local-convergent PSO (DNCPSO). The authors in [25] propose
a directional and non-local-convergent particle swarm optimization algorithm to per-
form workflow scheduling in cloud-edge environment. This algorithm firstly uses
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Table 2. Number of requests and amount of data transmission under 1.0reqs

(msi,msk) linki,k transi,k(MB) (msi,msk) linki,k transi,k(MB)
(-,ms1) 25 0 (ms7,ms14) 5 2.1
(-,ms3) 35 0 (ms8,ms14) 8 2.1
(-,ms6) 4 0 (ms9,ms5) 10 1.8
(-,ms7) 15 0 (ms9,ms11) 10 2.4
(-,ms10) 50 0 (ms10,ms5) 10 1.7
(-,ms13) 15 0 (ms10,ms9) 13 2.2
(ms1,ms2) 10 2.3 (ms10,ms11) 10 2.5
(ms1,ms4) 5 1.6 (ms11,ms2) 10 1.6
(ms1,ms9) 10 2.0 (ms12,ms8) 23 3.2
(ms2,ms4) 5 1.8 (ms13,ms2) 10 2.3
(ms2,ms12) 8 3.0 (ms13,ms8) 23 3.1
(ms3,ms13) 30 0.9 (ms13,ms16) 4 2.8
(ms4,ms15) 15 2.8 (ms13,ms17) 15 1.2
(ms4,ms16) 4 2.9 (ms15,ms16) 4 2.6
(ms5,ms15) 15 2.7 (ms16,ms14) 8 2.2
(ms7,ms2) 10 2.4 (ms17,ms12) 8 3.1

Table 3. Microservices in the application

msi pre seti calc needi str needi max linki linki scalei
ms1 {ms2,ms4,ms9} 2.1 1.4 10 25 3
ms2 {ms4,ms12} 0.5 3.2 8 40 5
ms3 {ms13} 3.1 1.6 8 35 5
ms4 {ms15,ms16} 4.7 0.2 5 10 2
ms5 {ms15} 1.8 3.1 8 20 3
ms6 {} 2.5 5.1 4 4 1
ms7 {ms2,ms14} 6.2 0.6 4 15 4
ms8 {ms14} 0.8 6.2 4 45 12
ms9 {ms5,ms11} 3.9 2.3 5 23 5
ms10 {ms5,ms9,ms11} 0.2 4.8 4 50 13
ms11 {ms2} 2.8 2.6 8 20 3
ms12 {ms8} 5.3 0.9 4 15 4
ms13 {ms2,ms8,ms16,ms17} 0.6 4.8 5 45 9
ms14 {} 6.1 2.5 4 20 5
ms15 {ms16} 1.2 4.2 5 30 6
ms16 {ms14} 5.4 1.6 4 12 3
ms17 {ms12} 3.7 2.2 6 15 3

Table 4. Parameter settings

(a) Parameters of the LRLBAS algorithm

Parameter Value
Population size 50
Maximum number of iterations 300
wstart 0.9
wend 0.4
c1, c2 2
r1, r2 [0,1]
β 10
p 0.2

(b) Parameters of the edge node cluster

Parameter Value
Number of edge nodes 120
calci {100, 200, 400}
stri {100, 200, 400}
faili {0.01, 0.02, 0.03}
bi,j (Mbps) {200, 400}
di,j (km) [30,300]
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non-linear inertia weight to better balance the global and local search abilities of par-
ticles. Then, it replace random search with directional search which can improve the
optimization speed of the algorithm. Finally, selection and mutation operations are
integrated into this algorithm, which is conducive to jump out of local optimum. So,
this algorithm can get better near-optimal solution in a faster speed.

In this subsection,the performance comparisons of the three algorithms are performed
in four aspects: network transmission latency, reliability of the microservice application,
cluster load balancing and fitness value. We present the experimental results of three al-
gorithms in the above four aspects under five experimental configurations. The number of
user requests of the five experimental configurations varies between 1.0reqs and 3.0reqs,
with an interval of 0.5reqs.

As shown in Fig. 2, the values have been normalized between 0.0 and 1.0. We can see
that LRLBAS algorithm achieves better performance (smaller objective values) than OP-
SO in four aspects under five experimental configurations, and obtains better optimization
results than DNCPSO in 12 of the total 20 scenarios.

In detail, as shown in Fig. 2(d-e), LRLBAS algorithm performs better than DNCPSO
in all four aspects under 2.5reqs and 3.0reqs. However, in Fig. 2(a-c), LRLBAS algorithm
obtains objective values that are slightly higher than DNCPSO in 7 scenarios. Because
the proportion of infeasible solutions in the population is small when the number of user
requests is small. So the infeasible solutions are not enough for LRLBAS algorithm to
find better solutions.

6.3. The Comparison of Optimization Process for Fitness Value

In this subsection, we compare the LRLBAS algorithm with other algorithms by the it-
erative trend of fitness value under five experimental configurations. The iterative trend
of each algorithm for searching results includes two aspects, namely searching speed and
nearest optimal solution. The searching speed indicates the fewest number of iterations
that is required to find the near-optimal solution. The nearest optimal solution indicates
the minimum fitness value that the algorithms can reach.

As shown in Fig. 3, LRLBAS algorithm can obtain smaller fitness values than the
other two algorithms in most cases. Among the three algorithms, OPSO performs worst
under five experimental configurations.

In detailed comparison, as shown in Fig. 3(c), the fitness value in DNCPSO declines
significantly faster than that in our LRLBAS algorithm, indicating that DNCPSO can
obtain the near-optimal solution with fewer iterations than LRLBAS algorithm. Moreover,
DNCPSO obtains a smaller fitness value at the end of the iteration process. So DNCPSO
performs better than LRLBAS algorithm under 2.0reqs. In addition, as shown in Fig.
3(d-e), LRLBAS algorithm performs better than DNCPSO in terms of searching speed
and nearest optimal solution. The experimental results in Fig. 3 are consistent with the
optimization results of fitness value in Fig. 2.

6.4. The Comparison of Sensitivity

As shown in Fig. 4, the values have been normalized between 0.0 and 1.0. We can see
that our LRLBAS algorithm is the least sensitive algorithm as its curve slope has the
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(a) 1.0reqs (b) 1.5reqs

(c) 2.0reqs (d) 2.5reqs

(e) 3.0reqs

Fig. 2. Normalized objective and fitness values obtained with three algorithms

least obvious change in terms of both objectives and fitness value as the number of user
requests increases, which has more adaptability to the situation that the number of user
requests increases. Also, LRLBAS can obtain smaller objective and fitness values in most
cases, which is consistent with the experimental results in Fig. 2.

6.5. The Comparison of Running Overhead for Fitness Value

In this paper, the running time required to perform a optimization process for fitness value
is used as the evaluation metric of algorithms running overhead. Here, The final result of
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(a) 1.0reqs (b) 1.5reqs

(c) 2.0reqs (d) 2.5reqs

(e) 3.0reqs

Fig. 3. The changing process of fitness value under different iterations

the running time is calculated by running an average of 30 times. We compare our LRL-
BAS algorithm with other algorithms by the running overhead under five experimental
configurations.

As shown in Fig. 5, we can see that the running overhead of the LRLBAS algorithm
is nearly equal to that of OPSO, while the running overhead of DNCPSO is much higher
than that of OPSO. As mentioned above, DNCPSO performs significantly better than our
LRLBAS algorithm under 2.0reqs, but it costs significant running overhead.

Through the above several groups of experiments, it can demonstrate that LRLBAS
algorithm achieves better optimization results than the other two algorithms in terms of
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(a) latency (b) fail reqst

(c) imbalance (d) fitness

Fig. 4. The comparison of sensitivity among three algorithms

Fig. 5. Running overhead under different number of user requests

objectives, fitness value and optimization speed when the number of user requests is large.
When the number of user requests is small, although LRLBAS algorithm performs worse
than DNCPSO in some cases, it consumes significantly less running overhead than D-
NCPSO. Therefore, it can be proved that the LRLBAS algorithm for container-based mi-
croservice scheduling in edge computing proposed in this paper is effective and efficient.
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7. Conclusion

In this paper, container-based microservice scheduling in edge computing is described as a
multi-objective optimization problem, aiming to reduce the network transmission latency
among microservices, improve the reliability of microservice applications and balance
the cluster load. We propose a latency, reliability and load balancing aware scheduling
algorithm for microservice applications in edge computing. Our proposed algorithm is
based on the PSO. Extensive experiments demonstrate the effectiveness and efficiency of
our algorithm for microservice scheduling in edge computing.

In the future, we plan to take other optimization objectives into account. In addition,
more scheduling algorithms can be added for performance comparison. Finally, we can
study the results of our microservice scheduling algorithm in a real edge computing con-
tainer cluster.
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