
Chapter 8

Uni�cation theory

Franz Baader

Wayne Snyder

Second readers: Paliath Narendran, Manfred Schmidt-Schauss, and Klaus
Schulz.

Contents

1 Introduction . 441
1.1 What is uni�cation? . 441
1.2 History and applications . 442
1.3 Approach . 444

2 Syntactic uni�cation . 444
2.1 De�nitions . 444
2.2 Uni�cation of terms . 446
2.3 Uni�cation of term dags . 453

3 Equational uni�cation . 463
3.1 Basic notions . 463
3.2 New issues . 467
3.3 Reformulations . 469
3.4 Survey of results for speci�c theories . 476

4 Syntactic methods for E-uni�cation . 482
4.1 E-uni�cation in arbitrary theories . 482
4.2 Restrictions on E-uni�cation in arbitrary theories 489
4.3 Narrowing . 489
4.4 Strategies and re�nements of basic narrowing 493

5 Semantic approaches to E-uni�cation . 497
5.1 Uni�cation modulo ACU, ACUI, and AG: an example 498
5.2 The class of commutative/monoidal theories 502
5.3 The corresponding semiring . 504
5.4 Results on uni�cation in commutative theories 505

6 Combination of uni�cation algorithms . 507
6.1 A general combination method . 508
6.2 Proving correctness of the combination method 511

7 Further topics . 513

Bibliography . 515
Index . 524

HANDBOOK OF AUTOMATED REASONING

Edited by Alan Robinson and Andrei Voronkov
c
 Elsevier Science Publishers B.V., 2001

Unification theory 441

1. Introduction

Uni�cation is a fundamental process upon which many methods for automated de-
duction are based. Uni�cation theory abstracts from the speci�c applications of
this process: it provides formal de�nitions for important notions like instantiation,
most general uni�er, etc., investigates properties of these notions, and provides and
analyzes uni�cation algorithms that can be used in di�erent contexts. In this intro-
ductory section, we will �rst present the concept of uni�cation in an informal way,
then make some historical remarks on where uni�cation was originally introduced,
and �nally explain our approach to writing this chapter.

1.1. What is uni�cation?

Very generally speaking, uni�cation tries to identify two symbolic expressions by
replacing certain sub-expressions (variables) by other expressions. To be more con-
crete, one usually considers terms that are built from function symbols (say f , a,
and b, where f is binary and a; b are nullary) and variable symbols (say x and
y). The uni�cation problem for the terms s = f(a; x) and t = f(y; b) is concerned
with the following question: is it possible to replace the variables x; y in s and t by
terms such that the two terms obtained this way are (syntactically) equal. In this
example, if we substitute b for x and a for y, we obtain the uni�ed term f(a; b).
This substitution is denoted as � := fx 7! b; y 7! ag, and its application to terms
is written suÆx, i.e., s� = f(a; b) = t�. Note that di�erent occurrences of the same
variable in a uni�cation problem must always be replaced by the same term. For
this reason, the terms s0 = f(a; x) and t0 = f(x; b) cannot be uni�ed since this
would require the occurrence of x in s0 to be replaced by b, and the occurrence of
x in t0 to be replaced by the di�erent constant a.
In most applications of uni�cation, one is not just interested in the decision

problem for uni�cation, which simply asks for a \yes" or \no" answer to the question
of whether two terms s and t are uni�able. If they are uni�able, one would like to
construct a solution, i.e., a substitution that identi�es s and t. Such a substitution
is called a uni�er of s and t. In general, a uni�cation problem may have in�nitely
many solutions; e.g., f(x; y) and f(y; x) can be uni�ed by replacing x and y by
the same term s (and there are in�nitely many terms available). Fortunately, the
applications of uni�cation in automated deduction do not require the computation
of all uni�ers. It is suÆcient to consider the so-called most general uni�er , i.e., a
uni�er such that every other uni�er can be obtained by instantiation. In the above
example, � := fx 7! yg is such a most general uni�er since for all terms s we have
fx 7! s; y 7! sg = �fy 7! sg. A uni�cation algorithm should thus not only decide
solvability of a given uni�cation problem: if the problem is solvable, it should also
compute a most general uni�er. As we will show, there exist very eÆcient algorithms
for this purpose.
Uni�cation as described until now is called syntactic uni�cation of �rst-order

terms. \Syntactic" means that the terms must be made syntactically equal, whereas

442 Franz Baader and Wayne Snyder

\�rst-order" expresses the fact that we do not allow for higher-order variables, i.e.,
variables for functions. For example, the terms f(x; a) and g(a; x) obviously cannot
be made syntactically equal by �rst-order uni�cation. However, f(x; a) and G(a; x)
can be made equal by higher-order uni�cation if G is a (higher-order) variable,
which may be replaced by f . We will not consider higher-order uni�cation in more
detail since it is treated in 14. However, equational uni�cation|as opposed to
syntactic uni�cation|of �rst-order terms will be one of the most important topics
of this chapter. Instead of requiring that the terms are made syntactically equal,
equational uni�cation is concerned with making terms equivalent with respect to a
congruence induced by certain equational axioms E. In this case, one talks about
E-uni�cation or uni�cation modulo E. For example, if E = ff(a; a) � g(a; a)g, then
the terms f(x; a) and g(a; x), which are not (syntactically) uni�able, areE-uni�able:
for the substitution � := fx 7! ag, we have f(x; a)� = f(a; a) =E g(a; a) =
g(a; x)�, where =E denotes the equational theory induced by E. For equational
uni�cation, things are not as nice as for syntactic uni�cation. In fact, depending
on the theory E in question, E-uni�ability may be undecidable, and even if it is
decidable, solvable uni�cation problems need not have a most general E-uni�er.
Research on equational uni�cation is, on the one hand, interested in classifying
equational theories of interest according to their behavior in this respect. On the
other hand, it develops general approaches and algorithms that apply to whole
classes of theories.

1.2. History and applications

The name \uni�cation" and the �rst formal investigation of this notion is due
to J.A. Robinson [1965], who introduced uni�cation as the basic operation of his
resolution principle, showed that uni�able terms have a most general uni�er, and
described an algorithm for computing this uni�er. In the propositional case, the
resolution principle can be described as follows (see also 2). Assume that clauses
C _ p and C 0 _ :p have already been derived (where C;C 0 are sub-clauses and p is
a propositional variable). Then one can also deduce C _C 0. In the �rst-order case,
the clauses one starts with may contain variables. Herbrand's famous theorem im-
plies that �nitely many ground instances (i.e., instances obtained by substituting
all variables by terms without variables) are suÆcient to show unsatis�ability of
a given unsatis�able set of clauses by propositional reasoning (e.g., propositional
resolution). The problem is, however, to �nd the appropriate instantiations. Early
theorem provers approached this problem by a breadth-�rst enumeration of all
possible ground instantiations, which led to an immediate combinatorial explosion
[Robinson 1963]. Theorem provers based on the resolution principle need not search
blindly for the right instantiations: they can compute them via syntactic uni�ca-
tion. For example, assume the clauses C_P (s) and C 0_:P (t) are given. Obviously,
the resolution rule applies to ground instances of these clauses i� in these instances
the predicate P contains the same term, i.e., i� the substitution used in the instan-
tiation process is a (syntactic) uni�er of s and t. Instead of using all ground uni�ers

Unification theory 443

for instantiation, Robinson proposed to lift the resolution principle to terms with
variables, and apply only the most general uni�er � of s and t. In the example, this
yields the resolvent (C _C 0)�. The completeness proof for propositional resolution
can be lifted to non-ground resolution by using the fact that every ground uni�er
of s; t is an instance of the most general uni�er. In fact, the notion \most general
uni�er" was de�ned in this way just to make this lifting possible.
Similar ideas for determining appropriate instantiations have been proposed prior

to Robinson by Post, Herbrand [1930a, 1930b, 1967, 1971] (in the investigation of
his property A), Prawitz [1960], and Guard [1964, 1969]. However, in this previous
work, the notions \uni�cation" and \most general uni�er" are not singled out as
interesting concepts of their own (they don't even receive a name). Prawitz only
considers the function-free case (in which uni�cation is rather trivial), and Herbrand
also �rst presents his approach for this restricted case. The description by Herbrand
of the uni�cation algorithm for the general case (which appears to be the �rst
published account of such an algorithm, and which is similar to the transformation-
based algorithm by Martelli and Montanari [1982]) is rather informal, and there is
no proof of correctness.1

The notions \uni�cation" and \most general uni�er" were independently re-
invented by Knuth and Bendix [1970] as a tool for testing term rewriting systems
for local con
uence by computing critical pairs. Again, the de�nition of the most
general uni�er makes sure that every critical situation is an instance of a critical
pair, and thus it is suÆcient to test the critical pairs for con
uence (see ??).
Equational uni�cation was introduced both in resolution-based theorem prov-

ing and in term rewriting as a means for treating certain troublesome equational
axioms (like associativity and commutativity) in a special manner. In automated
theorem proving, it quickly became apparent that the equality relation requires
a special treatment (see ?? and 7) since a simple integration of axioms that de-
scribe the properties of equality (in principle, being a congruence relation) often
leads to an unacceptable increase in the search space. Whereas the �rst approaches
providing such a special treatment of equality replaced only the axiomatization of
equality by special inference rules, Plotkin [1972] proposed to go one step further.
In his approach, also certain axioms that use equality (like f(x; y) � f(y; x) and
f(f(x; y); z) � f(x; f(y; z))) can be built into the inference rule (namely resolution).
This is achieved by replacing the use of syntactic uni�cation in the resolution step
by equational uni�cation, i.e., uni�cation modulo the equational theory induced by
the axioms to be built in.
In term rewriting, axioms like commutativity (i.e., f(x; y) � f(y; x)) cannot be

oriented into terminating rewrite rules. One way of solving this problem is to take
such non-orientable identities completely out of the rewrite process, and perform
rewriting with respect to the remaining (orientable) rules modulo the unoriented
ones. In this setting, critical pairs must now be computed by equational uni�cation,

1Strictly speaking, Herbrand's uni�cation algorithm is not an algorithm for simple syntactic
uni�cation, but an algorithm for uni�cation with so-called linear constant restrictions (see sec-
tion 3.3.2). This is due to the fact that he does not Skolemize his formulae, and thus he has both
universal and existential quanti�ers in the quanti�er pre�x.

444 Franz Baader and Wayne Snyder

i.e., modulo the unoriented identities (see, e.g., [Peterson and Stickel 1981, Jouan-
naud and Kirchner 1986] and ??).

1.3. Approach

This chapter is not intended to give a complete coverage of all the results obtained in
uni�cation theory (see the overview articles [Jouannaud and Kirchner 1991, Baader
and Siekmann 1994] for this purpose). Instead we try to cover a number of signi�cant
topics in more detail. This should give a feeling for uni�cation research and its
methodology, provide the most important references, and enable the reader to study
recent research papers on the topic.

Notational and typographic conventions
We will try to keep as close as possible to the typographic conventions introduced
by Dershowitz and Jouannaud [1991], which they also used in their survey article on
rewrite systems [Dershowitz and Jouannaud 1990]. In particular, substitutions are
written in suÆx notation (i.e., s� instead of �(s)), and consequently composition
of substitution should be read from left to right (i.e., �� means: �rst apply � and
then �).
Equational axioms (written s � t) that de�ne equational theories will be called

\identities," whereas uni�cation problems consist of \equations" (written s=? t for
syntactic uni�cation and s=?

E t for uni�cation modulo E). Thus, identities must
hold, whereas equations must be solved.

2. Syntactic uni�cation

As mentioned earlier, syntactic uni�cation of �rst-order terms was introduced by
Post and Herbrand in the early part of this century. Various researchers have studied
the problem further [Champeaux 1986, Corbin and Bidoit 1983, Huet 1976, Martelli
and Montanari 1982, Paterson and Wegman 1978, Robinson 1971, Venturini-
Zilli 1975] and, among other results, it was shown that linear time algorithms
for uni�cation exist [Martelli and Montanari 1976, Paterson and Wegman 1978].
The corresponding lower complexity bound was shown by Dwork, Kanellakis and
Mitchell [1984]: the uni�cation problem is log-space complete for P , the class of
polynomial-time solvable problems. In particular, this implies that it is very un-
likely that an eÆcient parallel uni�cation algorithm exists.
In this section we review the major approaches to syntactic uni�cation.

2.1. De�nitions

A signature is a (�nite or countably in�nite) set of function symbols F . We assume
the reader is familiar with the term algebra T (F ;V) generated by a signature

Unification theory 445

function symbols F and a (countably) in�nite set of variables V ; we shall call these
F-terms , or simply terms when F is unimportant, and denote them by the letters
l, r, s, t, u, and v. Variables will be denoted by w, x, y, and z. The set of variables
occurring in a term t will be denoted by Vars(t), and this will be extended to sets
of variables, equations, and sets of equations.
A substitution is a mapping from variables to terms which is almost everywhere

equal to the identity, and will generally be represented by �, �, �, or �. The identity
substitution is represented by Id . The application of a substitution � to a term t,
denoted t�, is de�ned by induction on the structure of terms:

t� :=

(
x� if t = x,

f(t1�; : : : ; tn�) if t = f(t1; : : : ; tn).

In the second case of this de�nition, n = 0 is allowed: in this case, f is a constant
symbol and f� = f . Substitutions can also be applied to sets of terms, equations,
and sets of equations, in the obvious fashion.
For a substitution �, the domain is the set of variables

Dom(�) := fx jx� 6= x g;

the range is the set of terms

Ran(�) :=
[

x2Dom(�)

fx�g;

and the set of variables occurring in the range is VRan(�) := Vars(Ran(�)):
A substitution can be represented explicitly as a function by a set of bindings of
variables in its domain, e.g.,

fx1 7! s1; : : : ; xn 7! sn g:

The restriction of a substitution � to a set of variables X , denoted by �jX , is
the substitution which is equal to the identity everywhere except over X \Dom(�),
where it is equal to �. Composition of two substitutions is written ��, and is de�ned
by

t�� = (t�)�:

An algorithm for constructing the composition �� of two substitutions represented
as sets of bindings is as follows:

1. Apply � to every term in Ran(�) to obtain �1;

2. Remove from � any binding x 7! t, where x 2 Dom(�), to obtain �1;

3. Remove from �1 any trivial binding x 7! x, to obtain �2; and

4. Take the union of the two sets of bindings �2 and �1.

It is also useful to be able to represent substitutions in their triangular form as
a sequential list of bindings, e.g.,

[x1 7! t1; x2 7! t2; : : : ; xn 7! tn];

446 Franz Baader and Wayne Snyder

which represents the composition of n substitutions each consisting of a single
binding:

fx1 7! t1 gfx2 7! t2 g : : : fxn 7! tn g:

Composition of two substitutions in this form is accomplished by performing the
second and third steps from the above algorithm, and then appending the two lists.
A substitution is idempotent if �� = �; it is easy to show that this is true i�

Dom(�) \ VRan(�) = ;.
A variable renaming substitution is de�ned as a substitution � such that

Dom(�) = Ran(�). (For example, fx 7! y; y 7! z; z 7! xg is a variable renam-
ing, whereas fx 7! yg and fy 7! z; x 7! zg are not.) For any such variable renaming
� = fx1 7! y1; : : : ; xn 7! yng, we denote its inverse fy1 7! x1; : : : ; yn 7! xng by ��1.
Two substitutions are equal, denoted � = �, if x� = x� for every variable x. We

say that � is more general than �, denoted � �� �, if there exists an � such that
� = ��. The relation�� is called the instantiation quasi-ordering. The corresponding
equivalence relation (i.e., �� \ ��) is denoted by

�

=; it can be shown [Lassez, Maher
and Mariott 1987] that �

�

= � i� there exists some variable renaming � such that
� = ��.

2.1. Definition. A substitution � is a uni�er of two terms s and t if s� = t�; it
is a most general uni�er (or mgu for short), if for every uni�er � of s and t, � �� �.
A uni�cation problem for two terms s and t is represented by s=? t.

A multiset is an unordered collection with possible duplicate elements. We denote
the number of occurrences of an object x in a multiset M by M(x), and de�ne the
multiset union M [N as the multiset Q such that Q(x) =M(x) +N(x) for every
x.

2.2. Uni�cation of terms

In this section and the next, we present a series of algorithms for uni�cation, each
of which returns an mgu for two uni�able terms. Our approach will be two-sided:
on the one hand we will present a series of practical algorithms, from the \naive"
to the more sophisticated (and faster), in pseudo-code suitable for implementing in
a programming language; and on the other we will present a \rule-based" approach
which serves to clarify the essential properties of the process and also to prove the
correctness of some of the practical algorithms.

2.2.1. A naive algorithm
The simplest algorithm for uni�cation is perhaps one that is taught in many intro-
ductory courses in AI:

Write down two terms and set markers (e.g., two index �ngers) at the begin-
ning of the terms. Then:

1. Move the markers together, one symbol at a time, until both move o� the end
of the term (success!), or until they point to two di�erent symbols;

Unification theory 447

2. If the two symbols are both non-variables, then fail; otherwise, one is a variable
(call it x) and the other is the �rst symbol of a subterm (call it t):
(a) If x occurs in t, then fail;
(b) Otherwise, write down \x 7! t" as part of the solution, replace x everywhere

by t (including in the solution), and return to (1).

This simple algorithm methodically �nds disagreements in the two terms to be
uni�ed, and attempts to repair them by binding variables to terms: it fails when
function symbols clash, or when an attempt is made to unify a variable with a
term containing that variable (which is impossible). Already present in this simple
algorithm are several interesting issues:

Implementation: What data structures should be used for terms and substitu-
tions? How should application of a substitution be implemented? What order
should the operations be performed in?

Correctness: Does the algorithm always terminate? Does it always produce an
mgu for two uni�able terms, and fail for non-uni�able terms? Do these answers
depend on the order of operations?

Complexity: How much space does this take, and how much time?

In the remainder of this section we will consider these issues in detail while devel-
oping our sequence of algorithms.

2.2.2. Uni�cation by recursive descent
If we take our naive algorithm and implement it as simply as possible in a pro-
gramming language, then we would represent terms using either explicit pointer
structures (as in C or Pascal) or built-in recursive data types (as in ML and Lisp),
and represent substitutions as lists of pairs of terms. Application of a substitution
would involve constructing a new term or replacing a variable with a new term.
The left-to-right search for disagreements would then be implemented by recursive
descent through the terms:

global � : substitution; f Initialized to Id g

Unify(s : term; t : term)
begin

if s is a variable then f Instantiate variables g
s := s�;

if t is a variable then
t := t�;

if s is a variable and s = t then
f Do nothing g

else if s = f(s1; : : : ; sn) and t = g(t1; : : : ; tm) for n;m � 0 then begin
if f = g then

for i := 1 to n do
Unify(si, ti);

else Exit with failure f Symbol clash g
end

448 Franz Baader and Wayne Snyder

else if s is not a variable then
Unify(t, s);

else if s occurs in t then
Exit with failure; f Occurs check g

else � := �fs 7! tg;
end;

(In an actual implementation, the case \Unify(t, s)" could be moved up before
the �rst \else if" and simply swap s and t if the former is not a variable.) The
only detail that might cause some confusion is the exact method for implementing
the composition in the last line. This was described in section 2.1; however, in
our naive uni�cation algorithm, we omitted the second and third steps from the
informal algorithm for composition, and this may be done as well here, due to a
simple but important fact about these algorithms: when a binding x 7! t is created
and applied, x will never appear in another term considered by the algorithm|x
has been \eliminated" and occurs only once, in the solution.
This algorithm is essentially the one �rst described by Robinson [1965], and has

been almost universally used in symbolic computation systems.

2.2.3. A rule-based approach U
In order to explore some of the logical properties of this algorithm, we now present
a simple inference system for deriving solutions for uni�cation problems.
An idempotent substitution fx1 7! t1; : : : ; xn 7! tng may be represented by a set

of equations fx1 � t1; : : : ; xn � tng in solved form, i.e., where each xi has a single
occurrence in the set. For any idempotent substitution �, the corresponding solved
form set will be denoted by [�], and for any set of equations S in solved form, the
corresponding substitution will be denoted by �S.
A system is either the symbol ? (representing failure) or a pair consisting of a

multiset P of uni�cation problems and a set S of equations in solved form. We
will use � to denote an arbitrary system. A substitution is said to be a uni�er (or
solution) of a system P ;S if it uni�es each of the equations in P and S; the system
? has no uni�ers.
The inference system U consists of the following transformations on systems:2

Trivial:
fs

?
= sg [P 0;S =) P 0;S

Decomposition:

ff(s1; : : : ; sn)
?
= f(t1; : : : ; tn)g [P

0;S =) fs1
?
= t1; : : : ; sn

?
= tng [P

0;S

(Note that possibly n = 0.)

2The symbol [below when applied to P is multiset union.

Unification theory 449

Symbol Clash:

ff(s1; : : : ; sn)
?
= g(t1; : : : ; tm)g [P

0;S =) ?

if f 6= g.

Orient:

ft
?
=xg [P 0;S =) fx

?
= tg [P 0;S

if t is not a variable.

Occurs Check:

fx
?
= tg [P 0;S =) ?

if x 2 Vars(t) but x 6= t.

Variable Elimination:

fx
?
= tg [P 0;S =) P 0fx 7! tg;Sfx 7! tg [fx � tg

if x 62 Vars(t).

In order to unify s and t, we create an initial system fs=? tg; ; and apply succes-
sively rules from U ; we show below that such a process must terminate, producing
a terminal system (i.e., to which no rule applies) in the form of ? or ;;S, where S
is a solved form system representing the mgu of s and t.
The inference system U is in essence the same algorithm for uni�cation presented

by Herbrand (see Appendix 3 in [Herbrand 1971]); more recently, this formulation
of the uni�cation process was introduced by Martelli and Montanari [1982] and has
gained wide currency as a formalism for representing uni�cation algorithms (see,
for example, [Jouannaud and Kirchner 1991, Snyder 1991]).
Before considering U per se, let us consider how this set of transformations might

simulate the actions of the recursive descent algorithm. Suppose we were to print
out a trace of the terms s and t, and the global substitution �, just before the third
if-statement in Unify, e.g.,

s1 t1 Id
s2 t2 �2
s3 t3 �3
: : :

This sequence can be simulated by a sequence of transformations

fs1=? t1g; ;
=) fs2=? t2g [P2;S2
=) fs3=

? t3g [P3;S3
=) : : :

450 Franz Baader and Wayne Snyder

where each si=
? ti is the equation acted on by the rule, and each �i is identical

to �Si . Furthermore, if the call to Unify ends in failure, then the transformation
sequence ends in ?; and if the call to Unify terminates with success, with a global
substitution �n, then the transformation sequence ends in a system ;;S where
�S = �n. This simulation can be achieved by treating the multiset P as a stack,
always applying a rule to the top equation, and only using Trivial when s is a
variable; there is only one possible rule to apply at each step under this control
strategy.
Therefore, U can be viewed as an abstract version of the recursive descent algo-

rithm, and can be used to prove its correctness. In fact, U has many interesting
features in its own right, as we now proceed to show.

2.2.4. Technical results about U
In this section we present a number of results about U , adapted from Martelli and
Montanari [1982]. Perhaps the simplest property to show is termination.

2.2. Lemma. For any �nite multiset of equations P , every sequence of transforma-
tions in U

P ; ; =) P1;S1 =) P2;S2 =) : : :

terminates either with ? or with ;;S, with S in solved form.

Proof. De�ne a complexity measure hn1; n2; n3i on multisets of equations, ordered
by the (well-founded) lexicographic ordering on triples of natural numbers, where

n1 = The number of distinct variables in P ;
n2 = The number of symbols in P ; and
n3 = The number of equations in P of the form t=? x, with t not a variable.

Each rule in U reduces the complexity of the problem P . Furthermore, any equation
must �t into one of the cases mentioned on the left-hand sides of the rules, so that
a rule can always be applied to a system with non-empty P . Thus, a system to
which no rule applies must be in the form ? or ;;S. Since whenever an equation is
added to S, the variable on the left-side is eliminated from the rest of the system,
each of the systems S1; S2; : : : ; S must be in solved form.

Another interesting fact is that a solution � produced by U is always idempotent.

2.3. Corollary. If P ; ; =)+ ;;S, then �S is idempotent.

One of the most interesting features of U is that its rules do not change the set of
uni�ers of a system. The main correctness results about U are essentially corollaries
of this fact.

2.4. Lemma. For any transformation P ;S =) �, a substitution � uni�es P ;S i�
it uni�es �.

Unification theory 451

Proof. The only non-trivial cases concern Occurs Check and Variable Elimination.
If x occurs in, but is not equal to, t, then clearly x contains fewer symbols than t;
but then x� must also contain fewer symbols than t�, so that x and t can have no
uni�er.
Regarding Variable Elimination, we know that x� = t�, from which (by structural

induction) we can show that

u� = (ufx 7! tg)�

for any term u, or indeed for any equation or multiset of equations. But then

P 0� = P 0fx 7! tg� and S� = Sfx 7! tg�

from which the result follows.

The �rst of our major results about U shows that it does indeed produce a uni�er.

2.5. Theorem. (Soundness) If P ; ; =)+ ;;S, then �S uni�es every equation in
P .

Proof. Note that �S uni�es S, because it is idempotent; a simple induction with
lemma 2.4 shows that �S must unify the equations in P .

Our second major result shows that U is able to calculate anmgu for two uni�able
terms.

2.6. Theorem. (Completeness) If � uni�es every equation in P , then any maximal
sequence of transformations

P ; ; =) : : :

must end in some system ;;S such that �S �� �.

Proof. Lemmas 2.2 and 2.4 show that such a sequence must end in some terminal
system ;;S where � uni�es S. Now for every binding x 7! t in �S,

x�S� = t� = x�;

and for every x 62 Dom(�S), x�S� = x�, so that � = �S�.

An immediate consequence of these two results is the following.

2.7. Corollary. If P has no uni�er, then any maximal transformation sequence
from P ; ; must have the form

P ; ; =) : : : =) ?:

452 Franz Baader and Wayne Snyder

The most interesting feature of this proof (and the reason for the emphasis on the
word \any") is that the choice of a rule to apply at any stage of the computation is
don't care non-deterministic, which implies that any control strategy will result in
an mgu for two uni�able terms, and failure for two non-uni�able terms. Thus, any
practical uni�cation algorithm which proceeds by performing the atomic actions of
U , in any order, is sound and complete, and in particular it generates idempotent
mgus for uni�able terms. However, some sequences of these basic operations may
be longer than others, or create larger terms, and not all sequences end in the same
exact mgu. Before considering the issue of complexity in detail, we digress for a
moment to consider this last point.

2.2.5. Some properties of MGU's
Theorem 2.6 shows that any substitution produced by U (or any algorithm that U
can simulate) is a compact representation of the (in�nite) set of all uni�ers, which
could be generated by composing all possible substitutions with the mgu. This
means that no information is lost in symbolic computation systems (such as �rst-
order theorem provers and logic-programming interpreters) in solving a uni�cation
subproblem and applying the solution to the rest of the computation (this is what
happens, in fact, during the uni�cation process itself).
The inference system U , starting from a single pair of terms s and t, could produce

(�nitely) many di�erent terminal forms, corresponding to distinct mgus for s and t.
What is the relationship of these distinct mgus? Are there other mgus than these?
Is there an in�nite number? The key to answering these questions lies in the concept
of a variable renaming, de�ned in section 2.1: if � and � are both mgus of s and
t, then �

�

= �, i.e., they are instances of each other, and hence � = �� for some
variable renaming � (for a proof, see [Lassez et al. 1987].)
This means that the set of mgus of two terms can be generated from a single mgu,

by composition with variable renamings (which is a special case of the fact that the
set of all uni�ers can be generated by composition with arbitrary substitutions). By
such an operation, it is possible to create an in�nite number of idempotent mgus
and an in�nite number of non-idempotent mgus; the �nite search tree generated by
U is not able to construct any arbitrary mgu, nor even every idempotent mgu.
An oft-repeated phrase in the literature states that \mgus are unique up to

renaming"; the reader should now understand that this vague statement should
more properly be: \mgus are unique up to composition with a variable renaming."
This brief exposition of some of the important properties of mgus should convince

the reader that the collection of all uni�ers of two terms has non-trivial properties;
later on in this chapter we shall examine the even more complex case of sets of
uni�ers for E-uni�cation problems. For further characterizations of the set of mgus
produced by U , and on uni�ers in general, see [Lassez et al. 1987, Eder 1985].

2.2.6. Complexity of recursive descent
This section will begin to consider the complexity of the uni�cation process, a ques-
tion which will motivate the consideration of further, more sophisticated algorithms

Unification theory 453

for uni�cation.
The approaches to uni�cation so far considered, unfortunately, can take expo-

nential time and space.

2.8. Example.

h(x1; x2; : : : ; xn; f(y0; y0); : : : ; f(yn�1; yn�1); yn)

and
h(f(x0; x0); f(x1; x1); : : : ; f(xn�1; xn�1); y1; : : : ; yn; xn)

Unifying these two terms will create an mgu where each xi and each yi is bound to
a term with 2i+1�1 symbols. Clearly the problem is that the substitution contains
many duplicate copies of the same subterms. One idea that might help here would
be to represent substitutions as \triangular forms." Thus,

[y0 7! x0; yn 7! f(yn�1; yn�1); yn�1 7! f(yn�2; yn�2); : : :]

would be a triangular form uni�er of the two terms. Building up such a substitution
during uni�cation consists of simply collecting a list of bindings; no duplicate terms
are created, and hence triangular form uni�ers can be no larger than the original
problem.
Unfortunately, this good idea is not suÆcient to rescue the algorithm, as it ap-

pears that substitution, and hence the duplication of subterms, is necessary in the
terms themselves: in the example, the call to Unify on the last arguments, xn and
yn, which by then are bound to terms with 2n+1� 1 symbols, will lead to an expo-
nential number of recursive calls. The solution to this problem is to develop a more
subtle data structure for terms, and a di�erent method for applying substitutions.

2.3. Uni�cation of term dags

In this section, we consider two approaches to speeding up the uni�cation process.
The �rst approach, which we adapt from Corbin and Bidoit [1983], �xes the problem
of duplication of subterms created by substitution by using a graph representation of
terms which can share structure; this results in a quadratic algorithm. To develop an
asymptotically faster algorithm, however, it is necessary to abandon the recursive
descent approach, and recast the problem of uni�cation as the construction of a
certain kind of equivalence relation on graphs. This second approach is due to Huet
[1976].

2.3.1. Term dags and substitution
Concerning example 2.8, it should be remarked that the explosion in the size of
the terms occurred precisely because there were duplicate occurrences of the same
variables, which cause a duplication of ever larger and larger terms. In order to �x
this problem, it is necessary to consider in detail how to represent terms as explicit
graphs which share subterms.

454 Franz Baader and Wayne Snyder

2.9. Definition. A term dag is a directed, acyclic graph whose nodes are labeled
with function symbols, constants, or variables, whose outgoing edges from any node
are ordered, and where the outdegree of any node labelled with a symbol f is equal
to the arity of f (variables have outdegree 0).

In such a graph, each node has a natural interpretation as a term, and we shall
speak of nodes and terms as if they were one and the same (e.g., a \node" f(a; x)
is one labeled with f and having arcs to nodes a and x). The only di�erence be-
tween various dags representing a particular term is the amount of structure sharing
among the subterms. For example, we could represent the term f(g(a; x); g(a; x))
by any of the following dags:

a

g g

a xx

f f

g g

a ax

f

g

a x

Assuming that names of symbols are strings of characters, it is possible to create a
dag with unique, shared occurrences of variables in O(n), where n is the number of
all characters in the string representation of a uni�cation problem. For example, one
can use a trie to store the variable names when parsing the terms, so that duplicate
occurrences of variables can be pointed to a unique, shared representation of the
variable. In the normal case, names have a constant size, and n just represents the
number of symbols in the term; we make this assumption in what follows.
Therefore, we assume that the input to our algorithm is a term dag representing

the two terms to be uni�ed, with unique, shared occurrences of all variables. We
also assume that each node t has an attribute parents(t) which is a list of all parents
of t in the graph (i.e., all nodes p which point to t), but do not show these in the
diagrams below for simplicity. Parent pointers are necessary when sharing nodes in
the dag.
A substitution involving only the subterms of a term dag can be represented

directly by a relation on the nodes of the dag , either stored explicitly as a list
of pairs of pointers to nodes, or by storing a link (we will call these substitution
arcs) in the graph itself, and maintaining a list of variables (nodes) bound by the
substitution. Application of such a substitution can be implicit or explicit, the latter
involving actual moving of subterm links. For example, two terms f(x; g(a)) and
f(g(y); g(y)), and their mgu fx 7! g(a); y 7! a g can be represented by the dag :

x g g g

f f

a y

Unification theory 455

The implicit application of a substitution identi�es two nodes connected with a
substitution arc, without actually moving any of the subterm links; the binding for
a variable can be determined by traversing the graph depth �rst, left to right. This
essentially represents the triangular form (e.g., [x 7! g(y); y 7! a]) in the dag . We
use this form of substitution in the algorithm of section 2.3.3.
The explicit application of a substitution expresses the substitution of binding

for variable by moving any arc (subterm or substitution) pointing to a variable to
point to the binding. For example,

x g g g

f f

a y

This represents the \functional" form fx 7! g(a); y 7! a g of the substitution in a
direct way. We shall use this explicit form of application in the next algorithm.

2.3.2. Recursive descent on term dags
In this section we present the �rst algorithm which uses term dags. If we think about
tracing the operation of the recursive descent algorithm on this new data structure,
it might appear that the source of exponential blowup has been removed, since
substitution does not duplicate terms. However, it still may be possible to have
duplicate calls to the same term; in example 2.8, for instance, the terms bound to
xn and yn (see �g. 1) will be uni�ed when x0 is bound to y0; however, the recursive
descent algorithm will then blithely explore every other path through the pair of
terms, resulting in an exponential number of recursive calls.

f

f
.
.
.

f

x0

f

f

f
.
.
.

y0

xn yn

xn�1

x1

yn�1

y1

Figure 1: A dag representation of the terms bound to xn and yn in example 2.8.

456 Franz Baader and Wayne Snyder

Clearly, we need to keep from revisiting already-solved problems in the graph.
The best solution is simply to do structure sharing \on the
y" by merging uni�ed
terms (which are, after all, now identical), and then checking for identity of nodes
in the �rst step. Merging two nodes s and t in a graph � can be implemented by
moving arcs. Let parents(s) = fp1; : : : ; png; then

1. For each pi, replace the subterm arc pi �! s by pi �! t;

2. Let parents(t) := parents(s) [parents(t); and

3. Let parents(s) := ;.

This shares the structure of t and isolates the node s. In the algorithm below, we
will denote by Replace(�, s, t) the new graph created from a graph � by merging
s and t in this fashion.
The algorithm takes as input a term dag in which all occurrences of variables

are shared (i.e., each variable occurs exactly once). Even with these additions, our
recursive descent algorithm is mostly unchanged:

global � : termDag; f Term dag for s and t with shared variables g
global � : list of pairs of nodes; f Initialized to empty g

UnifyDag(s : node; t : node)
begin

if s and t are the same node then
f Do nothing g

else if s = f(s1; : : : ; sn) and t = g(t1; : : : ; tm) then begin
if f = g then

for i := 1 to n do
UnifyDag(si, ti);

else Exit with failure f Symbol clash g
end
else if s is not a variable then

Unify(t, s);
else if s occurs in t then

Exit with failure; f Occurs check g
else

Add (s; t) to the end of the list �;
� := Replace(�, s, t); f Since they are now uni�ed g

end;

The occurs check is implemented as a standard graph traversal to search for the
given node s below t by following subterm arcs.
The correctness of the data structure for this algorithm is dependent on the

following result from Corbin and Bidoit [1983], which can be proved by induction
on the dag .

2.10. Lemma. Let � be a term dag with nodes x and t such that there is no path
from t to x.

Unification theory 457

� Replace(�, x, t) is an acyclic graph containing the same nodes (with the same
labels) as �.

� Consider a distinguished node in � corresponding to the term s, and let s0 be
the term corresponding to the same node in Replace(�, x, t); then:

{ if s = x, then s0 = x;

{ otherwise, s0 = sfx 7! tg.

In order to prove soundness and completeness, we may again show that U can
\trace" the terms in each call to UnifyDags, the only di�erence being that when
Trivial is used, s may not necessarily be a variable (i.e., when UnifyDag is called on
two terms previously uni�ed, and hence shared as one node). From a logical point
of view (thinking in term of the symbolic expressions being manipulated), nothing
has changed|only the underlying data structure for terms and substitutions.
Thus, the only thing that remains to be considered is the complexity of UnifyDag.

Since each call to this function isolates a node, there can not be more than n calls
in toto (where n is the number of symbols occurring in the original terms). Each
call does a constant amount of work except for the occurs check (which traverses no
more than n nodes) and the moving of no more than n pointers. Maintaining the
lists of parents costs O(n) at each call. The original construction of the dag takes
O(n). This results in a time complexity of O(n2); clearly the space used is O(n).

2.3.3. An almost-linear algorithm
It would be possible to speed up this algorithm by making changes to the way
substitutions are represented (see [Baader and Siekmann 1994]), however, we will
now consider an alternate approach which gives more insight into the nature of uni-
�cation. This approach makes the following fundamental changes to the approach
considered so far:

� instead of recursive calls to pairs of subterms which must be uni�ed, we will
recast the problem as that of constructing an equivalence relation whose classes
are terms that must be uni�ed;

� substitution will (in some sense) be replaced by the union of equivalence classes;
and

� the repeated calls to the occurs check will be replaced by a single pass through
the graph to check for acyclicity.

The term dag data structure will be used for these algorithms as well, however, we
will not move pointers as in the last section. Instead, we consider the uni�cation
problem as one involving the following relation on terms.

2.11. Definition. A term relation is an equivalence relation on terms, and is ho-
mogeneous if no equivalence class contains f(: : :) and g(: : :) with f 6= g; it is acyclic
if no term is equivalent to a proper subterm of itself.
A uni�cation relation is a homogeneous, acyclic term relation satisfying the uni-

�cation axiom: For any f and terms si and ti,

f(s1; : : : ; sn) �= f(t1; : : : ; tn) �! s1 �= t1 ^ : : : ^ sn �= tn:

458 Franz Baader and Wayne Snyder

The uni�cation closure of s and t, when it exists, is the least uni�cation relation
which makes s and t equivalent.

The algorithm presented in this section takes its starting point from the following
fact.

2.12. Lemma. If s and t are uni�able, then there exists a uni�cation closure for s
and t.

Proof. For any uni�er � of s and t, de�ne the relation

u �=� v i� u� = v�:

Clearly this is a uni�cation relation. Since the intersection of two uni�cation rela-
tions relating s and t is again a uni�cation relation relating s and t, whenever s
and t are uni�able there is a least such relation �= which joins classes only when
forced to apply the uni�cation axiom to subterms of s and t.

The uni�cation-closure approach to uni�cation, �rst presented in [Huet 1976],
attempts to construct this relation on two terms, which, as we shall show, corre-
sponds to �nding an mgu. However, before presenting the algorithm, we need a
number of ancillary notions.

2.13. Definition. For any term relation �=, let a schema function be a function &
from equivalence classes to terms such that for any class C,

1. &(C) 2 C; and
2. &(C) is a variable only if C consists entirely of variables.

The term &(C) will be called the schema term for C.

The point here is that the schema term is a functional form whenever such exists,
and will be used to propagate information downward using the uni�cation axiom; it
is also used to de�ne substitutions. Note that schema functions are not unique, but
there always exists at least one for any term relation; we assume in the following
that such a function has been chosen for any given uni�cation closure.
Note that for any acyclic term relation there exists a partial ordering � such that

for any term f(: : : s : : :), we have [f(: : : s : : :)] � [s].

2.14. Definition. For any uni�cation closure �=, de�ne ��= by:

x��= =

(
y if &([x]) = y

f(s1��=; : : : ; sn��=) if &([x]) = f(s1; : : : ; sn)

(This notion is well-de�ned by recursion on the partial order �; Dom(��=) is �nite
because �= has only a �nite number of non-trivial equivalence classes.)

2.15. Theorem. Terms s and t are uni�able i� there is a uni�cation closure for s
and t. In the aÆrmative case, ��= is an mgu for s and t.

Unification theory 459

Proof. The only if direction has been proved in our previous lemma. For the other
direction, let �= be a uni�cation closure for s and t. We claim that for every term u,
u��= = &([u])��= (thus, ��= uni�es each pair of equivalent terms, in particular s and
t), and proceed by induction on the size of u. For the base case, if u is a constant
or variable, then the result is trivial by the de�nition of ��=. Now suppose that
u = f(s1; : : : ; sn) and &([u]) = f(t1; : : : ; tn); since �= is closed under the uni�cation
axiom, then for each i, si �= ti, and thus by the induction hypothesis, si��= = ti��=.
To prove that ��= is an mgu in the aÆrmative case, we show that for any uni�er

�, we have u��=� = u� for any term u, and proceed by induction on �. Assume
that �=� is as de�ned in the previous lemma. (In the following, & refers to some
�xed schema function for ��=.) First, note that if u �= v, then u� = v�, since �= is
contained in �=�. Now, for the base case, if [u] contains only constants and variables,
then u��= = &([u]) �= u, from which it follows that u��=� = u�. For the induction
step, it must be the case that &([u]) equals some f(s1; : : : ; sn), and u is either a term
of the form f(t1; : : : ; tn), or is a variable x. In the �rst case, u��=� = u� by a direct
use of the induction hypothesis. In the second case, x��= = f(s1��=; : : : ; sn��=), and
x� = f(s1; : : : ; sn)� (since �= is contained in �=�), so that

x� = f(s1�; : : : ; sn�) = f(s1��=�; : : : ; sn��=�) = f(s1��=; : : : ; sn��=)� = x��=�;

the second step involving the induction hypothesis.

This result motivates the design of an eÆcient uni�cation algorithm which at-
tempts to build a uni�cation closure for two terms, and then extracts the mgu.
To do this, it is necessary to have some means for maintaining equivalence classes
and for applying the uni�cation axiom to classes; the most eÆcient data structure
represents classes as trees of class pointers (which we represent by dashed lines)
with a class representative at the root:

t1

t4s2

u2

t2 u3

s1u1

t3

To determine whether two terms are equivalent, it is only necessary to �nd the
roots of the trees and check for identity; and to join two classes, one class is made
a subtree of the other's root. To reduce the height of the trees as much as possible,
two subtle re�nements are made: (i) maintain a count of the size of each class in
the representative, and when joining classes, make the smaller one a subtree of the
larger; and (ii) when following paths to the root to determine equivalence, compress
the paths by pointing all nodes encountered directly at the root. For example, if
we wished to take the union of the two classes [t3] and [u3], we would �nd the

460 Franz Baader and Wayne Snyder

representatives for the two classes, compressing the path from t3, and then add a
class link from the representative of the smaller class to the larger:

t1

t4s2

s1 t2

u2

u3
u1 t3

Such a data structure can process a series of O(n) Unions and Finds in O(n�(n)),
where � is the functional inverse of Ackermann's function, and which, for all prac-
tical purposes, may be considered as a small constant factor.
The term dag for this approach needs no parent pointers, as in the previous

algorithm, but does need

� class pointers;

� a counter of the size of the class stored in the representative;

� a pointer from each representative to the schema term for the class;

� boolean
ags visited and acyclic in each node used in cycle checking (both
initialized to false);

� a pointer vars from each representative to a list of all variables in the class
(used when generating solutions).

Note that maintaining lists of parents of each node is not necessary in this algorithm.
A representative is simply a node whose class pointer points to itself. The algorithm
based on this approach may now be given. The term dag � for s and t is initialized
to the identity relation, where each class contains a single term; thus for each node
the class and schema pointers are initialized to point to the same node, and the
size is initialized to 1. The vars list is initialized to empty for non-variable nodes,
and to a singleton list for variable nodes.

global � : termDag; f Term dag for s and t with shared variables g
global � : list of bindings := nil; f Triangular form solution g

Unify(s : node; t : node)
begin

UnifClosure(s, t);
FindSolution(s);

end;

UnifClosure(s : node; t : node)
begin

s := Find(s); f Find representatives g
t := Find(t);
if s and t are the same node then
f Do nothing g

else begin
if &([s]) = f(s1; : : : ; sn) and &([t]) = g(t1; : : : ; tm) for n;m � 0 then begin

Unification theory 461

if f = g then begin
Union(s, t);
for i := 1 to n do

UnifClosure(si, ti);
end
else Exit with failure f Symbol clash g

end
else Union(s, t);

end;
end;

Union(s : node; t : node) f s and t are representatives g
begin

if size(s) � size(t) then begin
size(s) := size(s) + size(t);
vars(s) := concatenation of lists vars(s) and vars(t);
if &([s]) is a variable then

&([s]) := &([t]);
class(t) := s;

end
else begin

size(t) := size(t) + size(s);
vars(t) := concatenation of lists vars(t) and vars(s);

if &([t]) is a variable then
&([t]) := &([s]);

class(s) := t;
end;

end;

Find(s : node) f Returns representative for [s] and compresses paths g
t : node;
begin

if class(s) = s f s is a representative g then
Return s;

else begin
t := Find(class(s));
class(s) := t;
return t;

end;
end;

FindSolution(s : node); f Fails if exists a cycle below s g
begin;

462 Franz Baader and Wayne Snyder

s := &(Find(s));
if acyclic(s) then

Return; f s is not part of a cycle g
if visited(s) then

Fail; f Exists a cycle g
if s = f(s1; : : : ; sn) for some n > 0 then begin

visited(s) := true;
for i := 1 to n do

FindSolution(si);
visited(s) := false;

end;
acyclic(s) := true;
foreach x 2 vars(Find(s)) do

if x 6= s then
Add [x 7! s] to front of �;

end;

If Unify(s, t) does not fail, then � contains a triangular form solution. Find-
Solution attempts to �nd such a solution, and fails i� there exists a cycle in the
graph. (We are essentially traversing the common term s� by replacing s by its
schema term in the �rst line.) The �elds visited and acyclic are both necessary, the
�rst to �nd a cycle in the current exploration path, and the second to keep from
reexamining nodes which have already been excluded from any possible cycles.
The correctness of this method depends on verifying that it implements correctly

the construction of an acyclic uni�cation closure. The essential points are that

� the equivalence is clearly homogeneous;

� equivalence classes are joined i� required by the uni�cation axiom, hence the
relation is least ;

� FindSolution fails i� there is a cycle in the graph; and

� whenever a binding [x 7! s] is added to �, all relevant bindings for variables in
s already occur in �.

The complexity of the algorithm is O(n�(n)), as, with the exception of Find,
each function can be called at most n times for terms with n symbols, and each call
performs a constant amount of work (note that the work of concatenating the vars
lists can be accomplished in O(n) if pointers to the last cell in the list are kept,
and concatenation is performed by moving pointers rather than by the standard
append operation). The dominating cost is therefore the calls to Find, which, as
mentioned above, can cost O(n�(n)).
Linear-time algorithms for uni�cation have been presented by Paterson and Weg-

man [1978] (cf. [Champeaux 1986]) and Martelli and Montanari [1982], to which
we refer the reader for further study.

Unification theory 463

3. Equational uni�cation

Like syntactic uni�cation, equational uni�cation is concerned with the problem of
making terms equal by applying a suitable substitution. The only di�erence is that
syntactic equality is replaced by equality modulo an equational theory E. At �rst
sight, one might think that this is minor change, and that the notions and ap-
proaches from syntactic uni�cation can easily be adapted to this new situation.
It turns out, however, that equational uni�cation requires some non-trivial adjust-
ments of the basic notation. In particular, the notion of a most general uni�er is
no longer suÆcient for the purpose of representing all uni�ers since there may exist
E-uni�able terms that do not have a most general E-uni�er. In the �rst subsection,
we introduce the basic notions as they are currently used in uni�cation theory, and
in the subsequent subsection, we point out some di�erences to the case of syntactic
uni�cation, and explain the reason for introducing the notions in this modi�ed way.
The third subsection introduces order-theoretic, logical, algebraic, and category-
theoretic reformulations of some of these notions. We conclude the section with a
short survey of results in uni�cation theory. Some of these results will be treated
in more detail in subsequent sections.

3.1. Basic notions

An equational theory is de�ned by a set of identities E, i.e., a subset of
T (F ;V)� T (F ;V) for a signature F and a (countably in�nite) set of variables V .
It is the least congruence relation on the term algebra T (F ;V) that is closed under
substitution and containsE, and it will be denoted by =E (see ?? for a more detailed
de�nition of the relation =E). Identities are written in the form s � t. If s =E t,
then we say that the term s is equal modulo E to the term t. For example, let f be
a binary function symbol. The identity C := ff(x; y) � f(y; x)g says that f is com-
mutative, and the identity A := ff(f(x; y); z) � f(x; f(y; z))g expresses associativ-
ity of f . We have f(f(a; b); c) =C f(c; f(b; a)), and f(a; f(x; b)) =A f(f(a; x); b).
In the following, we will often slightly abuse the notion of an equational theory by
also calling a set of de�ning identities E an equational theory. For a given set of
identities E, we denote by Sig(E) the set of all function symbols occurring in E.

3.1. Definition. Let E be an equational theory and F a signature containing
Sig(E). An E-uni�cation problem over F is a �nite set of equations

� = fs1
?
=
E
t1; : : : ; sn

?
=
E
tng

between F-terms with variables in a (countably in�nite) set of variables V . An E-
uni�er of � is a substitution � such that s1� =E t1�; : : : ; sn� =E tn�. The set of
all E-uni�ers of � is denoted by UE(�), and � is E-uni�able i� UE(�) 6= ;.

Obviously, syntactic uni�cation is the special case of this de�nition where E = ;.
Any syntactic uni�er of an E-uni�cation problem � is also an E-uni�er, but for

464 Franz Baader and Wayne Snyder

E 6= ;, the set UE(�) may have additional elements. For example, if a and b are
distinct constant symbols, then the C-uni�cation problem ff(a; x)=?

C f(b; y)g has
fx 7! b; y 7! ag as C-uni�er, whereas the terms f(a; x) and f(b; y) do not have a
syntactic uni�er. For the A-uni�cation problem � := ff(a; x)=?

A f(y; b)g, the set
UA(�) contains the syntactic uni�er fx 7! b; y 7! ag of f(a; x) and f(y; b), but also
additional A-uni�ers such as fx 7! f(z; b); y 7! f(a; z)g.
The instantiation quasi-ordering �� on substitutions is adapted to the case of

equational uni�cation as follows:

3.2. Definition. Let E be an equational theory and X a set of variables. The
substitution � is more general modulo E on X than the substitution � i� there
exists a substitution � such that x� =E x�� for all x 2 X . In this case we write
� ��XE � and say that � is an E-instance of � on X .

It is easy to see that ��XE is a quasi-ordering, i.e., a re
exive and transitive binary

relation. The associated equivalence is denoted by
�

=
X
E , i.e., �

�

=
X
E � i� � ��XE � and

� ��XE �.
When comparing E-uni�ers of a problem �, the set X is the set of all vari-

ables occurring in �. Unlike the case of syntactic uni�cation, uni�able E-uni�cation
problems need not have a most general E-uni�er. For example, the C-uni�cation
problem ff(x; y)=?

C f(a; b)g has the two C-uni�ers �1 := fx 7! a; y 7! bg and
�2 := fx 7! b; y 7! ag. On Var(�) = fx; yg, any C-uni�er of � is equal to either
�1 or �2, and �1 and �2 are not comparable w.r.t the instantiation quasi-ordering

��fx;ygC . Consequently, there cannot be a most general C-uni�er of �. Thus, the rôle
of the most general uni�er must in general be taken on by a complete set of uni�ers.

3.3. Definition. Let � be an E-uni�cation problem over F and let X := Var(�)
be the set of all variables occurring in �. A complete set of E-uni�ers of � is a set
C of substitutions such that

1. C � UE(�), i.e., each element of C is an E-uni�er of �,
2. for each � 2 UE(�) there exists � 2 C such that � ��XE �.

The set C is a minimal complete set of E-uni�ers of � i� it is a complete set that
satis�es

3. two distinct elements of C are incomparable w.r.t. ��XE , i.e., for all �; �
0 2 C,

� ��XE �0 implies � = �0.

The substitution � is a most general E-uni�er of � i� f�g is a (minimal) complete
set of E-uni�ers of �.

If the uni�cation problem � is not E-uni�able, then the empty set is a minimal
complete set of E-uni�ers of �. Depending on the equational theory E, minimal
complete sets of E-uni�ers need not always exist, and even if they do, they may be
in�nite (see below). It is, however, easy to show that they are unique up to instan-

tiation equivalence
�

=
X
E (see subsection 3.3.1). This makes sure that the following

de�nition of the uni�cation type of an E-uni�cation problem and of an equational
theory E is unambiguous.

Unification theory 465

3.4. Definition. Let E be an equational theory, and let � be an E-uni�cation
problem over F . The problem � has type unitary (�nitary , in�nitary) i� it has
a minimal complete set of E-uni�ers of cardinality 1 (�nite cardinality, in�nite
cardinality). If � does not have a minimal complete set of E-uni�ers, then it is of
type zero. We abbreviate type unitary by 1, type �nitary by !, type in�nitary by
1, and type zero by 0, and order these types as follows: 1 < ! <1 < 0.
The uni�cation type of E w.r.t. the signature F is the maximal type of an E-

uni�cation problem over F .

According to this de�nition, an equational theory that is unitary is not �nitary,
and a theory of type zero is not in�nitary. In the literature, these notion have
sometimes been de�ned such that unitary implies �nitary (i.e., unitary theories are a
special case of �nitary theories) and type zero implies in�nitary. We prefer a stricter
separation between the types. In order to express that a theory is unitary or �nitary
(in the sense of de�nition 3.4) we say that it is at most �nitary . Analogously, to
express that a theory is in�nitary or of type zero we say that it is at least in�nitary .
It should also be noted that the uni�cation type of an equational theory depends

not only on E, but also on the set of function symbols F that are allowed to occur
in the uni�cation problems (see subsection 3.2.2 for more details). We provide an
example for each of the four types.

3.5. Example (unitary). Since any uni�able uni�cation problem has a most gen-
eral syntactic uni�er, the empty theory ; (which obviously de�nes syntactic equal-
ity) has uni�cation type unitary w.r.t. any signature F .

3.6. Example (�nitary). Above, we have seen that commutativity C is not unitary
since the C-uni�cation problem ff(x; y)=?

C f(a; b)g does not have a most general
C-uni�er. It is not hard to show that C is �nitary w.r.t. any signature F . In fact,
the C-equivalence class [t]C := ft0 j t=C t0g of a given term t is easily shown to be
�nite. For a given C-uni�cation problem � = fs1=?

C t1; : : : ; sn=
?
C tng, we consider

all possible syntactic uni�cation problems of the form �0 = fs01=
? t01; : : : ; s

0
n=

? t0ng
where si =C s0i and ti =C t0i for all i; 1 � i � n. There are only �nitely many
such sets �0, and it can be shown that the collection of all the syntactic most
general uni�ers of these sets is a complete set of C-uni�ers of � [Siekmann 1979].
In most cases, this set is not minimal, but obviously a minimal complete set can be
obtained by eliminating redundant elements, i.e., elements that are C-instances of
other elements of the set.

3.7. Example (in�nitary). Even though associativity A is similar to C in that A-
equivalence classes are �nite, the uni�cation method outlined for C does not work
for A. It is easy to see that the A-uni�cation problem ff(a; x)=?

A f(x; a)g has an
in�nite minimal complete set of A-uni�ers, namely f�n j n � 1g, where for each
n the substitution �n := fx 7! f(a; f(a; � � � ; f(a; a) � � �))g replaces x by a term
containing n occurrences of the constant a. Consequently, A cannot be unitary or
�nitary. Plotkin [1972] describes a procedure that generates a minimal complete

466 Franz Baader and Wayne Snyder

set of A-uni�ers of a given A-uni�cation problem over an arbitrary set of function
symbols F , which shows that A is in fact in�nitary and not of type zero.

3.8. Example (zero). The �rst example of an equational theory of uni�cation
type zero was described by Fages and Huet [1983] and [1986]. In [Baader
1986] it is shown that the theory of idempotent semigroups, i.e., AI := A [
ff(x; x) � xg is of uni�cation type zero since the AI-uni�cation problem
ff(x; f(y; x))=?

AI f(x; f(z; x))g does not have a minimal complete set of AI-uni�ers.
This result was also shown by Schmidt-Schau� [1986b], but his example problem
ff(z; f(a; f(x; f(a; z))))=?

AI f(z; f(a; z))g contains an additional constant a.

For syntactic uni�cation, a \uni�cation algorithm" is an algorithm that com-
putes a most general (syntactic) uni�er of a given uni�cation problem if it exists,
and determines non-uni�ability otherwise. For equational uni�cation, this notion
must be adapted. More precisely, we are interested in di�erent types of algorithms,
depending on what the equational theory allows and what is needed in applications.
An E-uni�cation algorithm (w.r.t. F) is an algorithm that computes a �nite com-

plete set of E-uni�ers for all E-uni�cation problems over F . Ideally, the computed
sets should also be minimal. There are, however, theories for which it is easier to
compute a not necessarily minimal set (commutativity C is an example). We call
an E-uni�cation algorithm minimal i� it computes a �nite minimal complete set
of E-uni�ers. As mentioned in example 3.6, an E-uni�cation algorithm can always
be turned into a minimal one by eliminating redundant uni�ers, provided that the
E-instantiation quasi-ordering is decidable.
In applications such as constraint-based approaches to automated deduction and

rewriting (see [B�urckert 1991, Nieuwenhuis and Rubio 1994, Kirchner and Kirchner
1989] and 7), it is not necessary to compute complete sets of uni�ers. Instead, it is
suÆcient to test uni�cation problems for uni�ability. An algorithm that is able to
decide uni�ability of E-uni�cation problems (over F) is called a decision procedure
for E-uni�cation (w.r.t. F). Obviously, any E-uni�cation algorithm yields a decision
procedure for E-uni�cation since a given E-uni�cation problem � is uni�able i� the
computed �nite complete set is nonempty.
For theories that are not unitary or �nitary, the notion of an E-uni�cation al-

gorithm, as introduced above, is not appropriate. A (minimal) E-uni�cation pro-
cedure is a procedure that enumerates a possibly in�nite (minimal) complete set
of E-uni�ers. The procedure by Plotkin [1972] mentioned in example 3.7 is a mini-
mal A-uni�cation procedure. An E-uni�cation procedure need not yield a decision
procedure for E-uni�cation since it need not terminate even if the input prob-
lem does not have E-uni�ers. This is, e.g., the case for Plotkin's procedure. A-
uni�cation (more precisely, the question whether there exists an A-uni�er for a
given A-uni�cation problem) is nevertheless decidable, but this is a lot harder to
show [Makanin 1977] than designing a minimal A-uni�cation procedure.

Unification theory 467

3.2. New issues

The notions introduced above deviate in several respects from the notions intro-
duced for syntactic uni�cation. In this subsection, we point out the reasons why
this was necessary.

3.2.1. The instantiation quasi-ordering
For syntactic uni�cation, the instantiation quasi-ordering�� was de�ned by � �� � i�
there exists � such that � = ��. In the de�nition of the instantiation quasi-ordering
for E-uni�cation, syntactic equality is (quite naturally) replaced by equality mod-
ulo E. What may seem less clear is why we have restricted this equality (modulo
E) to the variables occurring in the uni�cation problem. Obviously, the ordering
obtained this way is stronger than the one that requires equality on all variables
(i.e., more substitutions are comparable). In applications in automated deduction,
where substitutions generally have meaning only in the context of the expressions
(i.e., uni�cation problems) that produced them, it is admissible to use an ordering
that compares alternate solutions only with respect to this small set of variables.
It is also advisable, as this stronger ordering allows for smaller minimal complete
sets. For example, the theory ACU := AC [ff(x; e) = xg is known to be uni-
tary w.r.t. F := ff; eg. If the weaker instantiation quasi-ordering (i.e., the one
comparing substitutions on all variables) were used, this would no longer be true
[Baader 1991].
Another di�erence between the equational case and the syntactic case concerns

the characterization of the instantiation equivalence
�

=. For E = ;, two substitutions
are instantiation equivalent i� they are equal up to composition with a variable
renaming. It should be noted that this need no longer be the case for E 6= ;,
even if one replaces \equal up to composition with a variable renaming" by \equal
modulo E up to composition with a variable renaming." For example, consider the
equational theory I := ff(x; x) � xg, and the substitutions � := fx 7! yg and
� := fx 7! f(y; z)g. Using the substitutions �1 := fy 7! f(y; z)g and �2 := fy 7!

y; z 7! yg, it is easy to show that �
�

=
fxg
E �. However, a variable renaming cannot

identify y and z, and thus f(y; z)� 6=I y for every such renaming �.

3.2.2. The signature matters
In the de�nitions of E-uni�cation problems, uni�cation type, etc., we have always
explicitly stated which function symbols may occur in the uni�cation problems. The
reason is that the uni�cation properties of an equational theory (like decidability,
uni�cation type, etc.) may depend on this set of function symbols. In most cases,
however, a less �ne-grained distinction is suÆcient. Recall that Sig(E) denotes the
set of all function symbols occurring in the equational theory E.

3.9. Definition. Let E be an equational theory and � an E-uni�cation problem
over F .

� � is an elementary E-uni�cation problem i� F = Sig(E).

468 Franz Baader and Wayne Snyder

� � is an E-uni�cation problem with constants i� F nSig(E) is a set of constant
symbols.

� In a general E-uni�cation problem, F nSig(E) may contain arbitrary function
symbols.

Following this distinction, we can introduce three di�erent uni�cation types for
an equational theory. The uni�cation type of E w.r.t. elementary uni�cation is
the maximal uni�cation type of E w.r.t. all sets of function symbols F satisfying
F = Sig(E). Accordingly, the uni�cation type of E w.r.t. uni�cation with constants
is the maximal uni�cation type of E w.r.t. all sets of function symbols F such that
F nSig(E) is a set of constant symbols, and the uni�cation type of E w.r.t. general
uni�cation3 is the maximal uni�cation type of E w.r.t. all signatures F . Obviously,
the same distinction can be made for decidability of E-uni�cation, and for other
interesting properties of E-uni�cation problems. Constant (function) symbols that
do not occur in E are called free constant (function) symbols w.r.t. E.
The theory ACU introduced above is an example of a theory that is unitary

for elementary uni�cation, but only �nitary for uni�cation with constants (see,
e.g., [Herold and Siekmann 1987]). B�urckert [1989] has shown that there exists an
equational theory for which elementary uni�cation is decidable, but uni�cation with
constants is undecidable.
Applications of equational uni�cation in automated deduction usually yield gen-

eral uni�cation problems. For example, in resolution-based theorem proving, the
additional free function symbols are often generated by Skolemization.
From a strictly formal point of view, the de�nition of an E-uni�er (see de�ni-

tion 3.1) is ambiguous since it does not specify over which signature the terms that
are substituted for the variables may be built. By default, we have assumed that
this set is the set F , which contains all function symbols occurring in E or �. One
might ask whether there would be a signi�cant di�erence if we allowed the substi-
tutions to introduce additional free function symbols. It is easy to show, however,
that there is no such di�erence since any E-uni�er of � that introduces additional
free function symbols is an instance of an E-uni�er that uses only symbols from F :
this more general uni�er can, in principle, be obtained by replacing subterms start-
ing with such additional function symbols by new variables, while taking care that
=E-equal subterms are replaced by the same variable. Thus, if we restrict the set
of E-uni�ers to substitutions over F , we obtain a complete set of E-uni�ers even
w.r.t. substitutions over larger signatures. This justi�es the (formally somewhat
sloppy) de�nition of the set of E-uni�ers given above.

3.2.3. Single equations versus systems of equations
For syntactic uni�cation, solving a system of term equations can be reduced to
solving a single equation s=? t. For this reason, syntactic uni�cation is sometimes
only considered for single equations. For equational uni�cation, the same holds if

3It should be noted that this use of the term \general uni�cation" is distinct from the one
in [Gallier and Snyder 1989, Snyder 1991], where it refers to methods that provide uni�cation
procedures for arbitrary equational theories (see section 4.1).

Unification theory 469

one considers general uni�cation. In fact, if f 2 F is an n-ary function symbol not
contained in Sig(E), then the E-uni�cation problem fs1=?

E t1; : : : ; sn=
?
E tng over

F has the same set of uni�ers as ff(s1; : : : ; sn)=?
E f(t1; : : : ; tn)g.

For elementary uni�cation and for uni�cation with constants, however, there may
be signi�cant di�erences. For example, there exists an equational theory E such
that all elementary E-uni�cation problems of cardinality 1 (i.e., single equations)
have minimal complete sets of E-uni�ers, but E is of type zero w.r.t. elementary
uni�cation since there exists an elementary E-uni�cation problem of cardinality
2 that does not have a minimal complete set of E-uni�ers [B�urckert, Herold and
Schmidt-Schau� 1989]. Narendran and Otto [1990] give an example of a theory such
that uni�ability of elementary uni�cation problems of cardinality 1 is decidable, but
uni�ability is undecidable for elementary uni�cation problems of larger cardinality.

3.3. Reformulations

In this subsection, we consider reformulations of (some of) the notions introduced
above from an order-theoretic, logical, algebraic, and category-theoretic point of
view. This will shed a new light on the notions, and it allows us to utilize approaches
and results from the respective areas in uni�cation theory.

3.3.1. The order-theoretic point of view
Let E be an equational theory and � an E-uni�cation problem with variables
X := Var(�). We know that the relation ��XE is a quasi-ordering on UE(�) with

associated equivalence relation
�

=
X
E . Thus, ��

X
E induces a partial ordering � on the

set U := f[�] j � 2 UE(�)g of all
�

=
X
E -classes [�] := f� j �

�

=
X
E �g:

[�] � [�] i� � ��XE �:

This allows us to investigate notions like complete and minimal complete sets of
E-uni�ers on the abstract order-theoretic level.
Thus, let (U;�) be an arbitrary partially ordered set. A subset C of U is called

complete i� for all u 2 U there exists c 2 C such that such that c � u. A complete
set C is called minimal i� it is minimal with respect to set inclusion.

3.10. Lemma. The complete set C � U is minimal i� for all x; y 2 C, x � y
implies x = y.

Proof. If the elements x; y of the complete set C satisfy x < y, then C nfyg is also
complete, which shows that C is not minimal. Conversely, if C1; C2 are complete
sets such that C1 � C2, then there exists y 2 C2 n C1. Since C1 is complete, there
exists x 2 C1 such that x � y, and since y 62 C1, we have x 6= y.

The following lemma describes the connection between minimal complete sets
and minimal elements in partially ordered sets.

470 Franz Baader and Wayne Snyder

3.11. Lemma. Let M be the set of �-minimal elements of U .

1. If C � U is a minimal complete set, then C =M .

2. If M is complete, then it is minimal complete.

Proof. The second statement is obvious, since di�erent �-minimal elements of U
cannot be comparable w.r.t. �. To show the �rst statement, let C � U be a minimal
complete set. Obviously, M � C since any �-minimal element must be contained
in a complete set. To see the other inclusion, assume that y 2 C is not minimal.
Thus, there exists an element y0 2 U such that y0 < y. Since C is complete, there
exists x 2 C such that x � y0. Thus, we have x; y 2 C with x < y, which shows
that C cannot be minimal.

Figure 2 shows (the Hasse diagrams of) two partially ordered sets. The left one
consists of an in�nitely descending chain x1 > x2 > x3 > � � �. Consequently, the
set of �-minimal elements is empty, and thus not complete. The right one also
contains an in�nitely descending chain (consisting of the elements y1; y2; : : :), but
the set of �-minimal elements (the elements z1; z2; : : :) is obviously complete. If

x1

x2

x3

x5

...

x4

y1

y2

y3

y5

...

y4

z1

z2

z3

z5

z4

...

Figure 2: Two partially ordered sets.

U = f[�] j � 2 UE(�)g is the set of
�

=
X
E -classes of E-uni�ers of �, and � is the

partial ordering on U induced by��XE , then lemma 3.11 yields a nice characterization
of all minimal complete sets of E-uni�ers. If M is a subset of U , then a set of
representatives of M is any subset of UE(�) that contains for each class m 2 M
exactly one representative, i.e., a uni�er �m such that [�m] = m.

3.12. Theorem. LetM be the set of all �-minimal elements of U . If C is a minimal
complete set of E-uni�ers of �, then M = f[�] j � 2 Cg. Conversely, if M is
complete, then any set of representatives of M is a minimal complete set of E-
uni�ers of �.

As an immediate consequence of this theorem we can deduce

Unification theory 471

3.13. Corollary. Let M be the set of all �-minimal elements of U .

1. A minimal complete set of E-uni�ers of � exists i� M is complete.

2. If a minimal complete set of E-uni�ers of � exists, then it is unique up to the

equivalence
�

=
X
E .

In [Baader 1989a], this order-theoretic point of view was used to derive di�erent
characterizations of uni�cation type zero.

3.3.2. The algebraic and logical point of view
It is well known that the decision problems for elementary uni�cation and for uni-
�cation with constants correspond to natural classes of logical decision problems
[Bockmayr 1992], and it turns out that the same is true for general uni�cation.
Before stating these logical characterizations of E-uni�cation, we recall some

results from universal algebra about equationally de�ned classes (see, e.g., [Cohn
1965, Mal'cev 1971, Gr�atzer 1979] for more details). An equational theory E de�nes
a variety (or equational class) V (E), i.e., the class of all models of E. The theory
E is called non-trivial if V (E) contains algebras of cardinality > 1, and trivial
otherwise. Obviously, E is trivial i� x =E y for distinct variables x; y. If E is
a non-trivial equational theory, then V (E) contains free algebras over any set of
generators. In fact, let F0 := Sig(E), and let X be a set of variables of cardinality
�. Then the quotient term algebra T (F0;X)==E

is a free algebra in V (E). Its set
of generators consists of the =E-classes of the variables, and this set has cardinality
� since E was assumed to be non-trivial. We call this algebra the E-free algebra
with generators X .4 The fact that it is free in V (E) means that any mapping from
X into an algebra A 2 V (E) can uniquely be extended to a homomorphism of
T (F0;X)==E

into A.
Now, we introduce the classes of formulae that correspond to equational uni�-

cation problems. Let E be an equational theory, and F0 := Sig(E) be the set of
function symbols occurring in E. An atomic F0-formula is an equation s = t. A
positive F0-matrix is built from atomic F0-formulae using conjunction and disjunc-
tion. A positive F0-sentence is a quanti�er-pre�x followed by a positive F0-matrix
that contains only variables introduced in the pre�x. Without loss of generality
we assume that the variables occurring in the pre�x are all distinct. A positive
existential F0-sentence is a positive F0-sentence whose pre�x contains only exis-
tential quanti�ers, and a positive AE F0-sentence has a pre�x consisting of a block
of universal quanti�ers, followed by a block of existential quanti�ers. The positive
(positive existential, positive AE) fragment of the equational theory E consists of
the set of all positive (positive existential, positive AE) F0-sentences that are valid
in E, i.e., true in all models of E. Accordingly, for an F0-algebra A, the positive
(positive existential, positive AE) theory of A is the set of all positive (positive
existential, positive AE) F0-sentences that are true in A.

4Strictly speaking, the generators are the =E-classes of the elements of X , but since di�erent
variables belong to di�erent classes, we slightly abuse the notation by identifying a variable x 2 X
with its =E-class.

472 Franz Baader and Wayne Snyder

3.14. Theorem. Let E be a non-trivial equational theory, F0 := Sig(E), and V a
countably in�nite set of variables.

1. Elementary E-uni�cation is decidable i� the positive existential fragment of E
is decidable i� the positive existential theory of T (F0;V)==E

is decidable.

2. E-uni�cation with constants is decidable i� the positive AE fragment of E is
decidable i� the positive AE theory of T (F0;V)==E

is decidable.

Proof. (1.1) Let � := fs1=?
E t1; : : : ; sn=

?
E tng be an elementary E-uni�cation

problem, and let Var(�) = fx1; : : : ; xkg. The terms s1; t1; : : : ; sn; tn are F0-terms
with variables in Var(�), which implies that

�� := 9x1: � � � 9xk: s1 = t1 ^ : : : ^ sn = tn

is a positive existential F0-sentence. We claim that � is E-uni�able i� �� holds in
T (F0;V)==E

i� �� is valid in E.
Assume that � is an E-uni�er of �, i.e., s1� =E t1�; : : : ; sn� =E tn�. Without

loss of generality we may assume that � introduces only variables from V . Thus, the
substitution � may also be considered as a valuation of the variables fx1; : : : ; xkg
by elements of T (F0;V)==E

. Conversely, any such valuation can be seen as a sub-
stitution. This shows that � is E-uni�able i� �� holds in T (F0;V)==E

.
If �� is valid in all models of E, it obviously holds in T (F0;V)==E

2 V (E).
Conversely, assume that �� holds in T (F0;V)==E

. If �� is not valid in E, then there
exists an algebra A 2 V (E) in which �� does not hold. By the L�owenheim-Skolem
theorem, we may without loss of generality assume that A is countable. Thus,
there exists a surjective homomorphism from T (F0;V)==E

onto A (extending an
arbitrary surjection of X onto the carrier ofA). Since validity of positive sentences is
invariant under surjective homomorphisms,5 validity of �� in T (F0;V)==E

2 V (E)
implies validity of �� in A, which is a contradiction.
(1.2) Let � = 9x1: � � � 9xn: be a positive existential F0-sentence. Without loss

of generality we may assume that its matrix is in disjunctive normal form, i.e.,
 = 1 _ : : : _ n where the formulae i are conjunctions of equations. Since
existential quanti�er distribute over disjunction, � is valid in E (in T (F0;V)==E

)
i� one of the formulae 9x1: � � � 9xn: i is valid in E (in T (F0;V)==E

). Obviously,
the formulae i can be translated into uni�cation problems �i, and as in part (1.1)
of the proof we can show that �i is uni�able i� 9x1: � � � 9xn: i is valid in E (in
T (F0;V)==E

).
(2) The second equivalence can be shown as in part (1.1) of the proof (since there

we have only used the fact that �� is a positive F0-sentence).
To see the �rst equivalence, assume that � is a positive AE sentence. Skolemizing

the universally quanti�ed variables6 yields a positive existential (F0 [F1)-sentence
�0 such that F1 is a set of constants (not contained in Sig(E)) and � is valid
in E i� �0 is valid in E. As in (1.2) of the proof, �0 can be translated into E-
uni�cation problems � 0

i
such that �0 is valid in E i� one of these uni�cation

5See [Mal'cev 1973], pp. 143, 144 for a proof.
6We must Skolemize the universally quanti�ed variables since we are interested in validity

instead of satis�ability.

Unification theory 473

problems is uni�able. Obviously, the problems � 0

i
are E-uni�cation problem with

constants since they contains the additional Skolem constants F1. Conversely, any
E-uni�cation problem with constants can be turned into a positive AE sentence by
replacing its free constants by universally quanti�ed variables.

The reduction described in part (1.2) of the proof is exponential in the worst case
since the disjunctive normal form of the matrix can be exponential in the size of
 . For syntactic equality (i.e., E = ;), it can be shown that the problem of deciding
validity of positive existential sentences is NP-complete, whereas the corresponding
uni�cation problem is linear [Kozen 1981].
Before we state the analogous correspondence between general E-uni�cation and

the (full) positive fragment of E, we introduce another class of uni�cation problems,
which turns out to be equivalent to general E-uni�cation.

3.15. Definition. An E-uni�cation problem with linear constant restrictions (lcr)
consists of an E-uni�cation problem with constants, �, and a linear ordering < on
the variables and free constants occurring in �. A substitution � is an E-uni�er of
(�; <) i� it is an E-uni�er of � that satis�es

x < c implies c does not occur in x�

for all variables x and free constants c in �.

For example, the (syntactic) uni�cation problem ff(x)=? f(c)g has fx 7! cg as
most general uni�er. Under the restriction x < c, this uni�er is not admissible.

3.16. Theorem. Let E be a non-trivial equational theory, F0 := Sig(E), and V a
countably in�nite set of variables. Then the following statements are equivalent:

1. The positive theory of E is decidable.

2. The positive theory of T (F0;V)==E
is decidable.

3. General E-uni�cation is decidable.

4. E-uni�cation with linear constant restrictions is decidable.

Proof.We only give a sketch of the proof (see [Baader and Schulz 1996] for details).
In order to show (1), (2), it is suÆcient to show that a positive F0-sentence �

is valid in E i� it is true in T (F0;V)==E
. This can be shown as in part (1.1) of the

proof of theorem 3.14.
A given positive sentence � can be turned into a positive existential sentence �0

by Skolemization. As in part (2) of the proof of theorem 3.14, validity of �0 can be
reduced to validity of several E-uni�cation problems, which are general since they
may contain Skolem functions of arbitrary arity. This shows (3)) (1).
A given E-uni�cation problem with linear constant restrictions (�; <) can be

transformed into a positive F0-sentence �
<
� as follows: the matrix of �<� is simply

the conjunction of all equations in �. However, the constants in � are considered
as variables in this matrix. The quanti�er-pre�x contains a universal quanti�er for
every free constant in �, and an existential quanti�er for every variable in �. The

474 Franz Baader and Wayne Snyder

order of the quanti�ers is determined by the linear ordering <. It can be shown
that (�; <) is uni�able i� �<� is valid in E. This proves (1)) (4).
Finally, (4)) (3) follows from the combination result in [Baader and Schulz 1996]

(see section 6).

The following example, in which we assume E = ff(x) � f(x)g, illustrates the
transformation of an E-uni�cation problem with linear constant restrictions into a
positive sentences, and of this positive sentence into a general E-uni�cation problem
(by Skolemization).

uni�cation with lcr positive sentence general uni�cation

fx=?
E f(c)g; x < c 9x:8y: x = f(y) fx=?

E f(h(x))g

fx
:
= f(c)g; c < x 8y:9x: x = f(y) fx=?

E f(d)g

The problem fx=?
E f(c)g is not uni�able under the restriction x < c, since any

uni�er must replace x by f(c), which contains the forbidden constant c. The cor-
responding positive sentence 9x:8y: x = f(y) is not valid since it says that f is
a constant function, which is not true in all models of E. Finally, the general E-
uni�cation problem fx=?

E f(h(x))g, which contains the Skolem function h, is not
uni�able since one obtains an occurs check failure. Changing the linear ordering
to c < x leads to a uni�able uni�cation problem with lcr, and the corresponding
positive sentence is trivially valid.

3.3.3. The category-theoretic point of view
Let � := fsi=?

E ti j i = 1; : : : ; ng be an E-uni�cation problem over F , and
X := Var(�) be the �nite set of variables occurring in �. Since all our calcu-
lations are done modulo E, we may consider the terms si and ti as elements
of T (F ;X)==E

, the E-free algebra with generators X . For example, let F con-
sist of a binary function symbol f , and let A axiomatize associativity of f , i.e.,
A := ff(x; f(y; z)) � f(f(x; y); z)g. The E-free algebra with generators X is the
free semigroup X+, whose elements are the nonempty words over the alphabet X .
Instead of writing terms like f(x; f(y; f(x; x))) in A-uni�cation problems, we can
omit the parentheses and all occurrences of the letter f , and simply write words
like xyxx.
Also, since the instantiation quasi-ordering compares substitutions only on X and

modulo E, each substitution can be seen as a homomorphism from T (F ;X)==E
into

an E-free algebra T (F ;Y)==E
, where Y is a suitable �nite set (of variables or gener-

ators). For example, modulo A, the substitution � := fx 7! f(x; f(y; f(x; x))); y 7!
f(y; z)g can be viewed as a homomorphism �: fx; yg+ ! fx; y; zg+ that maps x to
the word xyxx and y to the word yz.
The E-uni�cation problem � itself can be represented as a pair of homomorphisms

between �nitely generated E-free algebras. Indeed, let I := fx1; : : : ; xng be a set

Unification theory 475

of cardinality n. If we de�ne �; � : T (F ; I)==E
! T (F ;X)==E

by

xi� := si and xi� := ti (i = 1; : : : ; n);

then Æ: T (F ;X)==E
! T (F ;Y)==E

is an E-uni�er of � i� xi�Æ = siÆ = tiÆ =
xi�Æ,

7 that is, i� �Æ = �Æ. Consequently, any E-uni�cation problem over F can be
represented as a parallel pair of morphisms in the following category:8

3.17. Definition. Let E be an equational theory and F be a signature such that
Sig(E) � F . The category CF (E) is de�ned as follows:

1. The objects of CF (E) are the �nitely generated E-free algebras T (F ;X)==E
.

2. The morphisms of CF (E) are the homomorphisms between these algebras. For
a morphism Æ: T (F ;X)==E

! T (F ;Y)==E
, the algebra T (F ;X)==E

is called
its domain, and the algebra T (F ;Y)==E

its codomain.

3. Composition �Æ of morphisms is the usual composition of mappings, which is
only de�ned if the codomain of � coincides with the domain of Æ.

A uni�cation problem in CF (E) is a pair h�; �i of morphisms �; � : T (F ; I)==E
!

T (F ;X)==E
having the same domain and the same codomain. A uni�er of h�; �i

in CF (E) is a morphism Æ with domain T (F ;X)==E
such that �Æ = �Æ.

The instantiation quasi-order, and the notions complete and minimal complete
set of uni�ers as well as most general uni�er can be adapted in an obvious way to
this view of E-uni�cation as a problem in CF(E). For example, the morphism Æ is
a most general uni�er of h�; �i i� it is a uni�er of h�; �i such that, for all uni�ers �
of h�; �i, there exists a morphism � satisfying � = Æ�.
Readers familiar with basic notions from category theory may have noticed that

this de�nition of a most general uni�er of h�; �i strongly resembles the de�nition of
a coequalizer of a parallel pair of morphisms (i.e., a pair with the same domain and
the same codomain). The only di�erence is that for a most general uni�er of h�; �i
to be a coequalizer, the morphism � such that � = Æ� must always be unique.
It is easy to see that a most general uni�er of h�; �i need not be a coequalizer of

this parallel pair. For example, the most general (syntactic) uni�er Æ := fy 7! xg of
the equation f(x; y)=? f(y; x) can be viewed as a morphism ÆY : T (ffg; fx; yg)!
T (ffg;Y) for any �nite set of variables Y containing x. All these morphisms are
most general uni�ers of the parallel pair corresponding to the uni�cation problem
f(x; y)=? f(y; x), but only Æfxg is a coequalizer. More generally, a most general
uni�er in CF (;) need not be a coequalizer, but it can always be transformed into
one by appropriately restricting the set of generators in its codomain.
For nonempty theories, such a transformation need not be possible, however. As

shown in [Baader 1991], there exists an equational theory, namely the theory ACU
that axiomatizes an associative-commutative binary symbol f with a unit e, such
that all solvable uni�cation problems in Cff;eg(ACU) have a most general uni�er,

7Since terms are now viewed as elements of E-free algebras (i.e., =E-equivalence classes), we
may write equality (=) in place of equality modulo E (=E).

8See [Pierce 1991] for basic de�nitions and results of category theory.

476 Franz Baader and Wayne Snyder

but not all solvable uni�cation problems in this category have a coequalizer. In the
applications of E-uni�cation in automated deduction, the additional uniqueness
requirement in the de�nition of a coequalizer is not relevant. Thus, one should stick
with the de�nition of a most general uni�er as introduced above, and not replace
it by the one of a coequalizer.
As such, the simple observation that E-uni�cation has a category-theoretic in-

terpretation does not solve any problems: it just transforms them into a di�erent
representation. This new representation is only of interest if techniques and re-
sults from category theory can be used to solve new and interesting problems in
uni�cation theory. Rydeheard and Burstall [1985] use the category-theoretic repre-
sentation of syntactic uni�cation to derive a uni�cation algorithm based on colimit
constructions in CF (;). In [Baader 1989b], results from category theory on so-called
semi-additive categories are used to obtain results on uni�cation modulo so-called
commutative theories (see subsection 5.2 below).
Even though the construction of the category CF (E) is quite natural, there are

also other ways of representing uni�cation problems in category-theoretic terms.
Whereas Goguen [1989] just introduces the dual category of CF (E) (where mor-
phisms are inverse homomorphisms), Ghilardi [1997] takes a quite di�erent ap-
proach: he considers the category of all algebras in V (E) (not only the �nitely
generated free ones), and represents uni�cation problems as �nitely presented alge-
bras in this category. In this setting, the proof that uni�cation in Boolean algebras
and in primal algebras is unitary [Nipkow 1990] becomes trivial.

3.4. Survey of results for speci�c theories

Research in uni�cation theory has produced results on uni�cation properties of a
great variety of equational theories. In this section, we will brie
y review some of
these results, with an emphasis on the more recent ones that are not yet covered
by previous surveys of the area [Siekmann 1989, Jouannaud and Kirchner 1991,
Kapur and Narendran 1992a, Baader and Siekmann 1994]. For each theory, we are
interested in the decision problem and its complexity as well as its uni�cation type
and the existence of uni�cation algorithms and procedures. Depending on which
kind of uni�cation problems (elementary, with constants, or general) is considered,
there may exist di�erent results for a given theory.

Associativity
The theory Af := ff(f(x; y); z) � f(x; f(y; z))g axiomatizes associativity of the
binary function symbol f .

Decision problem: This problem, which is very hard and had been open for a long
time, was �nally solved by Makanin [1977], who proves decidability of Af -
uni�cation with constants (see also [P�ecuchet 1981, Ja�ar 1990, Abdulrab and
P�ecuchet 1989, Schulz 1993]). Using general combination techniques and an
extension of Makanin's algorithm [Schulz 1992], decidability of general Af -
uni�cation was shown in [Baader and Schulz 1992, Baader and Schulz 1996].

Unification theory 477

The decision problem for Af -uni�cation is NP-hard [Benanav, Kapur and
Narendran 1985]. The known upper bound is still higher, even though there has
recently been considerable progress in lowering the bound: the 3-NEXPTIME
result by Koscielski and Pacholski [1990] was �rst improved to EXPSPACE
by Guti�errez [1998], then to NEXPTIME by Plandowski [1999a], and �nally
to PSPACE [Plandowski 1999b]. Interestingly, the last two results no longer
need Makanin's algorithm, i.e., they yield a new decision procedure that is
independent of Makanin's result.

Uni�cation type: in�nitary for all three kinds of uni�cation problems [Plotkin 1972]
(see also example 3.7).

Uni�cation procedures: Plotkin [1972] describes a minimal uni�cation procedure for
general Af -uni�cation, which can even deal with several associative function
symbols. In general, this procedure does not yield a decision procedure since
it need not terminate even for non-solvable problems or problems having a
�nite minimal complete set of Af -uni�ers. For certain restricted types of Af -
uni�cation problems, modi�cations of Plotkin's procedure can be turned into
decision procedures that are simpler than Makanin's general procedure [Au�ray
and Enjalbert 1992, Schmidt 1998].

Commutativity
The theory Cf := ff(x; y) � f(y; x))g, which axiomatizes commutativity of the
binary function symbol f , has already been considered in example 3.6.

Decision problem: NP-complete for Cf -uni�cation with constants and general Cf -
uni�cation. The hardness result for uni�cation with constants is mentioned in
[Garey and Johnson 1979], where it is attributed to Sethi (private communi-
cation, 1977). A simple NP-hardness proof due to Narendran (private com-
munication, 1993) is sketched in [Baader and Siekmann 1994]. It is easy to
see that this proof can also be used to show NP-hardness of elementary Cf -
uni�cation (private communication by Narendran, 1997).9 NP-decision proce-
dures for general Cf -uni�cation can easily be obtained from the simple uni�ca-
tion algorithm sketched in example 3.6: instead of testing all possible sets �0,
the non-deterministic decision procedure �rst guesses such a set �0, and then
tests whether this set has a syntactic uni�er.

Uni�cation type: �nitary for all three kinds of uni�cation problems [Siekmann
1979].

Uni�cation algorithms: In addition to Siekmann's simple (non-minimal) uni�cation
algorithm for general Cf -uni�cation [Siekmann 1979], various other methods
have been proposed [Fages 1983, Kirchner 1985, Herold 1987]. However, none
of them directly produces a minimal complete set of Cf -uni�ers.

9In this proof, simply replace the constants a; b by the terms ta := f(x; f(x; x) and tb := f(x; x)
and add for each propositional variable q an equation f(xq ; yq)=?

Cf
f(ta; tb), which makes sure

that xq is instantiated either by ta or by tb.

478 Franz Baader and Wayne Snyder

Distributivity
The theories Dl

f;g := ff(x; g(y; z)) � g(f(x; y); f(x; z))g and Dr
f;g := ff(g(y; z); x)

� g(f(y; x); f(z; x))g axiomatize left-distributivity and right-distributivity of f over
g, and their union Df;g := Dl

f;g [D
r
f;g axiomatizes (both-sided) distributivity of

f over g. In addition, we consider combinations of these theories with Ag and
Uf := ff(x; e) � x; f(e; x) � xg.

Decision problem: Dl
f;g-uni�cation (and, by symmetry, Dr

f;g-uni�cation) with con-
stants is decidable in polynomial time [Tid�en and Arnborg 1987].
If one adds a unit for f , i.e., considers Dl

f;g [Uf (or D
r
f;g [Uf), then the prob-

lem becomes much harder since Af -uni�cation can be reduced to (Dl
f;g [Uf)-

uni�cation. Decidability of (Dl
f;g [Uf)-uni�cation with constants was shown in

[Schmidt-Schau� 1996b]. Since this decision procedure can be extended to cope
with linear constant restrictions, general results on the combination of decision
procedures [Baader and Schulz 1996] imply that general (Dl

f;g[Uf)-uni�cation
is decidable.
For uni�cation modulo both-sided distributivity, the decision problem was open
for quite a while. After some preliminary decidability results for restricted
classes of Df;g-uni�cation problems [Contejean 1993, Schmidt-Schau� 1992],
decidability of Df;g-uni�cation with constants was �nally shown by Schmidt-
Schau� [1996a]. His non-deterministic algorithm reduces solvability of Df;g-
uni�cation problems with constants to Af -uni�cation with constants and ACU-
uni�cation with linear constant restrictions. Thus, the algorithm is of quite high
complexity, compared to the best known lower bound, which is NP-hard [Tid�en
and Arnborg 1987].
Undecidability of (Df;g [Ag)-uni�cation with constants was proved in [Szab�o
1982, Siekmann and Szab�o 1989]. This negative result has been strengthened in
[Tid�en and Arnborg 1987]: every equational theory that lies above (Df;g [Ag)
or (Dl

f;g [Uf [Ag) and is consistent with Peano arithmetic (where f stands
for multiplication, g for addition, and e for 1) has an undecidable uni�cation
problem. Decidability of (Df;g [Uf)-uni�cation is still an open problem.

Uni�cation type: in�nitary for Df;g-uni�cation problems with constants and gen-
eral Df;g-uni�cation problems. Szab�o [1982] gives an example of a Df;g-
uni�cation problem with constants whose minimal complete set of uni�ers is
in�nite. The existence of minimal complete sets of Df;g-uni�ers (for all three
kinds of uni�cation problems) is a consequence of the fact that the =Df;g

-class
of a given term is always �nite [Szab�o 1982], which implies that the instan-
tiation quasi-ordering ��XDf;g

is Noetherian [Szab�o 1982, B�urckert et al. 1989].

Dl
f;g-uni�cation (and, by symmetry,D

r
f;g-uni�cation) with constants is unitary,

and an mgu can be computed in polynomial time [Tid�en and Arnborg 1987].

Associativity-commutativity
The theories ACf := Af [Cf and ACUf := ACf [Uf will be considered in
more detail in subsection 5.1. Examples of operations satisfying theses identities
are addition and multiplication of (rational, real, etc.) numbers.

Unification theory 479

Decision problem: NP-complete for uni�cation problems with constants and general
uni�cation problems both for ACf and ACUf [Kapur and Narendran 1992a].
Elementary ACUf -uni�cation problems always have a trivial solution, and solv-
ability of elementary ACf -uni�cation problems is decidable in polynomial time
using linear programming [Domenjoud 1991].

Uni�cation type: ACUf is unitary for elementary and �nitary for the two other
kinds of uni�cation problems, and ACf is �nitary for all three kinds of uni�-
cation problems [Livesey and Siekmann 1975, Stickel 1981, Fages 1987]. The
number of uni�ers in a minimal complete set of ACf -uni�ers may be doubly-
exponential in the size of a given elementary ACf -uni�cation problem [Kapur
and Narendran 1992b].

Uni�cation algorithms: Because uni�cation modulo associativity-commutativity
has many applications in automated deduction, a great variety of uni�cation
algorithms has been developed for ACf and ACUf [Stickel 1975, Livesey and
Siekmann 1975, Kirchner 1985, Fortenbacher 1985, B�uttner 1986a, Herold 1987,
Herold and Siekmann 1987, Lincoln and Christian 1989, Boudet, Contejean and
Devie 1990] (see also subsection 5.1).

Associativity-commutativity-idempotency
We consider the theories ACIf := ACf [ff(x; x) � xg, its extension by a unit
e, ACUIf := ACIf [Uf , and by a zero n, ACUZIf := ACUI [ff(x; n) � ng.
Examples of operations satisfying theses identities are union and intersection of
sets. The theory ACUIf will be considered in more detail in subsection 5.1.

Decision problem: For all three theories, the decision problem is polynomial for
elementary uni�cation and for uni�cation with constants, and NP-complete
for general uni�cation [Kapur and Narendran 1992a, Narendran 1996b]. Like
syntactic uni�cation, ACIf - and ACUIf -uni�cation with constants are not only
in P , but even P -complete [Hermann and Kolaitis 1997].

Uni�cation type: ACUIf is unitary for elementary and �nitary for the two other
kinds of uni�cation problems, and ACIf is �nitary for all three kinds of uni-
�cation problems [Livesey and Siekmann 1975, B�uttner 1986b, Baader and
B�uttner 1988, Kapur and Narendran 1992b]. As with ACf , the number of ACIf -
uni�ers in a minimal complete set may be doubly-exponential in the size of a
given elementary ACIf -uni�cation problem [Kapur and Narendran 1992b]. Her-
mann and Kolaitis show that computing the cardinality of a minimal complete
set of uni�ers for given ACIf - or ACUIf -uni�cation uni�cation problems is
#P -hard, which implies that this function cannot be computed in polynomial
time, unless P = NP [Hermann and Kolaitis 1997].

Uni�cation algorithms: Baader and B�uttner [1988] describe an algorithm for
ACUIf -uni�cation problems with constants consisting of a single equation, and
Kapur and Narendran [1992b] sketch an algorithm for general ACIf -uni�cation.

480 Franz Baader and Wayne Snyder

Abelian groups
The theory of Abelian groups is de�ned by the identities AGf := ACUf [
ff(i(x); x) � eg.

Decision problem: trivial for elementary uni�cation, polynomial for uni�cation with
constants [Baader and Siekmann 1994], and NP-complete for general uni�cation
[Schulz 1997].

Uni�cation type: unitary for elementary uni�cation and for uni�cation with con-
stants [Lankford, Butler and Brady 1984], and �nitary for general uni�cation
[Schmidt-Schau� 1989b, Boudet, Jouannaud and Schmidt-Schau� 1989]. Com-
puting the cardinality of a minimal complete set of uni�ers for a given general
AGf -uni�cation is again #P -hard [Hermann and Kolaitis 1996].

Uni�cation algorithms: Lankford et al. [1984] describe an algorithm for AGf -
uni�cation with constants, and Schmidt-Schau� [1989b] shows that this algo-
rithm can be combined with an algorithm for syntactic uni�cation into an
algorithm for general AGf -uni�cation.

Commutative and Boolean rings
Let CRU denote the well-known axioms for commutative rings with a (multiplica-
tive) unit, and BR the theory of Boolean rings.

Decision problem: As sketched in [Baader and Siekmann 1994], undecidability of
elementary CRU-uni�cation is an easy consequence of the fact that Hilbert's
10th problem is undecidable [Matiyasevich 1971, Davis 1973].
For the theory BR, the decision problem is NP-complete for elementary uni�-
cation, �p2-complete for uni�cation with constants, and PSPACE-complete for
general uni�cation [Baader 1998].

Uni�cation type: The uni�cation type of CRU is at least in�nitary, even for ele-
mentary uni�cation [Burris and Lawrence 1990].10.
BR is unitary for elementary uni�cation and for uni�cation with constants
[B�uttner and Simonis 1987, Martin and Nipkow 1989b, Martin and Nipkow
1989a], and �nitary for general uni�cation [Schmidt-Schau� 1989b]. As with the
theory of Abelian groups, the problem of computing the cardinality of a minimal
complete set of uni�ers is #P -hard for general BR-uni�cation [Hermann and
Kolaitis 1996].

Uni�cation algorithms: Algorithms that compute most general uni�ers for elemen-
tary BR-uni�cation and BR-uni�cation with constants are described in [B�uttner
and Simonis 1987, Martin and Nipkow 1989b, Martin and Nipkow 1989a]. Gen-
eral combination methods can be used to obtain algorithms for general BR-
uni�cation [Schmidt-Schau� 1989b, Boudet et al. 1989].

Endomorphisms
The theory Endh;g := fh(g(x; y)) � g(h(x); h(y))g states that the unary function
symbol h behaves like an endomorphism for the binary function symbol g, and

10The closely related theory of commutative semirings is known to be of uni�cation type zero
w.r.t. elementary uni�cation [Franzen 1992]

Unification theory 481

Endh;e := fh(e) � eg states that h behaves like an endomorphism for the constant
symbol e. We consider these two theories in combination with some of the theories
introduced above:

Decision problem: Solvability of Endh;g-uni�cation problems with constants is de-
cidable [Vogel 1978].
For the theories Endh;g [ACg and Endh;g [Endh;e [ACUg , solvability of uni-
�cation problems with constants is undecidable [Narendran 1996a].
In contrast, solvability of uni�cation problems with constants is decidable for
the theory Endh;g [Endh;e [ACUIg . In [Baader and Narendran 1998] it shown
that this problem is EXPTIME-complete.
A similar result holds for Endh;g[ACUIg: for this theory, the decision problem is
known to be co-NP-hard and in EXPTIME [Guo, Narendran and Shukla 1998].
Finally, for Endh;g [Endh;e [AGg , decidability of uni�cation with constants
was shown in [Baader 1993]. Since this decidability result can be extended to
uni�cation with linear constant restrictions, general combination results yield
decidability for general uni�cation modulo this theory [Baader and Nutt 1996].

Uni�cation type: The theory Endh;g is unitary for uni�cation with constants [Vogel
1978].
Endh;g [Endh;e [ACUg and Endh;g [Endh;e [ACUIg are of type zero, even
for elementary uni�cation [Baader 1993, Baader 1989b].
Endh;g [Endh;e [AGg is unitary for elementary uni�cation and for uni�cation
with constants [Nutt 1990, Baader 1993], and �nitary for general uni�cation
[Baader and Nutt 1996].

In addition to investigating uni�cation properties of speci�c equational theories
of interest, uni�cation theory also tries to develop more general methods, and thus
to obtain results for whole classes of equational theories. Since uni�cation modulo
equational theories is in general undecidable (as illustrated by some of the examples
above), and also uni�cation properties such as the uni�cation type of a given the-
ory are in general undecidable [Nutt 1991], approaches that apply to all equational
theories are likely to yield very weak results. For example, the general E-uni�cation
procedure introduced in section 4.1, which can be used to enumerate a complete
set of E-uni�ers, is very ineÆcient, and usually does not yield a decision procedure
or a (minimal) E-uni�cation algorithm even for unitary or �nitary theories whose
uni�cation problem is decidable. In order to obtain more useful results, one can try
to develop methods that work for appropriately restricted classes of theories. There
are basically two di�erent ways of introducing appropriate restrictions on equa-
tional theories. Syntactic approaches impose restrictions on the syntactic form of
the identities de�ning the equational theories. The uni�cation methods produced by
these approaches are usually also of a quite syntactic nature: as with the rule-based
approach to syntactic uni�cation, they transform the given uni�cation problem into
a problem in solved form (section 4). In contrast, semantic approaches depend on
properties of the (free) algebras de�ned by the equational theory. Uni�cation prob-
lems are translated into equations over certain algebraic structures, which (in some
cases) can be solved using known results from mathematics (section 5).

482 Franz Baader and Wayne Snyder

4. Syntactic methods for E-uni�cation

In this section we discuss two syntactic approaches to generating complete sets of
E-uni�ers, using inference systems extending the set U presented in section 2.2.3.
We �rst consider the general problem (E-uni�cation in arbitrary theories) and
show how it can be solved by adding a single rule to introduce identities into the
transformation process; this simple method is proved to be complete and some
restrictions which preserve completeness are discussed. We then present the most
signi�cant special case of the general problem, when the equational theory can
be presented by a convergent set of rewrite rules. This method, called narrowing ,
has been thoroughly investigated, and we will present the major results in the
framework of transformation rules.

4.1. E-uni�cation in arbitrary theories

In this section, we present a rule for introducing identities into inference steps in U
in such a way that a complete set of E-uni�ers for an arbitrary set E of equations
may be generated. By specializing various aspects of the resultant calculus (and its
completeness proof), we will obtain more practical methods for the special case of
convergent sets of rewrite rules. The results of this section are based on [Gallier
and Snyder 1989, Snyder 1991].
In this section we assume that the reader is familiar with the basic concepts

of rewriting (especially equational proofs, reduction orderings, ground convergence,
and critical pairs) discussed in ??. By rewrite proof we refer to a sequence of rewrite
steps between two terms of the form

s
�
�!u

�
 � t

where u is in normal form. We will use e[u] in the following to represent a equation
(or identity) with a distinguished occurrence of a subterm u in one of its terms; in
such a context e[r] will denote the result of replacing this subterm with the term r.
We will use systems P ;S, representing uni�cation problems and sets of equations
in solved form, as before.

4.1. Definition. For any equational theory E, a substitution � is an E-solution
(or simply a solution when E is understood) of a system P ;S if it is an E-uni�er
of every equation in P , and a uni�er of every equation in S.

4.1.1. The calculus G
The set G of inference rules consists of the rules Trivial, Decomposition, Orientation,
and Variable Elimination from U , plus the following rule for introducing identities:

Lazy Paramodulation (LP):

fe[u]g [P ;S =)lp fl
?
=u; e[r]g [P ;S

Unification theory 483

for a fresh variant11 of the identity l � r from E [E�1, and where (i) u is not
a variable, and (ii) if l is not a variable, then the top symbols of l and u are
identical, and no other inference rule may be applied to the equation l=? u before
it is subjected to a Decomposition step.

Computation in G proceeds as in U , starting with an initial system of the form
fs=? tg; ; and applying inference rules in an attempt to �nd some terminal system
;;S representing an E-uni�er �S of s and t. Clearly, by the general characteristics
of E-uni�cation discussed above, such a process can not share the nice properties
of U which we discussed in section 2.2.4. However, it is possible to say quite a lot
about how to restrict the application of rules, as we shall see.

4.1.2. Completeness of G
It can be shown easily that the calculus G is sound in the sense that a solution it
produces is always an E-uni�er; however this proof does not give much insight into
the properties of G and we refer the interested reader to [Gallier and Snyder 1989]. It
is more interesting to consider the issue of completeness, which is considerably more
complex than in the standard case. What we want to show is that if we consider
the (�nitely-branching but in�nite) search tree of every possible transformation
sequence starting from fs=? tg; ;, then the leaves form a complete set of E-uni�ers
for s and t. However, it is simpler to state and prove this in the following \non-
deterministic" form.

4.2. Theorem. Let E be a non-trivial equational theory and P be a set of uni�ca-
tion problems. If � is an E-solution of P ; ;, then there exists a sequence

P ; ;
�

=) ;;S

(with S in solved form) in the calculus G such that �S ��XE �, where X = Vars(P).

There are three main stages to the proof. First we will prove the result given
certain strong restrictions on the equational theory E. Then we construct a kind
of \abstract completion" of E which has the requisite restrictions; �nally, we show
that any transformation sequence using this abstract completion can be converted
into one using simply E.
The major diÆculty in proving completeness of equational inference systems

is generally in dealing with the restriction that equational steps not take place at
variable positions (hence, \u is not a variable" in LP). The solution, due to Peterson
[1983], is to work with a restricted form of substitution in the proof.

4.3. Definition. Given a rewrite system R, a substitution � is R-reduced (or just
reduced if R is unimportant) if for every x 2 Dom(�), x� is in R-normal form.

11By a fresh variant we refer to an expression that has been renamed with fresh variables that
do not occur anywhere else in the previous computation. Whenever we mention a rewrite rule or
identity used in an inference step, we will assume that it has been so renamed.

484 Franz Baader and Wayne Snyder

Note that it is always possible for any � and terminating set of rules R to �nd an R-
equivalent reduced substitution �0. This allows us to assume, when \lifting" rewrite
steps at the ground level to inference steps, that the position is a non-variable.
Another essential ingredient in our proof is the notion of an \oriented ground

instance" of an identity.

4.4. Definition. Let E be a non-trivial equational theory and � be a reduction
ordering total on ground terms. The set of ground instances of E is

Gr(E) := f l� � r� j l� and r� are ground and l � r 2 E [E�1 g:

The set of oriented ground instances of E is

Gr�(E) := f l� �! r� j l� � r� 2 Gr(E) and l� � r� g:

A member l� �! r� of such a set is called reduced if � is reduced with respect to
the entire set.12 For any E, the set of reduced oriented ground instances is denoted
RE .

An important fact about Gr(E) is the following.

4.5. Proposition. For any two ground terms s and t, there exists an equational
proof s

�
 !E t i� there exists a proof s

�
 !Gr(E) t

This is easily proved by showing that equational steps are closed under instantiation,
and hence we can instantiate any \unbound variables" by ground terms so that only
ground instances of identities from E are used.
Another kind of restriction on proofs, which will be essential in proving the

\no inferences into variable positions" restriction in our completeness result, is the
subject of the next de�nition and lemma.

4.6. Definition. Let u� be an instance of u, and R a set of rewrite rules. A
rewrite step u� �!R u0 is based on u i� the redex is at a non-variable position in
u (equivalently, is not wholly contained within a term introduced by �). A rewrite

sequence s�
�
�!R t is based on s (or simply basic) i� either s� = t (re
exive case)

or it starts with a rewrite step based on s, e.g.,

s� �!R (s�)[r�] = s[r]��
�
�!R t

and the remainder is based on s[r]. A rewrite proof s�
�
�!

�
 � t� is basic if the left

side is based on s and the right side is based on t.

Intuitively, this means that no rewrite step can take place at a term introduced by
any substitution.
The relationship between reduced substitutions, reduced oriented ground in-

stances, ground convergence, and basic rewrite sequences is now explored.
12This notion is well-de�ned, as it could more formally be de�ned by induction on a suitable

ordering of rules, using the fact that l can not be a variable when E is non-trivial.

Unification theory 485

4.7. Lemma. Let E be a non-trivial equational theory such that Gr�(E) is ground
convergent, and s� be a ground term such that � is RE-reduced. Then for any rewrite
sequence s�

�
�! t using rules from Gr�(E) to reduce s� to its normal form t, there

exists a basic rewrite sequence s�
�
�! t using rules only from RE.

Proof. Since Gr�(E) is ground canonical, we may choose any fair strategy for
reduction; in particular, we may specify that at each step, among all the possible
rules that could be used for reduction, we choose one that is minimal in the lexi-
cographic extension of � to pairs of terms. But then for any l� �! r� used in the
sequence, � must be reduced, or else the rule would not be minimal. Thus, there
exists a rewrite sequence from s� to t using rules only from RE ; clearly, since all
substitutions involved are reduced, this is also a basic sequence.

For our purposes we may summarize these results as follows.

4.8. Corollary. Let E be an equational theory such that Gr�(E) is ground con-
vergent. For any ground terms s� and t�, where � is reduced with respect to Gr�(E),
the following are equivalent:

1. s� and t� are E-equivalent.

2. There exists a basic rewrite proof for s� and t� using rules from Gr�(E).

We now prove our completeness result in the special case we have been discussing.

4.9. Lemma. Let E be a non-trivial equational theory such that Gr�(E) is ground
convergent, and P be a set of uni�cation problems. If � is a Gr�(E)-reduced solution
of P ; ;, then there exists a sequence

P ; ;
�

=) ;;S

(with S in solved form) in the calculus G such that �S ��X � for X = Vars(P).

Proof. We proceed by induction, using the following measure. The complexity of
a system P ;S and its solution � is a four-tuple hm;n1; n2; n3i, where

m = The total number of rewrite steps in all the minimal-length basic
rewrite proofs for equations in P�;

n1 = The number of distinct variables occurring in equations u=? v 2 P
such that u� = v� and u� is in Gr�(E)-normal form;

n2 = The number of symbols occurring in equations u=? v 2 P such that
u� = v� and u� is in normal form;

n3 = The number of equations in P of the form t=? x, where t is not a
variable, and such that t� = x� and t� is in normal form.

The associated (well-founded) ordering is the lexicographic ordering using the
natural ordering on positive integers.
We show by induction on this measure that if � is a solution of a system P ;S0,

with S0 in solved form, there exists a transformation sequence

P ;S0
�

=) ;;S

486 Franz Baader and Wayne Snyder

where �S ��X � for X = Vars(P; S0).
The base case of the induction consists of a system ;;S and the result is trivial,

since a fortiori �S �� �. For the induction step, suppose P = fu=? vg [P 0. If
u� = v� with u� in normal form; then we proceed as before with the inference
system U to generate a transformation step to a smaller system containing the
same set of variables, and with the same solution (cf. lemma 2.4). As with U , any
equation introduced into S must keep this set in solved form. Completing this with
the induction hypothesis, we have

P ;S0 =)U P
00;S00

�
=) ;;S

such that �S ��X � with X = Vars(P; S0).
Otherwise, without loss of generality, pick a rewrite step from the term u� in a

minimal-length basic rewrite proof u� �!
�
�!

�
 � v�, in which a reduced ground

instance l� �! r� was used. If we let �0 = ��, then this �rst step was in fact
u[u0]�0 = u[l]�0 �! u[r]�0, where u0 can not be a variable (since � is reduced). In
addition, the top symbols of u0 and l are identical if l is not a variable. Hence, there
exists some transformation step

fu[u0]
?
= vg [P 0;S0 =)lp fl

?
=u0; u[r]

?
= vg [P 0;S0

to a new system which has a smaller complexity with respect to its new solution
�0. (It also contains additional variables, i.e., those in Vars(l; r)). By the induction
hypothesis we can continue this with:

fl
?
=u0; u[r]

?
= vg [P 0;S0

�
=) ;;S

such that �S ��X �0 with X = Vars(l; r; P; S0). But, since x� = x�0 for every
x 2 Vars(P; S0), we are done.

The second stage of our main completeness proof for G involves constructing a
set of identities �tting the conditions of the previous lemma. We do this by a kind
of abstract completion of E:

4.10. Definition. Let Cr(E) be the set of critical pairs w.r.t. � of E, created
from fresh variants of identities in E using the inference system U to calculate the
requisite mgu's. Then, for each i � 0, de�ne

E0 = E
...

Ei+1= Ei [Cr(Ei)
...

E! =
S
n�0E

n

Unification theory 487

The entire point of this construction is contained in the following lemma, which
can be proved using techniques familiar from ?? (for a speci�c proof, see Theorem
6.1.7 in [Snyder 1991]).

4.11. Lemma. For any E, Gr�(E!) is ground convergent and equivalent to E on
ground terms.

Thus, we can (conceptually, at least) use E! to construct transformation se-
quences as just shown in lemma 4.9. The second main lemma of our completeness
proof for G shows how to convert such a transformation sequence into one using
only identities from E.

4.12. Lemma. For any sequence

P ; ;
�

=) ;;S

introducing identities from E!, and such that �S is an E-uni�er for P , there exists
a sequence

P ; ;
�

=) ;;S0

introducing identities only from E, such that S � S0 and x�S0 = x�S for every
x 2 Vars(P).

Proof. The basic idea is to use the calculus G itself to construct critical pairs. The
complexity measure in our inductive proof is as follows. The depth of an identity
e 2 E! is the least k such that e 2 Ek; the complexity of a transformation sequence
is the (�nite) multiset of the depths of all identities from E! introduced, with the
associated (well-founded) multiset ordering.
The base case being trivial, we proceed directly to the induction step. Suppose

the transformation sequence uses some identity r1� � l1[r2]� of non-zero depth,
obtained by forming a critical pair from l1[l

0] � r1 and l2 � r2 (each of smaller
depth) with � = mgu(l0; l2). We show how the original use of the critical pair in a
LP step can be simulated by two LP steps involving the component identities, plus
some number of U-transformations to simulate the construction of the critical pair.
There are two cases, depending on which direction the critical pair was used in.
Case One. Suppose the critical pair was r1� � l1[r2]�, e.g.,

�
=) fe[u]g [P ;S0

=)lp fr1�=? u; e[l1[r2]�]g [P ;S0
�

=) ;;S

where an additional Decomposition is possibly applied afterwards to r1�=
? u (if

r1� is not a variable). This sequence can be converted into:
�

=) fe[u]g [P ;S0

=)lp fr1=? u; e[l1[l
0
1]]g [P ;S

0

=)lp fl2=? l01; r1=
? u; e[l1[r2]]g [P ;S0

�
=) fr1�=

? u; e[l1[r2]�]g [P ;S [[�]
�

=) ;;S [[�0]

488 Franz Baader and Wayne Snyder

(where by [�] we mean a set of equations representing the bindings in �). This
sequence has a smaller complexity, as it replaced a critical pair by two identities of
strictly smaller depth. The second line from the bottom represents the calculation
of the mgu; these bindings apply only to terms from the two equations, although as
they are carried along in the solution set they may change as the result of additional
substitutions (hence the change to �0). The (possible) Decomposition step after the
�rst LP step in the original is delayed until after the computation of �.
Case Two. Suppose the critical pair was l1[r2]� � r1�; in this case, we may

assume that the overlap in this critical pair is not at the root, since otherwise we
could apply case one. Our original sequence is thus:

�
=) fe[u]g [P ;S0

=)lp fl1[r2]�=? u; e[r1�]g [P ;S0
�

=) ;;S

where Decomposition is applied to l1[r1]� � u at some point after the LP step
(since l1 has at least one function symbol above the overlap position). This sequence
becomes:

�
=) fe[u]g [P ;S0

=)lp fl1[l
0
1] =

? u; e[r1]g [P ;S
0

=)lp fl2=? l01; l1[r2] =
? u; e[r1]g [P ;S0

�
=) fl1[r2]�=? u; e[r1�]g [P ;S [[�]
�

=) ;;S [[�0]

The Decomposition step is delayed until after the computation of �. This sequence
is, again, of smaller complexity than the original.
Note in both cases that the variables in Dom(�) are (e�ectively) fresh, as they

occur in the component identities but not in the critical pair; thus, x�S0 = x�S for
all x 2 Vars(P) as required.

We may now present the proof of our main completeness result.

Proof of theorem 4.2. First, note that we may assume that P� contains only
ground equations, using a straight-forward Skolemization argument (viz. [Snyder
1991], p.90). If � is an E-uni�er of P , we may construct an Gr�(E)-reduced sub-
stitution �0 such that � =E �0. We then apply lemma 4.9, using rules from E!, to
obtain a sequence

P ; ;
�

=) ;;S

where �S ��X �0 for X = Vars(P). This is then converted, using the technique of
lemma 4.12 to a new sequence using rules only from E:

P ; ;
�

=) ;;S0

where x�S = x�S0 for every x 2 Vars(P). Thus, we may conclude that �S ��XE �,
where X = Vars(P), as required.

Unification theory 489

4.2. Restrictions on E-uni�cation in arbitrary theories

In this section we describe two re�nements of the calculus G that have been sug-
gested:

� The restriction on a equation l=? u introduced by LP, when l is not a variable,
that the top symbol of l and u must be the same, can be strengthened so
that the entire overlap of the non-variable positions in the two terms must be
identical.

� The restriction in LP that u not be a variable may be strengthened so that
u can not even be a term introduced into P by substitution (i.e., Variable
Elimination) at any point in the sequence.

Both of these restrictions in some sense extend the original restrictions on G hered-
itarily , in the �rst case inheriting the restriction on top symbols down into the
terms, and in the second, inheriting the non-variable restriction throughout the
history of the equation, and regarding terms introduced by variable elimination
as being second-class citizens which do not play a direct role in equational infer-
ences, but only serve to constrain the application of rules. This is called the basic
restriction, as it rests on the existence of basic rewrite proofs as shown above.
For lack of space, we do not consider these re�nements to G in detail here, al-

though the second will form an essential part of the calculus in the next section.
For the �rst, see [Dougherty and Johann 1992], and also [Socher-Ambrosius 1994]
(where a further re�nement is presented); for the second see [Moser 1993].

4.3. Narrowing

In this section we consider the most important special case of the E-uni�cation
problem, when the equational theory can be represented by a ground convergent
set of rewrite rules. In this case, the conversion of transformation sequences to
simulate critical pair generation is not necessary, and we can take a closer look at
the completeness proof and the restrictions that can be imposed on the calculus.
In particular, we shall from the start consider the existence of basic rewrite proofs
as fundamental, and develop a new representation for problems which prevents LP
inferences at terms introduced by substitutions.
A constraint system (or simply system in the rest of the section) is either the

symbol ? (representing failure) or a triple consisting of a multiset P of equations
(representing the schema of the problem, in a sense that will become clear below),
a set C of equations (representing constraints on variables in P), and a set S of
equations (representing bindings in the solution). The set C plays a role similar
to the multiset P in section 2.2.4, and rules from U will be applied to C;S as
before. The equational problems being worked on are in fact P�S , the separation
into the schema P and constraints C;S serving to enforce the basic restriction on
the application of LP mentioned above. As expected, a substitution � is said to be
a solution (or E-uni�er) of a system P ;C;S if it E-uni�es each equation in P , and
uni�es each of the equations in C and S; the system ? has no E-uni�ers.

490 Franz Baader and Wayne Snyder

We assume that our rewrite system R (representing E) is ground convergent with
respect to a reduction ordering �, and consists of a numbered sequence of rules

fl1 �! r1; l2 �! r2; : : : ; ln �! rng:

The index of a rule will be its number in this sequence, and will be used in a certain
re�nement of our inference system.

4.3.1. The calculus B
In this section we present the rules which are used in the calculus B for basic
narrowing . We will �rst consider a simple set of rules and prove its completeness,
and then consider re�nements and modi�cations based on the details of the proof.
The set B consists of the following six rules.

Trivial:
P ; fs

?
= sg [C 0;S =) P ;C 0;S

Decomposition:

P ; ff(s1; : : : ; sn)
?
= f(t1; : : : ; tn)g [C

0;S =) P ; fs1
?
= t1; : : : ; sn

?
= tng [C

0;S

Orient:
P ; ft

?
=xg [C 0;S =) P ; fx

?
= tg [C 0;S

if t is not a variable.

Basic Variable Elimination:

P ; fx
?
= tg [C 0;S =) P ;C 0fx 7! tg;Sfx 7! tg [fx � tg

if x does not occur in t. (Note that the substitution is not applied to the set P .)

(Modulo the changes to Variable Elimination, these are just the non-failure rules
from U , adapted for constraint systems; we shall denote these �rst four rules as S.)

Constrain:
feg [P 0;C;S =)con P 0; fe�Sg [C;S

Lazy Paramodulation:

fe[u]g [P ;C;S =)lp fe[r]g [P ; fl�S
?
=u�Sg [C;S

(with the exact same restrictions as given above in section 4.1.1).

Unification theory 491

Essentially, this calculus is no di�erent from G, except that it is designed to
enforce the basic restriction, by separating out the parts of terms that were intro-
duced into the problem by substitution (i.e., Variable Elimination) and those that
were not (the \schema"). The latter constitute the only positions where equational
inferences may take place in the basic strategy. The completeness proof is hence
very similar to lemma 4.9. We will add more restrictions to the way that certain
choices are made, however, which will give us the ability to restrict our calculus
correspondingly.

4.13. Theorem. Let R be a ground convergent set of rewrite rules. If � is an R-
solution of P ; ;; ;, then there exists a sequence

P ; ;; ;
�

=)B ;; ;;S

such that �S ��XR �, where X = Vars(P).

Proof. As in our completeness proof for G, we may assume that P� is ground and
that � is R-reduced, since the relation��R does not distinguish between R-equivalent
substitutions. Thus, we will prove a stronger result, that when � is R-reduced, then
in fact �S ��X �.
The complexity of a system P ;C;S and associated solution � is hM;n1; n2; n3i,

where

M = The multiset of all terms occurring in P�;
n1 = The number of distinct variables in C;
n2 = The number of symbols in C;
n3 = The number of equations in C of the form t=? x, where t is not a

variable.

The associated ordering is the lexicographic ordering using the multiset extension
of the reduction ordering � for the �rst component, and the ordering on natural
numbers for the remaining components.
Our induction shows that if � is a solution of a system P ;C;S0, with S0 in solved

form, there exists a transformation sequence

P ;C;S0
�

=) ;; ;;S

where �S ��X �, where X = Vars(P;C; S0).
The base case ;; ;;S is again trivial. For the induction step, there are several

overlapping cases.
(1) If C = fu=? vg[C 0, then u� = v� and we use S to generate a transformation

step to a smaller system containing the same set of variables, and with the same
solution (cf. lemma 2.4). Completing this with the induction hypothesis, we have

P ;C;S0 =)S P
00;C 0;S00

�
=) ;; ;;S

such that �S ��X � for X = Vars(P;C; S0).

492 Franz Baader and Wayne Snyder

(2) If P = fu=? vg [P 0 and u� = v�, then we may apply Constrain to obtain a
smaller system (reducing the component M) with the same solution and the same
set of variables, and we conclude as in the previous case.
(3) Suppose P = fu=? vg [P 0 and there is some redex in either u� or v�;

without loss of generally, assume the former. We may also assume that the redex is
innermost, and that if more than one instance of a rule from R reduces this redex,
we choose the rule l� �! r� with the smallest index in the set R. Note that, since
� is R-reduced, the redex must occur inside the non-variable positions of u; thus
we have the following transformation:

fu[u0]
?
= vg [P 0;C;S0 =)lp fu[r]

?
= vg [P 0; fl�S0

?
=u0�S0g [C;S0

to a system which is smaller with respect to its new solution �0 = �� (since the new
equation introduced into C is an identity modulo �0). Note that �0 is still R-reduced.
By the induction hypothesis we have

fu[r]
?
= vg [P 0; fl�S0

?
=u0�S0g [C;S0

�
=) ;; ;;S

such that �S ��X �0 with X = Vars(l; r; P; C; S0), and since x� = x�0 for every
x 2 Vars(P;C; S0), the induction is complete.

4.3.2. Standard narrowing
An interesting feature of this proof is that it also provides for the completeness
of an alternate (and historically earlier) version of narrowing due to Fay [1979],
which does not distinguish between substitution positions and other positions in
the problem.
Let us de�ne the calculus N for standard narrowing as the inference system B

with the following change: Basic Variable Elimination is replaced by the following
transformation:

Variable Elimination:

P ; fx
?
= tg [C 0;S =) Pfx 7! tg;C 0fx 7! tg;Sfx 7! tg [fx � tg

if x does not occur in t.
(The Constrain rule might also be changed so that is does not instantiate an

equation when moving it from P to C, however, since �S is always idempotent, the
existing rule would have the same e�ect.)
The only di�erence is that the set P is kept instantiated with the substitution

de�ned by S during the transformation process, so that substitution positions can
be used for narrowing.

4.14. Corollary. Let R be a ground convergent set of rewrite rules. If � is an
R-solution of P ; ;; ;, then there exists a sequence

P ; ;; ;
�

=)N ;; ;;S

in the calculus N such that �S ��XR � with X = Vars(P).

Unification theory 493

The proof is essentially the same as the previous one, since the same transforma-
tion sequence can be used in each case.
The di�erence between the two inference systems is that B restricts the appli-

cation of inference rules to a smaller set of positions than N does, and hence the
search tree for solutions is narrower.

4.4. Strategies and re�nements of basic narrowing

There is a variety of strategies and re�nements that can be developed for the basic
narrowing calculus without destroying completeness. Most of these, in one way or
another, can be derived from a close examination of the completeness proof just
given. In this section we brie
y describe the most important of these.

4.4.1. Composite rules for basic narrowing
The �rst observation that can be made is that it is not necessary to consider all pos-
sible sequences of transformation rules, since we either solve (standard) uni�cation
problems (e.g., equations between two identical terms in P�) or simulate rewriting
at the ground level by unifying left-hand sides of rules with non-variable positions
in terms, at the non-ground level. Thus, we may use the following two composite
rules as an alternate form of B:

Solve (=)sol):

feg [P 0;C;S =)con P 0; fe�Sg [C;S
�

=)S P
0;C�;S� [[�]

(i.e., � = mgu(e�S)).

Narrow (=)nar):

fe[u]g[P ;C;S =)lp fe[r]g[P ; fl�S
?
=u�Sg [C;S

�
=)S fe[r]g [P ;C�;S� [[�]

(that is, � = mgu(l�S; u�S)), where l �! r is a fresh variant from R.

The completeness proof goes through with few changes. Note that in this formu-
lation, no new equations remain in C after each step. A similar set of composite
rules could be given for N .

4.4.2. Simpli�cation
The inference rules in S (like U) are signi�cant in that they can be applied when-
ever we want during a transformation sequence without a�ecting the outcome; in
our inductive proof, we may observe that they make the problem smaller without
changing the solution. Such rules are extremely important in reducing the search
space for a solution.

494 Franz Baader and Wayne Snyder

4.15. Definition. A transformation � is called a simpli�cation rule for B if
whenever P ;C;S � P 0;C 0;S0, then � is an R-reduced solution of P 0;C 0;S0 i�
�jVars(P;C;S) is an R-reduced solution to P ;C;S, and P 0;C 0;S0 is smaller in the
induction ordering used in Theorem 4.13 with respect to � than P ;C;S w.r.t.
�jVars(P;C;S).

The restrictions in this de�nition ensure that such a rule can be used any time
it applies in the induction step to obtain a smaller system without changing the
solution (w.r.t. the variables in the left side).
Thus, the rules in S are simpli�cation rules in this respect. There are many other

ad-hoc simpli�cation rules that have been suggested for narrowing. For example,
we may perform a form of Decomposition within P when we know that this does
not remove a redex.

Problem Decomposition:

ff(s1; : : : ; sn
?
= f(t1; : : : ; tn)g [P

0;C 0;S =) fs1
?
= t1; : : : ; sn

?
= tng [P

0;C;S

if the symbol f does not occur at the top of the left-side of a rule in R.

In the induction in the completeness proof this rule decreases the measure (specif-
ically, it reduces the componentM). Clearly it does not change the set of solutions.
Therefore, we may apply this rule any time, in any context, without a�ecting the
completeness properties of the calculus.
Such rules can be applied \eagerly" to produce smaller problems, hopefully re-

ducing the search space.

4.16. Definition. If T is a subset of rules for some calculus C, then the eager T
strategy requires that a rule from CnT may only be applied if no rule from T applies
anywhere in the system.

Simpli�cation rules can be performed eagerly.

4.17. Theorem. Let R be a ground convergent set of rewrite rules, and A be a set
of simpli�cation rules. If � is an R-solution of P ; ;; ;, then there exists a sequence

P ; ;; ;
�

=)B[A ;; ;;S

under the eager A strategy such that �S ��
X
R �, where X = Vars(P).

The proof proceeds as before, with the exception that in the induction step, we
must use a simpli�cation step if one applies; as noted above, the conditions of a
simpli�cation rule ensure that the induction in the completeness proof goes through.
One of the most useful simpli�cation rules is reducing the problem set by the set of

rules R. From an abstract point of view, we may motivate such equational inferences
as follows. If u�

�
 !Ev� and u0

�
 !Eu, then, since equational proofs are closed

under instantiation, we have u0�
�
 !Eu�

�
 !Ev�. Thus, we can not change the set

Unification theory 495

of solutions by performing equational inferences on the problem terms themselves,
for example, by reducing them.
From the point of view of our calculus, we might observe that in the rule Narrow

just introduced, if no application of Variable Elimination is ever applied to a variable
from the system on the left side, then the set of solutions is unchanged by this
transformation: the substitution generated must in this case apply only to l and
r, and hence we have, at the ground level, replaced e[u]�� = e[l]�� = e[l�]� with
e[r�]�. Since the properties of � were not involved, this means that e�ectively we
have done a rewrite step u[l�] �!R u[r�]. Alternately, we might say that if you end
up doing Variable Elimination on x=? t for x 2 Dom(�) for some solution �, then
you are assuming that x� = t�; this cuts down on the number of possible solutions.
The resultant rule is:

Reduce (=)red):

fe[u]g [P ;C;S =)lp fe[r]g [P ; fl
?
=u�Sg [C;S

�
=) fe[r�]g [P ;C;S [[�]

where l �! r is a fresh variant from R (note that the variables in Dom(�) occur
only in r), and where the last line involves only Trivial, Decomposition, and Variable
Elimination applied to the variables from l (i.e., l� = u).

Note that in the context of B, we are losing some \basicness" by instantiating
fully the right-hand side r; below we shall consider how to recover some of the basic
restriction lost in this fashion.

4.18. Proposition. The Eager Reduce Strategy is complete for B and N .

Historically, the narrowing calculus was the �rst to be invented, by Fay [1979];
the basic narrowing calculus was developed by Hullot [1980], and it was observed
by R�ety [1987] that reduction needed to be modi�ed in this setting. A study of
basic narrowing with reduction, to which our treatment is heavily indebted, may be
found in [Nutt, R�ety and Smolka 1989]. In the next two sections we present further
re�nements which may also be found in [Bockmayr, Krischer and Werner 1992] and
[Nutt et al. 1989]. For a comprehensive study of basic inference systems, the reader
is referred to [Bachmair, Ganzinger, Lynch and Snyder 1995] and to 7.

4.4.3. Redex orderings and variable abstraction
One of the useful properties of convergent systems mentioned above is that any
strategy which can �nd a redex in a reducible term is suÆcient for reducing terms
to normal form, and hence for generating rewrite proofs. For example, at the ground
level we might always look for redices in depth-�rst, left-to-right order. More gen-
erally, we may de�ne a redex ordering �red as an ordering on the positions in an
equation which contains the proper subterm ordering (i.e., for any u[u0] with u 6= u0,
we have u0 �red u). Before considering whether a term t is reducible at a position

496 Franz Baader and Wayne Snyder

� by some rule, we must consider all positions �0 �red �. The completeness proof
could be sharpened by such an ordering simply by adding that we must choose the
minimal redex according to the redex ordering (such a redex must be innermost).
In such a case, the positions less than this redex may be assumed to be irreducible.
No further narrowing steps need be performed at such positions, and in fact, we
could remove these parts of the term and move them into the solved part of the
system to enforce this.

Variable Abstraction (=)abst):

fe[s]g [P ;C;S =) fe[x]g [P ; fx
?
= sg [C;S

if x is a fresh variable.
A new version of the narrowing rule could then be presented which abstracts out

terms which are known to be reduced.

Redex Ordered Narrow (=)ron):

fe[u]g [P ;C;S =)lp fe[r]g [P ; fl�S
?
=u�Sg [C;S

�
=)S fe[r]g [P ;C�;S� [[�]

�
=)abst fe

0[r]g [P ;C� [C 0;S� [[�]

where u occurs at position � in e, and Variable Abstraction is applied eagerly to
all positions �0 �red � in e to obtain e0.
The substitution of this version of Narrow in N preserves completeness; the

fundamental idea is that whenever a term (at the ground level in our completeness
proof) may be assumed to be reduced, it may be moved into the constraint part
of the system without losing completeness. This leads to a further use for Variable
Abstraction in propagating what is known about reduced terms: if a term occurs
in S, then (at the ground level) it may be assumed to be reduced, and hence other
occurrences of this term may be abstracted out.

Propagation:

fe[u]g [P 0;C; fx � t[s]g [S =)prop fe[y]g [P
0;C; fx � t[s]; y � sg [S

if u�S = s is a non-variable and y is a fresh variable.
This rule is a simpli�cation rule if we change the complexity measure in the proof

to
hM; i; n1; n2; n3i

where the additional component i is the number of non-variable symbols occurring
in P . Clearly it changes the solution � of a system to a new solution �fy 7! s�g
which satis�es the condition for a simpli�cation rule.
Returning to our Reduce rule, we observe that in the context of B, Reduce may

instantiate terms into r that are known to be reduced; Propagation can remove these
again. The combination of Reduction with Eager Propagation e�ectively gives us
the more complex form of \basic simpli�cation" described for example in [Bachmair
et al. 1995] and [Nutt et al. 1989] (see also 7).

Unification theory 497

4.4.4. Failure rules
Unlike our presentation of the calculus U , we have chosen here not to present failure
rules from the outset, in order to highlight the essential issues �rst. The conditions
under which sequences may fail are of two kinds. First, the failure rules for U
(Symbol Clash and Occur Check) may be applied to the sets C and S as before,
since these represent uni�cation problems; however, in this case the corresponding
Solve, Narrow, or Reduce would simply not be performed.
The second class of conditions basically amount to checking for violations of the

reducibility conditions in a system. At the ground level during the completeness
proof, the substitution � is kept reduced, and in addition, certain assumptions can
be made about the existence of redices in terms. However, we have to be careful, as
our proof only allows us to assume that all substitutions are R-reduced, and that
no redex may be reduced below its root, or at the root by an equation of lower
index.
This leads to the following rule:

Blocking (=)block):
P ;C;S =) ?

if some term in S is R-reducible, or if some term in C is reducible below the root.

The Eager Blocking Strategy is complete, since the completeness proof requires
the converse of the condition of this rule at all times. Note that this rule could
be applied in the middle of a composite rule, for example, just after moving the
equation into the set C in Narrow.
In order to account for reduction at the top of equations in C, it is preferable to

add a further restriction to our Narrowing rule:

Narrow (=)nar):

fe[u]g[P ;C;S =)lp fe[r]g[P ; fl�S
?
=u�Sg [C;S

�
=)S fe[r]g [P ;C�;S� [[�]

where l �! r is a fresh variant from R and l�S� is not the instance of the left-side
of any rule of lower index from R.

This rule is consistent with Redex Orderings.

5. Semantic approaches to E-uni�cation

The syntactic approaches to E-uni�cation introduced above can be seen as exten-
sions of the rule-based approach to syntactic uni�cation, which use the identities
de�ning the equational theory E to come up with additional transformation rules.
In contrast, semantic approaches to E-uni�cation try to utilize algebraic properties
of the models of the equational theories. The two most prominent instances of the
approach are

498 Franz Baader and Wayne Snyder

1. Uni�cation in Boolean algebras and rings [B�uttner and Simonis 1987, Martin
and Nipkow 1989b, Martin and Nipkow 1989a], and its generalization to �nite
and to primal algebras [B�uttner 1988, B�uttner, Estenfeld, Schmid, Schneider
and Tid�en 1990, Nipkow 1990, Kirchner and Ringeissen 1994], and

2. Uni�cation modulo the theories ACU, ACUI, and AG (see subsection 3.4 for
references to result on uni�cation modulo these theories).

In the following, we concentrate on the approach used in the second case since it can
be generalized to a whole class of equational theories, called commutative theories
in [Baader 1989b] and monoidal theories in [Nutt 1990]. For such theories, uni�ca-
tion can be reduced to solving linear equations in a corresponding semiring.13 In the
following, we introduce the class of commutative/monoidal theories, show how the
corresponding semiring is de�ned, and how uni�cation in commutative/monoidal
theories can be reduced to solving linear equations in this semiring. In contrast to
the syntactic approaches introduced above, general uni�cation problems cannot be
solved directly by the semantic approach described below. However, for commuta-
tive/monoidal theories, the known techniques for combining uni�cation algorithms
can always be used to extend an algorithm for uni�cation with constants to an
algorithm for general uni�cation [Baader and Nutt 1996].
The theories

ACU := ff(x; y) � f(y; x); f(f(x; y); z) � f(x; f(y; z)); f(x; e) � xg;

ACUI := ACU [ff(x; x) � xg;

AG := ACU [ff(x; i(x)) � eg

will be used as examples throughout this section. The introduction of the class of
commutative/monoidal theories was motivated by the observation that the known
algorithms for uni�cation modulo these three theories have many common features.

5.1. Uni�cation modulo ACU, ACUI, and AG: an example

We will �rst restrict our attention to elementary uni�cation, and then show how
the methods can be extended to uni�cation with constants.

Elementary uni�cation
To illustrate how the algorithms for elementary uni�cation modulo these three
theories work, let us consider the problem of unifying the two terms f(x; f(x; y))
and f(z; f(z; z)).
Let us start with the theory ACU. Obviously, the substitution �1 := fx 7!

z1; y 7! z1; z 7! z1g is a syntactic uni�er of this pair of terms, and thus also
an ACU-uni�er of �ACU := ff(x; f(x; y))=?

ACU f(z; f(z; z))g. There are, however,
ACU-uni�ers of �ACU that are not syntactic uni�ers of the two terms: �2 := fx 7!

13A semiring is similar to a ring, with the only di�erence being that its addition is just required
to form an Abelian monoid, and not necessarily an Abelian group.

Unification theory 499

e; y 7! f(z2; f(z2; z2)); z 7! z2g is an example of such a uni�er, and �3 := fx 7!
f(z3; f(z3; z3)); y 7! e; z 7! f(z3; z3)g is another one. None of these substitutions
is a most general ACU-uni�er of �ACU, but their \combination"

� := fx 7! f(x�1; f(x�2; x�3)); y 7! f(y�1; f(y�2; y�3));

z 7! f(z�1; f(z�2; z�3))g

=ACU fx 7! f(z1; f(z3; f(z3; z3))); y 7! f(z1; f(z2; f(z2; z2)));

z 7! f(z1; f(z2; f(z3; z3)))g

is. For example, �2 can be obtained as an ACU-instance of � by applying the
substitution fz1 7! e; z3 7! eg. More generally, any �nite collection �1; : : : ; �n of
ACU-uni�ers of a given ACU-uni�cation problem can be combined in this way to a
new ACU-uni�er �, which has all the uni�ers �i as ACU-instances. In our example,
there still remains the question of how we have found the three uni�ers �1; �2; �3,
and why their combination is a most general ACU-uni�er of the problem.
In order to explain how we came up with these uni�ers, assume that � is an ACU-

uni�er of �ACU, and that z
0 is a variable introduced by � , i.e., z0 occurs in (at least)

one of the terms x�; y�; z� . It is easy to see that f(x; f(x; y))� =ACU f(z; f(z; z))�
implies that the number of occurrences of z0 in f(x; f(x; y))� coincides with the
number of occurrences of z0 in f(z; f(z; z))� . Thus, if jx� jz0 ; jy� jz0 ; jz� jz0 respectively
denote the number of occurrences of z0 in x�; y�; z� , then we have 2jx� jz0 + jy� jz0 =
3jz� jz0 , i.e., the numbers jx� jz0 ; jy� jz0 ; jz� jz0 are nonnegative integer solutions of the
linear equation

2x+ y = 3z:

Thus, every variable introduced by an ACU-uni�er of a given ACU-uni�cation prob-
lem yields a non-trivial14 solution of the linear equation corresponding to the prob-
lem in the semiring of all nonnegative integers (with addition and multiplication as
semiring operations). For the uni�er � introduced above, the variable z1 yields the
solution (1; 1; 1), z2 yields (0; 3; 1), and z3 yields (3; 0; 2). What makes these three
solutions special is that they are the minimal non-trivial solutions of 2x + y = 3z
(w.r.t. the component-wise �-ordering on triples). Consequently, any solution can
be obtained as a (nonnegative) linear combination of these three solutions.
Conversely, a substitution that introduces only variables (or free constants)

corresponding to solutions of the linear equation is an ACU-uni�er of the cor-
responding ACU-uni�cation problem. For example, the substitution � := fx 7!
f(z0f(z00; f(z00; z00))); y 7! f(z0; f(z0; f(z0; z0))); z 7! f(z0; f(z0f(z00; z00)))g is an
ACU-uni�er of �ACU since 2 � 1 + 4 = 3 � 2 and 2 � 3 + 0 = 3 � 2. The solutions
(1; 4; 2) and (3; 0; 2) can be obtained as linear combination of the minimal solu-
tions:

(1; 4; 2) = 1 � (1; 1; 1) + 1 � (0; 3; 1) + 0 � (3; 0; 2);

(3; 0; 2) = 0 � (1; 1; 1) + 0 � (0; 3; 1) + 1 � (3; 0; 2):

14Variables not introduced by the uni�er correspond to the trivial solution (0; : : : ; 0).

500 Franz Baader and Wayne Snyder

This fact can be used to obtain a substitution � such that u� =ACU u�� for all
u 2 fx; y; zg: � := fz1 7! z0; z2 7! z0; z3 7! z00g.
To sum up, we have seen that a given elementary ACU-uni�cation problem cor-

responds to a system15 of linear equations, which must be solved in the semir-
ing N of all nonnegative integers. A most general ACU-uni�er of the problem
is obtained by combining the uni�ers corresponding to the (�nitely many) min-
imal solutions of the system of linear equations. The important property of the
set of minimal solutions is that it generates all solutions as linear combinations
in N . The fact that this set is always �nite is an easy consequence of Dickson's
Lemma [Dickson 1913]. Methods for computing this set can, for example, be found
in [Huet and Lang 1978, Lambert 1987, Clausen and Fortenbacher 1989, Boudet
et al. 1990, Pottier 1991, Domenjoud 1991, Contejean and Devie 1994, Filgueira
and Tom�as 1995].
The theory ACUI can be treated similarly, with the only di�erence being that

the semiring N must be replaced by the Boolean semiring BS, which consists
of the truth values 0 and 1, and has conjunction as its multiplication and dis-
junction as its addition operation. In fact, modulo ACUI it is no longer nec-
essary that the numbers of occurrences of variables on the left-hand side and
the right-hand side of the equation coincide. It is suÆcient that each variable
that occurs on the right-hand side also occurs on the left-hand side and vice
versa. Thus, the linear equation corresponding to the ACUI-uni�cation problem
�ACUI := ff(x; f(x; y))=?

ACUI f(z; f(z; z))g is x+ y = z, and it is easy to see that
all solutions in BS can be generated as linear combinations in BS of the solutions
(1; 0; 1) and (0; 1; 1). The most general ACUI-uni�er obtained from this generating
set of solutions is �0 := fx 7! z1; y 7! z2; z 7! f(z1; z2)g. The ACU-uni�er �1 from
above is also an ACUI-uni�er of �ACUI, and it can be obtained as an ACUI-instance
of �0 via the substitution �0 := fz1 7! z1; z2 7! z1g. Since the Boolean semiring BS
is �nite, there always exists a �nite set of solutions that generates all solutions as
linear combinations in BS.
For the theory AG, the presence of the inverse operation leads to the fact

that both the coeÆcients and the solutions of the linear equations corre-
sponding to an AG-uni�cation problem may also be negative integers. Thus,
the semiring to be considered here is an fact a ring, namely the ring Z of
all integers. The linear equation corresponding to the AG-uni�cation problem
�AG := ff(x; f(x; y))=?

AG f(z; f(z; z))g coincides with the one obtained from
�ACU, but in Z there exists a smaller set generating all solutions, consist-
ing of (0; 3; 1) and (1; �2; 0). Thus, the substitution �00 := fx 7! z2; y 7!
f(z1; f(z1; f(z1; f(i(z2); i(z2))))); z 7! z1g is a most general AG-uni�er of �AG.
General methods for computing such a �nite generating set of solutions of systems
of linear equations in Z can, for example, be found in [Knuth 1981, Kannan and
Bachem 1979, Iliopoulos 1989a, Iliopoulos 1989b].

15Every equation in the uni�cation problem yields one linear equation.

Unification theory 501

Uni�cation with constants
For ACU-uni�cation with constants, there are two di�erent ways of extending the
approach for elementary uni�cation to the case of uni�cation with constants. The
approach originally proposed by Stickel [1975] and [1981] �rst solves an elementary
ACU-uni�cation problem, which is obtained by treating free constants as variables,
and then modi�es the solutions of the elementary problem to obtain solutions of the
problem with constants. The other approach, due to Livesey and Siekmann [1975]
and described in more detail in [Herold and Siekmann 1987], handles free constants
with the help of inhomogeneous linear equations. In the following, we restrict our
attention to this second method.
As an example, we slightly modify the ACU-uni�cation problem from above. Let

�0ACU := ff(x; f(x; y))=?
ACU f(a; f(z; f(z; z)))g, where a is a (free) constant. Of

course, the numbers of occurrences jx� jz0 ; jy� jz0 ; jz� jz0 of a variable z0 introduced by
an ACU-uni�er of this problem must still solve the (homogeneous) linear equation
2x+ y = 3z. For the free constant a, however, one must also take into account that
a already occurs once on the right-hand side. Thus, the numbers jx� ja; jy� ja; jz� ja
must solve the following inhomogeneous equation:

2x+ y = 3z + 1:

The minimal (non-trivial) nonnegative integer solutions of this equation are (0; 1; 0)
and (2; 0; 1). Every nonnegative integer solution of the equation can be obtained
as the sum of one of the minimal solution and a solution of the corresponding
homogeneous equation 2x + y = 3z. Consequently, each of the minimal solutions
of the inhomogeneous equation together with the set of all minimal solutions of
the homogeneous equation gives rise to one element of the minimal complete set of
ACU-uni�ers of the problem:

ffx 7! f(z1; f(z3; f(z3; z3))); y 7! f(a; f(z1; f(z2; f(z2; z2))));

z 7! f(z1; f(z2; f(z3; z3)))g;

fx 7! f(a; f(a; f(z1; f(z3; f(z3; z3))))); y 7! f(z1; f(z2; f(z2; z2)));

z 7! f(a; f(z1; f(z2; f(z3; z3))))g g:

In the general case, one must solve one inhomogeneous equation for each free con-
stant occurring in the uni�cation problem. The uni�ers in the minimal complete
set then correspond to all possible combinations of the minimal solutions of these
inhomogeneous equations. For example, if the uni�cation problem contains the free
constants a; b; c, and if the sets of minimal solutions of the inhomogeneous equations
induced by a; b, and c, respectively, have cardinality 2; 3, and 5, then the minimal
complete set is of cardinality 2 � 3 � 5 = 30.
Uni�cation with constants modulo the theories ACUI and AG can be treated ac-

cordingly. In both cases, one works in the semiring corresponding to the theory, and
�rst determines a generating set of solutions for the system of homogeneous equa-
tions corresponding to the uni�cation problem. Then, one considers the systems of

502 Franz Baader and Wayne Snyder

inhomogeneous equations induced by the free constants, and for each system deter-
mines �nitely many solutions such that all solutions of this system of inhomogeneous
equations can be represented as the sum of one of these particular solutions and
a solution of the homogeneous equation. From these sets of solutions, the minimal
complete set of uni�ers can be computed, as illustrated in the above example.
For AG, the fact that the corresponding semiring is a ring implies that taking

one particular solution for each system of inhomogeneous equations is suÆcient.
Consequently, AG is unitary both for elementary uni�cation and for uni�cation
with constants, whereas the other two theories, though unitary for elementary uni-
�cation, are only �nitary for uni�cation with constants.

5.2. The class of commutative/monoidal theories

In order to generalize this semantic approach to a whole class of theories, let us try
to determine the relevant common features of the theories ACU, ACUI, and AG.
Using a rather syntactic point of view, we may observe that all three theories are
concerned with an associative-commutative binary function symbol f with a unit e.
In addition, the signature of AG contains a unary function symbol i, which behaves
like an endomorphism for f and e, i.e., i(f(x; y)) =AG f(i(x); i(y)) and i(e) =AG e.
This observation motivates the following de�nition of monoidal theories [Nutt 1990]:

5.1. Definition. An equational theory E is called monoidal i� it satis�es the
following properties:

1. Sig(E) contains a binary function symbol f and a constant symbol e, and all
other function symbols in Sig(E) are unary.

2. The symbol f is associative-commutative with unit e, i.e., f(f(x; y); z) =E
f(x; f(y; z)), f(x; y) =E f(y; x), and f(x; e) =E x.

3. Every unary function symbol h 2 Sig(E) is an endomorphism for f and e, i.e.,
h(f(x; y)) =E f(h(x); h(y)) and h(e) =E e.

Obviously, the theories ACU, ACUI, and AG are monoidal. Other examples of
monoidal theories are the theories Eh;g [Eh;e [ACUg, Eh;g [Eh;e [ACUIg, and
Eh;g [Eh;e [AGg introduced in subsection 3.4. The theory of Boolean rings and
the theory of commutative rings are not monoidal since their signatures contain
two binary function symbols.
A drawback of the above de�nition of monoidal theories is that the signature and

the axioms de�ning a theory play an important rôle. In fact, the theory of Abelian
groups allows for many di�erent axiomatizations, some of which do not satisfy the
de�nition of a monoidal theory. For example, let g be a binary function symbol and
e be a constant symbol. The theory

AG0 := fg(x; x) � e; g(x; e) � e; g(g(x; g(e; y)); g(e; z)) � g(g(z; g(e; y)); g(e; x))g

is not monoidal since g is neither associative nor commutative modulo AG0. Never-
theless, any model of AG0 is an Abelian group, where the group operations f and
i are de�ned as f(x; y) := g(x; g(e; y)) and i(x) := g(e; x).

Unification theory 503

In order to capture theories like AG0 as well, one must take a more semantic
point of view. A common feature of the free algebras de�ned by ACU, ACUI,
and AG is that the �nitely generated free algebras are direct powers of the free
algebras in one generator. For example, it is well known that the free Abelian
group in one generator is just the additive group of the integers, and that the free
Abelian group in n generators is the n-fold direct product of this group. As shown
in [Baader 1989b], this common feature can nicely be generalized in the categorical
setting introduced in subsection 3.3.3:

5.2. Definition. Let E be an equational theory and F := Sig(E). Then E is a
commutative theory i� CF (E) is a semi-additive category,

16 i.e.,

1. CF (E) has a zero object.

2. For every pair of objects in CF (E), their coproduct is also their product.

In algebraic terms, the �rst condition means that the initial algebra in V (E), i.e.,
T (F ; ;)==E

, is of cardinality 1. Since the coproduct of T (F ;X)==E
and T (F ;Y)==E

is simply T (F ;X] Y)==E
(where] denotes disjoint union), the second condition

means that the free algebra T (F ;X] Y)==E
is isomorphic to the direct product

T (F ;X)==E
� T (F ;Y)==E

. In particular, this implies that the �nitely generated
E-free algebras are direct powers of the E-free algebra in one generator.
The theory of Abelian groups satis�es these properties (and thus is commuta-

tive). The theory of Boolean rings and the theory of commutative rings are not
commutative in the sense of the above de�nition since the initial algebras contain
two elements (the constants 0 and 1).
In order to obtain a more algebraic de�nition of commutative theories, which

also makes clear that all monoidal theories are commutative, we need two more
notions from universal algebra. A constant symbol e 2 F is called idempotent in E
i� f(e; : : : ; e) =E e holds for all f 2 F . Any term t(x1; : : : ; xn) over the signature F
de�nes an n-ary implicit operation ot in V (E): for an algebra A 2 V (E), the result
of applying ot to elements a1; : : : ; an of the carrier of A is obtained by evaluating
t(a1; : : : ; an) in A. For example, the terms g(x; g(e; y)) and g(e; x) de�ne a binary
and a unary implicit operation, which together with the constant e satisfy the
axioms of Abelian groups in all models of AG0, i.e., all algebras in V (AG0).

5.3. Proposition. Let E be an equational theory and F := Sig(E). Then E is a
commutative theory i�

1. The signature F contains a constant e that is idempotent in E.

2. There is a binary implicit operation � in V (E) such that

(a) The constant e is a unit for � in all algebras in V (E).

(b) For any n-ary function symbol h 2 F , the identity h(x1 � y1; : : : ; xn � yn) �
h(x1; : : : ; xn) � h(y1; : : : ; yn) holds in all algebras in V (E).

16See, e.g., [Herrlich and Strecker 1973, Baader 1989b] for a more precise de�nition of and more
information on semi-additive categories.

504 Franz Baader and Wayne Snyder

Although it is not explicitly required by the proposition, the implicit operation �
turns out to be associative and commutative. Using this proposition, it is easy to
show that the theory AG0 is indeed commutative: the implicit operation � is de�ned
by the term g(x; g(e; y)).
Another easy consequence of the proposition is that every monoidal theory is

commutative: just take the explicit associative-commutative binary operation f in
the de�nition of monoidal theories as the implicit operation �. The theory AG0

is an example of a commutative theory that is not monoidal. However, it can be
shown [Baader and Nutt 1996] that every commutative theory can be turned into
an \equivalent" monoidal theory with the help of a signature transformation. For
this reason, one can in principle use both notions synonymously.

5.3. The corresponding semiring

Let E be a commutative theory with Sig(E) = F . The semiring SE corresponding
to E is obtained by considering the E-free algebra in one generator, say x, and then
taking the set of all endomorphisms of this algebra. Each such endomorphism is
uniquely determined by the image of the generator x. The multiplication operation
\�" in SE is just composition of morphisms, and the addition operation \+" is ob-
tained by argument-wise application of the implicit operation � of the commutative
theory E: (� + �)(x) := �(x) � �(x).
As an example, we consider the commutative theory ACUI, where the ex-

plicit operation f serves as the implicit operation �. Since the ACUI-free alge-
bra generated by x consists of two equivalence classes, with representatives x
and e, respectively, there are two possible endomorphisms: 0, which is de�ned
by x 7! e, and 1, which is de�ned by x 7! x. It is easy to see that the op-
eration \+" in SACUI behaves like disjunction and \�" like conjunction on the
truth values 0 and 1. For example, (0 � 1)(x) = 1(0(x)) = 1(e) = e = 0(x) and
(0 + 1)(x) = f(0(x); 1(x)) = f(e; x) =ACUI x = 1(x). Consequently, SACUI is the
two-element Boolean semiring BS.
A well-known result for semi-additive categories [Herrlich and Strecker 1973] says

that morphisms � in the semi-additive category CF (E) can be represented as matri-
cesM� over SE such that composition of morphisms corresponds to matrix multipli-
cation, i.e.,M�� =M� �M� . For example, the morphism �: T (F ; fx1; x2g)==ACUI

!
T (F ; fy1; y2g)==ACUI

de�ned by �(x1) := f(y1; y2); �(x2) := y2 corresponds to the
matrix

M� =

fx1 7! y1g fx1 7! y2g

fx2 7! eg fx2 7! y2g

!
=

1 1

0 1

!
:

The second equality depends on the fact that all E-free algebras in one generator
are isomorphic, and thus a morphism �ij : T (F ; fxig)==E

! T (F ; fyjg)==E
can be

seen as an endomorphism of T (Ffxg)==E
, i.e., an element of SE .

Unification theory 505

5.4. Results on uni�cation in commutative theories

Let E be a commutative theory with Sig(E) = F . In subsection 3.3.3 we
have seen that any E-uni�cation problem over F corresponds to a parallel pair
�; � : T (F ; I)==E

! T (F ;X)==E
of morphisms in CF (E), and that an E-uni�er

corresponds to a morphism Æ with domain T (F ;X)==E
such that �Æ = �Æ holds in

CF (E).
If we translate the morphisms into matrices over SE , this means that an E-

uni�er of the parallel pair h�; �i corresponds to a matrix M over SE such that
M� �M = M� �M . This correspondence is used in [Nutt 1990, Baader 1993] to
characterize the uni�cation types of commutative theories by algebraic properties
of the corresponding semirings. The rows of the matrix M are n-tuples of elements
of SE , written as row vectors. We will denote the set of all such n-dimensional row
vectors over SE by SnE .

5.4. Theorem. A commutative theory E is unitary w.r.t. elementary uni�cation
i� the corresponding semiring SE satis�es the following condition: for all m;n � 1
and all m� n-matrices M1;M2 over SE the set

U(M1;M2) := fv 2 S
n
E jM1 � v =M2 � vg

is �nitely generated, i.e., there exist k � 0 and v1; : : : ; vk 2 SnE such that
U(M1;M2) = fv1 � s1 + � � �+ vk � sk j s1; : : : ; sk 2 SEg.

If fv1; : : : ; vkg is such a �nite generating set for U(M�;M�), then the matrix whose
columns are the vectors v1; : : : ; vk corresponds to the most general E-uni�er of
h�; �i.
Uni�cation with constants can also be reformulated as a problem in CF (E) for
F = Sig(E). To this end we view constants as special variables that must always
be substituted for themselves. Let C be a �nite set of free constants. We say that
a morphism �: T (F ;X [C)==E

! T (F ;Y [C)==E
respects the constants in C i�

c� = c for all c 2 C. In this case, the matrix M� has a special form:

M� =

Mh
� M i

�

0 U

!
;

whereMh
� is an jX j�jYj-matrix,M i

� is an jX j�jCj-matrix, 0 is the jCj�jYj-matrix
with all entries 0, and U is the jCj � jCj-unit matrix. The 0-submatrix is due to the
fact that � does not substitute terms with variables for constants, and the unit
matrix expresses that � maps any constant to itself.
An E-uni�cation problem with constants from a �nite set C corresponds to a

parallel pair h�; �i of morphisms respecting the constants in C, and each E-uni�er
Æ of this pair also corresponds to a morphism respecting C. For the components of
the corresponding matrices, the fact that Æ is a uni�er of h�; �i, i.e., thatM� �MÆ =
M� �MÆ, leads to the following equations:

Mh
�M

h
Æ = Mh

�M
h
Æ ;

506 Franz Baader and Wayne Snyder

Mh
�M

i
Æ +M i

� = Mh
�M

i
Æ +M i

� :

The �rst equation is a system of homogeneous equations in SE , whereas the second
is a system of inhomogeneous equations.
From these observations one can derive the following characterization of the type

\at most �nitary" for uni�cation with constants in commutative theories:17

5.5. Theorem. Let E be a commutative theory that is unitary w.r.t. elementary
uni�cation. Then E is at most �nitary w.r.t. uni�cation with constants i� the
corresponding semiring SE satis�es the following condition: for all m;n � 1, all
m � n-matrices M1;M2 over SE, and all u1; u2 2 SmE , there exist �nitely many
v1; : : : ; vk 2 SnE such that

fw 2 SnE jM1 � w + u1 =M2 � w + u2g = fvi + v j 1 � i � k; v 2 U(M1;M2)g:

This conditions means that �nitely many particular solutions of the system of in-
homogeneous equations, M1 � x + u1 = M2 � x + u2, together with the solutions
U(M1;M2) of the corresponding system of homogeneous equations,M1 �x =M2 �x,
generate all solutions of the system of inhomogeneous equations. The assumption
that E is unitary w.r.t. elementary uni�cation implies that U(M1;M2) is �nitely
generated. The complete set of E-uni�ers can now be built from the generating set
of U(M1;M2) and the �nitely many particular solutions of the systems of inhomoge-
neous equations corresponding to the free constants as illustrated in subsection 5.1.
We close this section by mentioning some additional results on uni�cation in

commutative theories. Let E be a commutative theory.

1. For elementary uni�cation, E is either unitary or of type zero.

2. If SE is �nite, then E is unitary for elementary uni�cation and at most �nitary
for uni�cation with constants.

3. If SE is a ring and E is unitary for elementary uni�cation, then E is also unitary
for uni�cation with constants.

4. If E is at most �nitary for uni�cation with constants, then E is also at most
�nitary for uni�cation with linear constant restrictions, and thus also for general
uni�cation.

Proofs of these and other interesting results on uni�cation in commutative/monoidal
theories can be found in [Baader 1989b, Nutt 1990, Baader 1993, Baader and
Nutt 1996].
Compared to syntactic approaches to uni�cation, the semantic approach intro-

duced here has the disadvantage that it cannot treat general uni�cation problems
directly. In fact, for a commutative theory E, we have considered the category
CF (E) for F = Sig(E), and have used the fact that this category is semi-additive.
For an extended signature F1 � F , the category CF1

(E) would no longer be semi-
additive, and thus the presented approach to uni�cation in commutative theories
cannot be applied directly. For uni�cation with constants, we have shown that one
can still work within the category CF (E) by considering special morphisms. For

17Recall that \at most �nitary" means unitary or �nitary.

Unification theory 507

arbitrary free function symbols such an approach does not appear to be possible.
The general methods for combining uni�cation algorithms described in the next
section can, however, overcome this problem (see result 4. from above).

6. Combination of uni�cation algorithms

In applications of equational uni�cation in automated deduction, one is often faced
with the problem of unifying terms containing several function symbols whose prop-
erties are de�ned by equational theories. For example, associative-commutative
function symbols often come in pairs (e.g., the addition operation + and the multi-
plication operation � of rings). However, a given AC- or ACU-uni�cation algorithm
can only treat terms containing one of these two symbols, but not both. In pro-
gram veri�cation one may encounter data structures such as sets and lists, and their
combination (e.g., sets of lists). Since union of sets ([) is associative, commutative,
and idempotent, and the append operation for lists (app) is associative, uni�cation
of terms containing both ACI- and A-symbols is of interest in this setting. Thus,
the question arises whether we can use the known ACI[- and Aapp-uni�cation al-
gorithms for unifying terms containing both [and app modulo ACI[[Aapp . This
is an instance of the following combination problem for uni�cation algorithms:

Assume that E1; : : : ; En are equational theories over pairwise disjoint sig-
natures. How can algorithms for uni�cation modulo Ei (i = 1; : : : ; n) be
combined to an algorithm for uni�cation modulo E1 [� � � [En?

To be more precise, there are two variants of this problem: one can either try
to combine algorithms computing complete sets of uni�ers or decision procedures.
It should also be noted that without the disjointness condition there cannot ex-
ist a general combination method.18 For example, as mentioned in section 3.4,
Dl
f;g-uni�cation and Dr

f;g-uni�cation are unitary, whereas uni�cation modulo their
union Df;g is in�nitary, which shows that algorithms computing �nite complete sets
of uni�ers cannot be combined in the non-disjoint case. Section 3.4 also yields a
negative example for the combination of decision procedures: Df;g-uni�cation and
Ag-uni�cation are decidable, whereas uni�cation modulo their union is undecidable.
The formulation of the combination problem given above is still not quite precise

since it does not specify which kind of Ei-uni�cation problems (elementary, with
constants, or general) the component algorithms must be able to handle. As we
shall see below, algorithms for uni�cation with constants are not quite suÆcient:
the combination method requires algorithms for uni�cation with linear constant
restrictions for the component theories Ei. In particular, algorithms for general E-
uni�cation can be obtained from algorithms for E-uni�cation with lcr by combining
them with an algorithm for syntactic uni�cation (which treats the free function
symbols).

18There are some approaches that try to weaken the disjointness assumption, but the theories
to be combined must satisfy rather strong conditions [Ringeissen 1992, Domenjoud, Klay and
Ringeissen 1994].

508 Franz Baader and Wayne Snyder

The research on the combination problem was triggered by the search for a
uni�cation algorithm that can deal with terms containing several associative-
commutative function symbols and free symbols [Stickel 1975, Stickel 1981, Fages
1984, Fages 1987, Herold and Siekmann 1987]. It turned out that the methods used
in this particular instance of the combination problem can easily be generalized to
other equational theories, provided that they satisfy certain restrictions (such as
collapse-freeness or regularity19) on the syntactic form of their de�ning identities,
which make sure that the theories behave similarly to associativity-commutativity
and syntactic equality [Kirchner 1985, Tid�en 1986, Herold 1986, Yelick 1987, Boudet
et al. 1989].
The problem of combining algorithms computing complete sets of uni�ers was

solved in a very general form by Schmidt-Schau� [1989b]. His approach imposes no
restriction on the syntactic form of the identities. The only requirements on the
component theories Ei are of an algorithmic nature: both Ei-uni�cation problems
with constants and so-called \constant elimination problems" (see [Schmidt-Schau�
1989b] for a de�nition) must be �nitary solvable modulo Ei. Boudet [1993] describes
a more eÆcient combination algorithm, which depends on the same requirements
as the one by Schmidt-Schau�.
In the following, we will describe the combination method introduced in [Baader

and Schulz 1992, Baader and Schulz 1996] in more detail, since it can be used both
for combining algorithms computing complete sets of uni�ers and for combining de-
cision procedures. Instead of splitting the algorithmic problem to be solved for the
component theories Ei into two parts (uni�cation with constants and constant elim-
ination), this method requires algorithms (decision procedures) for Ei-uni�cation
with lcr. In this setting, Schmidt-Schau�'s condition that constant elimination prob-
lems must be �nitary solvable modulo Ei can be seen as just one way of ensuring
that Ei-uni�cation with lcr is at most �nitary provided that Ei-uni�cation with
constants is at most �nitary.

6.1. A general combination method

Before describing the combination method of Baader and Schulz [1992] and [1996]
formally, we illustrate the underlying ideas by a simple example. Let g be a unary
and f be a binary function symbol. We consider the theories Af and Fg := fg(x) �
g(x)g,20 and the (elementary) uni�cation problem

�0 := fg(f(y; y))
?
=
E
g(x); g(x)

?
=
E
g(y); x

?
=
E
f(y; y)g

modulo their union E := Af [Fg . In a �rst step, we transform �0 into an equivalent
uni�cation problem in decomposed form, i.e., into a union of an (elementary) Af -

19A theory E is called collapse-free if it does not contain an identity of the form x = t where x
is a variable and t is a non-variable term, and it is called regular if the left- and right-hand sides
of the identities contain the same variables.

20Obviously, =Fg is just syntactic equality. The \dummy" axiom g(x) � g(x) makes sure that
g belongs to Sig(Fg).

Unification theory 509

uni�cation problem and an (elementary) Fg-uni�cation problem:

� := fz
?
=
Af

f(y; y); x
?
=
Af

f(y; y)g [fg(z)
?
=
Fg
g(x); g(x)

?
=
Fg
g(y)g:

This has been achieved by replacing \alien" subterms (in the example, just the term
f(y; y) occurring on the left-hand side of the �rst equation) by new variables and
introducing appropriate new equations (see [Baader and Schulz 1996] for a formal
de�nition of this decomposition step).
Unfortunately, it is not suÆcient simply to test the \pure" uni�cation problems

obtained this way for solvability. The problem is that these uni�cation problems
still share variables, and the single solutions may instantiate these variables with
incompatible terms. For example, �1 := fx 7! f(y; y); z 7! f(y; y)g solves the
Af -subproblem, and �2 := fx 7! g(x); y 7! g(x); z 7! g(x)g is a solution of the
Fg-subproblem, but these solutions replace both x and z by di�erent (even non-
uni�able) terms. In order to avoid such incompatible assignments, we choose a
theory label for each variable: in the subproblem corresponding to this theory, the
variable may be instantiated, whereas in the other subproblem the variable must
be treated as a constant. For example, if we assign

L(x) := L(z) := Af and L(y) := Fg ;

then y must be treated as a constant in the Af -subproblem, whereas x and z must
be treated as constants in the Fg-subproblem.
This avoids incompatible instantiations of shared variables, but also leads to

a new problem: in the example, the equation g(z)=?
Fg
g(x) is no longer solvable

since both z and x must be treated as (di�erent) constants. This problem can be
overcome by choosing an appropriate variable identi�cation. In the example, x must
be identi�ed with z, which can be achieved by replacing every occurrence of z by
x:

�0 := fx
?
=
Af

f(y; y)g [fg(x)
?
=
Fg
g(x); g(x)

?
=
Fg
g(y)g:

Unfortunately, the solutions �01 := fx 7! f(y; y)g and �02 := fy 7! xg of the
pure subproblems still cannot be combined to a solution of their union, since there
is a cyclic dependency between the two substitutions: x is replaced by a term
containing y, and y is replaced by a term containing x. Such cyclic dependencies
between solutions of the pure subproblems can �nally be avoided by choosing a
linear ordering on the shared variables of the uni�cation problem, which induces
linear constant restrictions for the subproblems.
These ideas can be formalized as follows. Let E1; : : : ; En be non-trivial equational

theories over disjoint signatures. An (E1 [� � � [En)-uni�cation problem � is in
decomposed form i� � = �1[� � �[�n where each �i is an elementary Ei-uni�cation
problem. As illustrated in the example, it is easy to transform a given elementary
(E1 [� � �[En)-uni�cation problem into an equivalent problem in decomposed form
(see [Baader and Schulz 1996] for details). Thus, we may without loss of generality
assume that all our (E1 [� � � [En)-uni�cation problems are in decomposed form

510 Franz Baader and Wayne Snyder

� = �1 [� � � [�n. A variable occurring in � is called a shared variable i� it occurs
in at least two of the pure subproblems �i.
Let X be the set of shared variables of � = �1[� � �[�n. A variable identi�cation

can be represented by a partition � = fP1; : : : ; Pkg of X . For each of the classes
Pi, let xi 2 Pi be a representative of this class, and let X� := fx1; : : : ; xkg be the
set of these representatives. The substitution that replaces, for all i = 1; : : : ; k, each
element of Pi by its representative xi is denoted by ��. We denote the result of
applying �� to each term in �i by �i��. For a given partition � of the shared
variables of �, let L : X� ! f1; : : : ; ng be a labelling function, which assigns a
theory label to each variable in X�, and let < be a linear ordering on X�. Using L
and <, each of the elementary Ei-uni�cation problems �i�� can be turned into an
Ei-uni�cation problem with linear constant restrictions h�i��; L;<i: the variables
x 2 X� with label L(x) 6= i are treated as (free) constants in h�i��; L;<i, whereas
the other variables are still treated as variables, and the linear constant restrictions
are induced by <.21

6.1. Proposition. Let � := �1[� � �[�n be an (E1[� � �[En)-uni�cation problem
in decomposed form. Then the following statements are equivalent:

1. � is solvable, i.e., there exists an (E1 [� � � [En)-uni�er of �.

2. There exists a partition �, a labelling function L : X� ! f1; : : : ; ng, and a
linear ordering < on X� such that, for all i = 1; : : : ; n, the Ei-uni�cation
problem with linear constant restrictions h�i��; L;<i is solvable.

Assume that solvability of Ei-uni�cation problems with lcr is decidable for i =
1; : : : ; n. For a given elementary (E1 [� � � [En)-uni�cation problem �0 one can
compute an equivalent problem in decomposed form � in polynomial time. For
�, there exist only �nitely many di�erent triples (�; L;<), which means that it
is possible to compute all possible such triples, and then test the obtained Ei-
uni�cation problems with lcr for solvability. Thus, proposition 6.1 implies that
solvability of elementary (E1 [� � � [En)-uni�cation problems is decidable. To be
more precise, instead of deterministically computing all possible triples (�; L;<),
one can also employ a non-deterministic algorithm that \guesses the right tuple"
in polynomial time.

6.2. Theorem. Let E1; : : : ; En be non-trivial equational theories over disjoint sig-
natures. If solvability of Ei-uni�cation problems with linear constant restrictions is
decidable (in NP) for i = 1; : : : ; n, then solvability of elementary (E1 [� � � [En)-
uni�cation problems is decidable (in NP).

In general, it is not possible to avoid the non-determinism inherent in this combi-
nation method [Schulz 1997]. For example, the decision problem is polynomial for
ACUI-uni�cation with lcr, but NP-complete for general ACUI-uni�cation [Baader

21Non-shared variables are assumed to be larger than all shared variables, i.e., there are no
restrictions for the images of these variables.

Unification theory 511

and Schulz 1993b, Kapur and Narendran 1992a]. This shows that the combina-
tion of an algorithm for syntactic uni�cation with a decision procedure for ACUI-
uni�cation with lcr cannot be achieved with the help of a polynomial combination
method. For regular and collapse-free theories for which, in addition, it is possible
to compute most general uni�ers in polynomial time, one can, however, design a
(deterministic) polynomial combination procedure [Schulz 1999].
The naive combination algorithm obtained by a direct application of proposi-

tion 6.1 is highly non-deterministic, and thus does not lead to satisfactory results
in practice. Optimizations of the combination algorithm (which avoid this unsatis-
factory behavior in many cases) are described in [Kepser and Richts 1999].
Proposition 6.1 can also be used to obtain a method for combining uni�cation

algorithms, i.e., algorithms computing �nite complete sets of uni�ers. In fact, as we
shall see below, given solutions �i of the Ei-uni�cation problems with lcr induced
by the triple (�; L;<) can e�ectively be combined into a solution �1�� � ���n of the
original (E1 [� � � [En)-uni�cation problem. For a given (E1 [� � � [En)-uni�cation
problem � in decomposed form, let T1; : : : ; Tk be all the triples consisting of a
partition �, a labelling function L, and a linear ordering < on X�, and let Ci;j be
a complete set of Ei-uni�ers of the Ei-uni�cation problem with lcr induced by Tj .
Then the set

k[
j=1

f�1 � � � � � �n j �i 2 Ci;jg

is a complete set of (E1 [� � � [En)-uni�ers of � (see [Baader and Schulz 1996] for
a proof).

6.3. Theorem. Let E1; : : : ; En be non-trivial equational theories over disjoint sig-
natures that are at most �nitary for Ei-uni�cation with linear constant restrictions.
Then E1 [� � � [En is at most �nitary for elementary uni�cation.

Although the combination results (as formulated in theorem 6.2 and theorem 6.3)
only apply to elementary uni�cation in the combined theory, they can easily be
extended to general uni�cation. In fact, it is easy to see that syntactic uni�cation
with lcr is decidable and unitary: just compute the mgu of the uni�cation problem
without lcr, and then test whether it satis�es the constant restrictions. Thus, one
can simply take as one of the Ei's a \free" theory F such that Sig(F) contains all
the free function symbols occurring in the general uni�cation problem and =F is
the syntactic equality on Sig(F)-terms.

6.2. Proving correctness of the combination method

In order to show soundness of the combination method (i.e., (2) ! (1) of propo-
sition 6.1), it is suÆcient to show that given solutions �i of the Ei-uni�cation
problems with lcr induced by the triple (�; L;<) can indeed be combined into a

512 Franz Baader and Wayne Snyder

solution �1 � � � � � �n of the original (E1 [� � � [En)-uni�cation problem in decom-
posed form � = �1 [� � � [�n. First, we combine �1; : : : ; �n into a solution � of
��� = �1�� [� � � [�n��. Obviously, this implies that ��� is a solution of �.
Without loss of generality, we may assume that the substitution �i maps all

variables with label i to terms containing only variables with label j 6= i (which are
treated as free constants in �i��) or new variables, i.e., variables not occurring in
�. The combined solution � of ��� is de�ned along the linear ordering <.
Let x be the least variable with respect to <, and let i be its label. Since the

solution �i of �i�� satis�es the constant restrictions induced by <, the term x�i
does not contain any variables with index j 6= i. Thus we can simply de�ne x� :=
x�i.
Now let x be an arbitrary variable with label i, and let y1; : : : ; ym be the variables

with labels di�erent from i occurring in x�i. Since �i satis�es the constant restric-
tions induced by <, the variables y1; : : : ; ym (which are treated as free constants in
�i��) must be smaller than x. This means that y1�; : : : ; ym� are already de�ned.
The term x� is now obtained from x�i by replacing each yk by yk� (k = 1; : : : ;m).
It is easy to see that the substitution � obtained this way satis�es � = �i�

(i = 1; : : : ; n), i.e., � is an instance of all the substitutions �i. Since �i is an
Ei-uni�er of �i��, this implies that � is also an Ei-uni�er of �i��, and thus an
E-uni�er of �i��. Consequently, � is an E-uni�er of ��� = �1�� [� � � [�n��.
Proving completeness of the combination method (i.e, (1) ! (2) of proposi-

tion 6.1) turns out to be a bit more complex. In the following, we only give a
sketch of the proof. Assume that � is a solution of the (E1 [� � � [En)-uni�cation
problem in decomposed form � = �1 [� � � [�n. This solution can be used to de�ne
the correct triple (�; L;<):

1. Two shared variables x; y belong to the same class of � i� x� =E y�.

2. If x� is not a variables, then L(x) = i i� the top symbol of x� belongs to
Sig(Ei). Otherwise, L(x) := 1 (this is an arbitrary decision).

3. < is an arbitrary linear extension of the strict partial ordering � de�ned by
x � y i� x� is a strict subterm of y�.

It is easy to see that � is also a solution of ��� = �1�� [� � � [�n��. For each
i, the substitution � (which is a substitution of the combined signature Sig(E1) [
� � � [Sig(En)) can be turned into a Sig(Ei)-substitution �i by replacing alien
subterms in x� (i.e., subterms starting with a symbol not belonging to Sig(Ei))
by new variables in such a way that =E-equivalent subterms are replaced by the
same variable. Unfortunately, for an arbitrary E-uni�er � of �, the substitution
�i obtained this way need not be a solution of the Ei-uni�cation problem with
lcr h�i��; L;<i. For this to be true, � must be normalized in a certain way. One
possibility to obtain an appropriate notion of a normalized substitution is to apply
unfailing completion to the equational theory E1 [� � � [En, and normalize w.r.t.
the ordered rewrite system R obtained this way (see [Baader and Schulz 1996]
for details). Since R may be in�nite, it is not necessarily possible to compute the
normal form of a given term, but this is irrelevant for the proof of completeness.
Another possibility (which has the advantage that normalization is e�ective) is to

Unification theory 513

compute a so-called \layer-reduced" form [Schmidt-Schau� 1989b, Kirchner and
Ringeissen 1994]. In principles, this normal form is obtained by applying collapse-
equations as much as possible.
A di�erent way of proving soundness and completeness of the combination

method described above was introduced in [Baader and Schulz 1995a]: it depends
on a representation of the free algebra in V (E1 [� � � [En) over countably many
generators as the so-called free amalgamated product of the free algebras in V (Ei)
in countably many generators. This approach can also deal with the combination
of constraint solvers in free structures (where the signature may also contain pred-
icate symbols), and it has been generalized to structures that are not necessarily
free [Baader and Schulz 1995c, Baader and Schulz 1998]. The combination method
has also been extended to disuni�cation [Baader and Schulz 1995b, Kepser 1999].

7. Further topics

In this article we have concentrated on uni�cation of �rst-order terms, and have
mentioned only applications in term rewriting and resolution-based theorem prov-
ing. However, uni�cation is a broad paradigm with applications in almost every
area of automated deduction, and we would like to draw the reader's attention in
particular to the two chapters of this handbook where varieties of uni�cation not
covered here are treated: higher-order uni�cation 14 and rigid E-uni�cation ??. In
addition, we brie
y mention in this �nal section a number of important variants of
the uni�cation problem that have been studied in the literature.

Matching
Given a pair of terms s; t, the matching problem asks for a substitution � such that
s� = t. Again, this syntactic matching problem can be generalized to matching
modulo an equational theory E, where one asks for a substitution � satisfying
s� =E t.
If t does not contain variables, then matching and uni�cation are obviously the

same problem. In general, one can turn a given matching problem into an \equiva-
lent" uni�cation problem by replacing the variables in t by new free constants. This
transformation shows that matching modulo E can be reduced to E-uni�cation with
constants . B�urckert [1989] has shown that there exists an equational theory for
which elementary uni�cation is decidable, but matching and uni�cation with con-
stants is undecidable. Also, if one is interested in complete sets of E-matchers, then
one must be careful how to de�ne the instantiation quasi-ordering [B�urckert 1989].

Semiuni�cation
Semiuni�cation is a deceptively simple combination of syntactic matching and syn-
tactic uni�cation on �rst-order terms.
A semiuni�cation problem consists of a set of pairs of terms

fs1 �
? t1; : : : ; sn �

? tng

514 Franz Baader and Wayne Snyder

and is called uniform if n = 1. A substitution � is a solution (a semiuni�er) of such
a problem i� there exist substitutions �1; : : : ; �n such that

s1��1 = t1�; : : : ; sn��n = tn�:

This simple de�nition belies the broad variety of applications of semiuni�cation in
term rewriting, type checking for programming languages, proof theory, and compu-
tational linguistics; in addition, proving the properties of the problem turned out to
be extremely diÆcult. Although it is easy to show that so-called principal solutions
(analogous to mgus in syntactic uni�cation) always exist for solvable semiuni�ca-
tion problems, the proof that the non-uniform case is undecidable is exceedingly
complex; the interested reader is referred to [Kfoury, Tiuryn and Urzyczyn 1993],
where a review of the results on the non-uniform case is presented.
The uniform case is decidable, but it took a long time to develop a correct,

eÆcient algorithm. A fast algorithm based on the uni�cation-closure method, as
well as a review of the various attempts to provide algorithms for the problem, may
be found in [Oliart and Snyder 1998]. This paper shows that the uniform case can
be decided in O(n2 �(n)2), where n is the size of the two input terms, and � is
the functional inverse of Ackermann's function; constructing a principal solution is
somewhat more complex.

Disuni�cation
A disuni�cation problem is of the form

fs1
?
= t1; : : : ; sn

?
= tn; sn+1

?

6= tn+1; : : : ; sn+m
?

6= tn+mg;

where s1; : : : ; tn+m are terms. A solution of such a problem is a substitution �
satisfying si� = ti� (i = 1; : : : ; n) and sn+j� 6= tn+j� (j = 1; : : : ;m). Again, this
problem can be generalized to disuni�cation modulo an equational theory E.
In contrast to uni�cation, one must distinguish between di�erent types of solv-

ability: for disuni�cation it makes a di�erence whether solutions are required to
be ground substitutions (i.e., substitution introducing only variable-free terms),
or whether they may be arbitrary substitutions. Both types of solvability have
been considered in the literature [Colmerauer 1984, Kirchner and Lescanne 1987,
B�urckert 1988, Comon and Lescanne 1989, Comon 1988, Comon 1991, Buntine
and B�urckert 1994, Baader and Schulz 1993a], but ground solvability appears to
be more interesting for most applications. It should also be noted that sometimes
more general problems than the one introduced above are still called disuni�cation
problems (see, e.g., [Comon 1991]).

Sorted uni�cation
In many applications, the domain on which the function symbols operate is not
one homogeneous set: it is divided into di�erent subsets, which on the syntactic
level are represented as sorts. Sorted uni�cation generalizes syntactic uni�cation
in that the domain of variables is restricted to certain sorts. Uni�ers are then

Unification theory 515

required to be well-sorted in the sense that variables can only be replaced by
terms of a \compatible" sort. Results for sorted uni�cation strongly depend on
the expressiveness of the sort language. An overview on sorted uni�cation can,
for example, be found in [Weidenbach 1998]; other important references on the
topic are [Walther 1983, Walther 1987, Schmidt-Schau� 1986a, Schmidt-Schau�
1989a, Comon 1989, Meseguer, Goguen and Smolka 1989, Tommasi 1991, Frisch
and Cohn 1992, Weidenbach 1996].

Bibliography

Abdulrab H. and P�ecuchet J.-P. [1989], `Solving word equations', J. Symbolic Computation

8(5), 499{521.

Auffray Y. and Enjalbert P. [1992], `Modal theorem proving: An equational viewpoint', J.
Logic and Computation 2(3), 247{295.

Baader F. [1986], `Uni�cation in idempotent semigroups is of type zero', J. Automated Reason-

ing 2(3), 283{286.

Baader F. [1989a], Characterizations of uni�cation type zero, in N. Dershowitz, ed., `Proceedings
of the 3rd International Conference on Rewriting Techniques and Applications', Vol. 355 of
Lecture Notes in Computer Science, Springer-Verlag, Chapel Hill, North Carolina, pp. 2{14.

Baader F. [1989b], `Uni�cation in commutative theories', J. Symbolic Computation 8(5), 479{
497.

Baader F. [1991], Uni�cation, weak uni�cation, upper bound, lower bound, and generalization
problems, in R. V. Book, ed., `Proceedings of the 4th International Conference on Rewriting
Techniques and Applications', Vol. 488 of Lecture Notes in Computer Science, Springer-Verlag,
Como, Italy, pp. 86{97.

Baader F. [1993], `Uni�cation in commutative theories, Hilbert's basis theorem and Gr�obner
bases', J. of the ACM 40(3), 477{503.

Baader F. [1998], `On the complexity of Boolean uni�cation', Information Processing Letters

67(4), 215{220.

Baader F. and B�uttner W. [1988], `Uni�cation in commutative idempotent monoids', Theo-
retical Computer Science 56(1), 345{352.

Baader F. and Narendran P. [1998], Uni�cation of concept terms in description logics, in
H. Prade, ed., `Proceedings of the 13th European Conference on Arti�cial Intelligence (ECAI-
98)', John Wiley & Sons Ltd, Brighton, UK, pp. 331{335.

Baader F. and Nutt W. [1996], `Combination problems for commutative/monoidal theories:
How algebra can help in equational reasoning', J. Applicable Algebra in Engineering, Com-

munication and Computing 7(4), 309{337.

Baader F. and Schulz K. U. [1992], Uni�cation in the union of disjoint equational theo-
ries: Combining decision procedures, in D. Kapur, ed., `Proceedings of the 11th International
Conference on Automated Deduction', Vol. 607 of Lecture Notes in Arti�cial Intelligence,
Springer-Verlag, Saratoga Springs, NY, USA, pp. 50{65.

Baader F. and Schulz K. U. [1993a], Combination techniques and decision problems for dis-
uni�cation, in C. Kirchner, ed., `Proceedings of the 5th International Conference on Rewriting
Techniques and Applications', Lecture Notes in Arti�cial Intelligence, Springer-Verlag, Mon-
treal, Canada, pp. 301{315.

Baader F. and Schulz K. U. [1993b], General A- and AX-uni�cation via optimized combination
procedures, in `Proceedings of the Second International Workshop on Word Equations and
Related Topics', Vol. 677 of Lecture Notes in Computer Science, Springer-Verlag, Rouen,
France, pp. 23{42.

516 Franz Baader and Wayne Snyder

Baader F. and Schulz K. U. [1995a], Combination of constraint solving techniques: An alge-
braic point of view, in `Proceedings of the 6th International Conference on Rewriting Tech-
niques and Applications', Vol. 914 of Lecture Notes in Arti�cial Intelligence, Springer-Verlag,
Kaiserslautern, Germany, pp. 352{366.

Baader F. and Schulz K. U. [1995b], `Combination techniques and decision problems for dis-
uni�cation', Theoretical Computer Science 142, 229{255.

Baader F. and Schulz K. U. [1995c], On the combination of symbolic constraints, solution
domains, and constraint solvers, in `Proceedings of the International Conference on Princi-
ples and Practice of Constraint Programming, CP95', Vol. 976 of Lecture Notes in Arti�cial

Intelligence, Springer-Verlag, Cassis, France, pp. 380{397.

Baader F. and Schulz K. U. [1996], `Uni�cation in the union of disjoint equational theories:
Combining decision procedures', J. Symbolic Computation 21, 211{243.

Baader F. and Schulz K. U. [1998], `Combination of constraint solvers for free and quasi-free
structures', Theoretical Computer Science 192, 107{161.

Baader F. and Siekmann J. H. [1994], Uni�cation theory, in D. M. Gabbay, C. J. Hogger and
J. A. Robinson, eds, `Handbook of Logic in Arti�cial Intelligence and Logic Programming',
Oxford University Press, Oxford, UK, pp. 41{125.

Bachmair L., Ganzinger H., Lynch C. and Snyder W. [1995], `Basic paramodulation', Infor-
mation and Computation 121(2), 172{192.

Benanav D., Kapur D. and Narendran P. [1985], Complexity of matching problems, in J.-P.
Jouannaud, ed., `Proceedings of the 1st International Conference on Rewriting Techniques
and Applications', Vol. 202 of Lecture Notes in Computer Science, Springer-Verlag, Dijon,
France, pp. 417{429.

Bockmayr A. [1992], Algebraic and logical aspects of uni�cation, in K. U. Schulz, ed., `Proceed-
ings of the 1st International Workshop on Word Equations and Related Topics (IWWERT
'90)', Vol. 572 of Lecture Notes in Computer Science, Springer-Verlag, T�ubingen, Germany,
pp. 171{180.

Bockmayr A., Krischer S. and Werner A. [1992], An optimal narrowing strategy for general
canonical systems, in `Proceedings of the 3rd International Workshop on Conditional and
Typed Term Rewriting Systems', Vol. 656 of Lecture Notes in Computer Science, Springer-
Verlag, Pont �a Mousson, France.

Boudet A. [1993], `Combining uni�cation algorithms', J. Symbolic Computation 8, 449{477.

Boudet A., Contejean E. and Devie H. [1990], A new AC-uni�cation algorithm with a new

algorithm for solving diophantine equations, in `Proceedings of the 5th Annual IEEE Sympo-
sium on Logic in Computer Science', Philadelphia, USA, pp. 141{150.

Boudet A., Jouannaud J.-P. and Schmidt-Schau� M. [1989], `Uni�cation in Boolean rings
and Abelian groups', J. Symbolic Computation 8, 449{477.

Buntine W. L. and B�urckert H.-J. [1994], `On solving equations and disequations', J. of the
ACM 41(4), 591{629.

B�urckert H.-J. [1988], Solving disequations in equational theories, in E. Lusk and R. Overbeek,
eds, `Proceedings of the 9th International Conference on Automated Deduction', Vol. 310 of
Lecture Notes in Computer Science, Springer-Verlag, Argonne, IL.

B�urckert H.-J. [1989], `Matching|a special case of uni�cation?', J. Symbolic Computation

8(5), 532{536.

B�urckert H.-J. [1991], A Resolution Principle for a Logic with Restricted Quanti�ers, Vol. 568
of Lecture Notes in Arti�cial Intelligence, Springer-Verlag.

B�urckert H.-J., Herold A. and Schmidt-Schau� M. [1989], `On equational theories, uni�-
cation, and decidability', J. Symbolic Computation 8(3,4), 3{49.

Burris S. and Lawrence J. [1990], `Uni�cation in commutative rings is not �nitary', Informa-
tion Processing Letters 36(1), 37{38.

B�uttner W. [1986a], `Uni�cation in the data structure multiset', J. Automated Reasoning

2(1), 75{88.

Unification theory 517

B�uttner W. [1986b], Uni�cation in the data structure sets, in J. H. Siekmann, ed., `Proceedings
of the 8th International Conference on Automated Deduction', Vol. 230 of Lecture Notes in

Computer Science, Springer-Verlag, Oxford, UK, pp. 470{488.

B�uttner W. [1988], Uni�cation in �nite algebras is unitary(?), in E. Lusk and R. Overbeek,
eds, `Proceedings of the 9th International Conference on Automated Deduction', Vol. 310 of
Lecture Notes in Computer Science, Springer-Verlag, Argonne, IL, pp. 368{377.

B�uttner W., Estenfeld K., Schmid R., Schneider H.-A. and Tid�en E. [1990], `Symbolic
constraint handling through uni�cation in �nite algebras', Applicable Algebra in Engineering,

Communication and Computing 1(2), 97{119.

B�uttner W. and Simonis H. [1987], `Embedding Boolean expressions into logic programming',
J. Symbolic Computation 4(2), 191{205.

Champeaux D. [1986], `About the Paterson-Wegman linear uni�cation algorithm', J. Computer
and System Sciences 32, 79{90.

Clausen M. and Fortenbacher A. [1989], `EÆcient solution of linear diophantine equations',
J. Symbolic Computation 8(1,2), 201{216.

Cohn P. M. [1965], Universal Algebra, Harper & Row, New York.

Colmerauer A. [1984], Equations and inequations on �nite and in�nite trees, in `Proceedings of
the International Conference on Fifth Generation Computer Systems', North Holland, Tokyo,
Japan, pp. 85{99.

Comon H. [1988], Uni�cation et Disuni�cation: Th�eorie et Applications, Ph.D. thesis, Institut
National Polytechnique de Grenoble, Grenoble, France.

Comon H. [1989], Inductive proofs by speci�cation transformation, in N. Dershowitz, ed., `Pro-
ceedings of the 3rd International Conference on Rewriting Techniques and Applications', Vol.
355 of Lecture Notes in Computer Science, Springer-Verlag, Chapel Hill, North Carolina,
pp. 76{91.

Comon H. [1991], Disuni�cation: A survey, in J.-L. Lassez and G. Plotkin, eds, `Computational
Logic: Essays in Honor of Alan Robinson', MIT Press, Cambridge, MA, pp. 322{359.

Comon H. and Lescanne P. [1989], `Equational problems and disuni�cation', J. Symbolic Com-
putation 7, 371{425.

Contejean E. [1993], `Solving �-Problems Modulo Distributivity by a Reduction to AC1-
Uni�cation', J. Symbolic Computation 16(5), 493{521.

Contejean E. and Devie H. [1994], `An eÆcient incremental algorithm for solving systems of
linear diophantine equations', Information and Computation 113, 143{172.

Corbin J. and Bidoit M. [1983], A rehabilitation of Robinson's uni�cation algorithm, in R. E. A.
Mason, ed., `Proceedings of the 9th World Computer Congress, IFIP'83', Elsevier, Paris,
France, pp. 909{914.

Davis M. [1973], `Hilbert's tenth problem is unsolvable', American Mathematical Monthly

80, 233{269.

Dershowitz N. and Jouannaud J.-P. [1990], Rewrite systems, in J. van Leeuwen, ed., `Hand-
book of Theoretical Computer Science', Vol. B: Formal Methods and Semantics, North-
Holland, Amsterdam, chapter 6, pp. 243{320.

Dershowitz N. and Jouannaud J.-P. [1991], `Notations for rewriting', Bulletin of the European

Association for Theoretical Computer Science 43, 162{172.

Dickson L. E. [1913], `Finiteness of the odd perfect and primitive abundant numbers with r

distinct prime factors', Amer. Journal of Math. 35, 413{422.

Domenjoud E. [1991], Outils pour la d�eduction automatique dans les th�eories associatives-
commutatives, Th�ese de Doctorat, Universit�e de Nancy I, France.

Domenjoud E., Klay F. and Ringeissen C. [1994], Combination techniques for non-disjoint
equational theories, in A. Bundy, ed., `Proceedings of the 12th International Conference on
Automated Deduction', Vol. 814 of Lecture Notes in Arti�cial Intelligence, Springer-Verlag,
Nancy, France, pp. 267{281.

518 Franz Baader and Wayne Snyder

Dougherty D. J. and Johann P. [1992], `An improved general E-uni�cation method', J. Sym-
bolic Computation 14, 303{320.

Dwork C., Kanellakis P. and Mitchell J. C. [1984], `On the sequential nature of uni�cation',
J. Logic Programming 1, 35{50.

Eder E. [1985], `Properties of substitutions and uni�cations', J. Symbolic Computation 1, 31{46.

Fages F. [1983], Formes Canoniques dans les Alg�ebres Bool�eennes, et Application �a la
D�emonstration Automatique en Logique de Premier Ordre, Th�ese de 3�eme cycle, Universit�e
Paris VI.

Fages F. [1984], Associative-commutative uni�cation, in R. E. Shostak, ed., `Proceedings of
the 7th International Conference on Automated Deduction', Vol. 170 of Lecture Notes in

Computer Science, Springer-Verlag, Napa, USA, pp. 194{208.

Fages F. [1987], `Associative-commutative uni�cation', J. Symbolic Computation 3, 257{275.

Fages F. and Huet G. P. [1983], Complete sets of uni�ers and matchers in equational theories,
in `Proceedings of the 5th Colloquium on Automata, Algebra, and Programming', Vol. 159 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 205{220.

Fages F. and Huet G. P. [1986], `Complete sets of uni�ers and matchers in equational theories',
Theoretical Computer Science 43(1), 189{200.

Fay M. [1979], First-order uni�cation in an equational theory, in `Proceedings 4th Workshop on
Automated Deduction', Austin, Texas, pp. 161{167.

Filgueira M. and Tom�as A. P. [1995], `A fast method for �nding the basis of nonnegative
solutions to a linear diophantine equation', J. Symbolic Computation 19, 507{526.

Fortenbacher A. [1985], An algebraic approach to uni�cation under associativity and commu-
tativity, in J.-P. Jouannaud, ed., `Proceedings of the 1st International Conference on Rewriting
Techniques and Applications', Vol. 202 of Lecture Notes in Computer Science, Springer-Verlag,
Dijon, France, pp. 381{397.

Franzen M. [1992], `Hilbert's tenth problem is of uni�cation type zero', J. Automated Reasoning
9, 169{178.

Frisch A. M. and Cohn A. G. [1992], An abstract view of sorted uni�cation, in D. Kapur, ed.,
`Proceedings of the 11th International Conference on Automated Deduction', Lecture Notes
in Arti�cial Intelligence, Springer-Verlag, Saratoga Springs, NY, USA, pp. 178{192.

Gallier J. and Snyder W. [1989], `Complete sets of transformations for general E-uni�cation',
Theoretical Computer Science 67(2,3), 203{260.

Garey M. R. and Johnson D. S. [1979], Computers and Intractability. A Guide to the Theory

of NP-completeness, Freeman, New York.

Ghilardi S. [1997], `Uni�cation through projectivity', J. Logic and Computation 7(6), 733{752.

Goguen J. A. [1989], What is uni�cation?, in H. A��t-Kaci and M. Nivat, eds, `Resolution of
Equations in Algebraic Structures, Volume 1, Algebraic Techniques', Academic Press, pp. 217{
261.

Gr�atzer G. [1979], Universal Algebra, Second Edition, Springer-Verlag, New York.

Guard J. R. [1964], Automated logic for semi-automated mathematics, Scienti�c Report 1,
AFCRL 64-411, Air Force Cambridge Lab.

Guard J. R. [1969], `Semi-automated mathematics', J. of the ACM 16(1), 49{62.

Guo Q., Narendran P. and Shukla S. K. [1998], Uni�cation and matching in process algebras,
in T. Nipkow, ed., `Proceedings of the 9th International Conference on Rewriting Techniques
and Applications', Vol. 1379 of Lecture Notes in Computer Science, Springer-Verlag, Tsukuba,
Japan, pp. 91{105.

Guti�errez C. [1998], Solvability of word equations is in exponential space, in `Proceedings of
the 39th Annual IEEE Symposium on Foundations of Computer Science FOCS'98', IEEE
Computer Society Press, Palo Alto, California.

Herbrand J. [1930a], Recherches sur la Th�eorie de la D�emonstration, Ph.D. thesis, Sorbonne,
Paris. Reprinted in W. D. Goldfarb, editor, Logical Writings. Reidel, 1971.

Unification theory 519

Herbrand J. [1930b], `Recherches sur la th�eorie de la D�emonstration', Travaux de la Soci�et�e des
Sciences et des Lettres de Varsovie, Classe III 33(128).

Herbrand J. [1967], Investigations in proof theory: The properties of true propositions, in J. van
Heijenoort, ed., `From Frege to G�odel: A Source Book in Mathematical Logic, 1879{1931',
Harvard University Press, Cambridge, MA, pp. 525{581.

Herbrand J. [1971], Recherches sur la th�eorie de la d�emonstration, in W. D. Goldfarb, ed.,
`Logical Writings', Reidel, Dordrecht.

Hermann M. and Kolaitis P. G. [1996], Uni�cation algorithms cannot be combined in polyno-
mial time, in M. A. McRobbie and J. K. Slaney, eds, `Proceedings of the 13th International
Conference on Automated Deduction', Vol. 1104 of Lecture Notes in Arti�cial Intelligence,
Springer-Verlag, pp. 246{260.

Hermann M. and Kolaitis P. G. [1997], On the complexity of uni�cation and disuni�cation in
commutative idempotent semigroups, in G. Smolka, ed., `Proceedings of the 3rd International
Conference on Principles and Practice of Constraint Programming (CP'97)', Vol. 1330 of
Lecture Notes in Computer Science, Springer-Verlag, Linz, Austria, pp. 283{297.

Herold A. [1986], Combination of uni�cation algorithms, in J. H. Siekmann, ed., `Proceedings
of the 8th International Conference on Automated Deduction', Vol. 230 of Lecture Notes in

Computer Science, Springer-Verlag, Oxford, UK, pp. 450{469.

Herold A. [1987], Combination of Uni�cation Algorithms in Equational Theories, Ph.D. thesis,
Universit�at Kaiserslautern, Kaiserslautern, Germany.

Herold A. and Siekmann J. H. [1987], `Uni�cation in Abelian semigroups', J. Automated
Reasoning 3, 247{283.

Herrlich H. and Strecker G. E. [1973], Category Theory, Allyn and Bacon, Boston.

Huet G. P. [1976], R�esolution d'�Equations dans des Langages d'ordre 1,2,...,!, Th�ese d`�Etat,
Universit�e de Paris VII.

Huet G. P. [1978], `An algorithm to generate the basis of solutions to homogeneous linear
diophantine equations', Information Processing Letters 7(3), 144{147.

Hullot J.-M. [1980], Canonical forms and uni�cation, in W. Bibel and R. Kowalski, eds, `Pro-
ceedings of the 5th International Conference on Automated Deduction', Vol. 87 of Lecture
Notes in Computer Science, Springer-Verlag, Les Arcs, France, pp. 318{334.

Iliopoulos C. S. [1989a], `Worst-case complexity bounds on algorithms for computing the canon-
ical structure of �nite Abelian groups and the Hermite and Smith normal forms of an integer
matrix', SIAM J. Computing 18(4), 658{669.

Iliopoulos C. S. [1989b], `Worst-case complexity bounds on algorithms for computing the canon-
ical structure of in�nite Abelian groups and solving systems of linear diophantine equations',
SIAM J. Computing 18(4), 670{678.

Jaffar J. [1990], `Minimal and complete word uni�cation', J. of the ACM 37(1), 47{85.

Jouannaud J.-P. and Kirchner C. [1991], Solving equations in abstract algebras: A rule-based
survey of uni�cation, in J.-L. Lassez and G. Plotkin, eds, `Computational Logic: Essays in
Honor of A. Robinson', MIT Press, Cambridge, MA.

Jouannaud J.-P. and Kirchner H. [1986], `Completion of a set of rules modulo a set of equa-
tions', SIAM J. Computing 15(4), 1155{1194.

Kannan R. and Bachem A. [1979], `Algorithms for computing the Smith and Hermite normal
forms of an integer matrix', SIAM J. Computing 8(4), 499{507.

Kapur D. and Narendran P. [1992a], `Complexity of uni�cation problems with associative-
commutative operators', J. Automated Reasoning 9, 261{288.

Kapur D. and Narendran P. [1992b], Double exponential complexity of computing complete
sets of AC-uni�ers, in `Proceedings of the 7th Annual IEEE Symposium on Logic in Computer
Science', Santa Cruz, California, pp. 11{21.

Kepser S. [1999], Negation in combining constraint systems, in D. Gabbay and M. de Rijke,
eds, `Frontiers of Combining Systems 2, Papers presented at FroCoS'98', Research Studies
Press/Wiley, Amsterdam, pp. 117{192.

520 Franz Baader and Wayne Snyder

Kepser S. and Richts J. [1999], Optimisation techniques for combining constraint solvers, in
D. Gabbay and M. de Rijke, eds, `Frontiers of Combining Systems 2, Papers presented at
FroCoS'98', Research Studies Press/Wiley, Amsterdam, pp. 193{210.

Kfoury A., Tiuryn J. and Urzyczyn P. [1993], `The undecidability of the semi-uni�cation
problem', Information and Computation 102(1), 83{101.

Kirchner C. [1985], M�ethodes et Outils de Conception Syst�ematique d'Algorithmes
d'Uni�cation dans les Th�eories Equationelles., Th�ese d'�Etat, Universit�e de Nancy I, France.

Kirchner C. and Kirchner H. [1989], Constrained equational reasoning, in `Proceedings of
the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation',
ACM Press, Portland, Oregon.

Kirchner C. and Lescanne P. [1987], Solving disequations, in `Proceedings of the Annual IEEE
Symposium on Logic in Computer Science', Ithaca, NY, pp. 347{352.

Kirchner H. and Ringeissen C. [1994], `Combining symbolic constraint solvers on algebraic
domains', J. Symbolic Computation 18(2), 113{155.

Knuth D. E. [1981], The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
Computer Science and Information Processing, second edn, Addison-Wesley, Reading.

Knuth D. E. and Bendix P. B. [1970], Simple word problems in universal algebras, in J. Leech,
ed., `Computational Problems in Abstract Algebra', Pergamon Press, Oxford.

Koscielski A. and Pacholski L. [1990], Complexity of uni�cation in free groups and free
semigroups, in `Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer
Science', Los Alamitos, pp. 824{829.

Kozen D. [1981], `Positive �rst-order logic is NP-complete', IBM Journal for Research and

Development 25, 327{332.

Lambert J.-L. [1987], `Une borne pour les g�en�erateurs des solutions enti�eres positives d'une
�equation diophantienne lin�eaire', Comptes Rendus de l'Acad�emie des Sciences de Paris

305, 39{40.

Lankford D. S., Butler G. and Brady B. [1984], `Abelian group uni�cation algorithms for
elementary terms', Contemporary Mathematics 29, 193{199.

Lassez J.-L., Maher M. and Mariott K. [1987], Uni�cation revisited, in J. Minker, ed., `Foun-
dations of Deductive Databases and Logic Programming', Morgan Kaufman, Los Altos, Cali-
fornia, pp. 587{625.

Lincoln P. and Christian J. [1989], `Adventures in associative-commutative uni�cation', J.
Symbolic Computation 8(1,2), 217{240.

Livesey M. and Siekmann J. H. [1975], Uni�cation of AC-terms (bags) and ACI-terms (sets),
Internal report, University of Essex. Also published as Technical Report 3-76, Universit�at
Karlsruhe, 1976.

Makanin G. S. [1977], `The problem of solvability of equations in a free semigroup', Math.

Sbornik 103, 147{236. English translation in Math. USSR Sbornik 32, 1977.

Mal'cev A. I. [1971], The Metamathematics of Algebraic Systems, Vol. 66 of Studies in Logic

and the Foundation of Mathematics, North Holland, Amsterdam.

Mal'cev A. I. [1973], Algebraic Systems, Vol. 192 of Die Grundlehren der mathematischen

Wissenschaften in Einzeldarstellungen, Springer-Verlag, Berlin.

Martelli A. and Montanari U. [1976], Uni�cation in linear time and space: A structured
presentation., Technical Report B76-16, University of Pisa.

Martelli A. and Montanari U. [1982], `An eÆcient uni�cation algorithm', ACM Transactions

on Programming Languages and Systems 4(2), 258{282.

Martin U. and Nipkow T. [1989a], `Boolean uni�cation|The story so far', J. Symbolic Com-

putation 7(3,4), 275{293.

Martin U. and Nipkow T. [1989b], `Uni�cation in Boolean rings', J. Automated Reasoning

4, 381{396.

Matiyasevich Y. [1971], `Diophantine representation of recursively enumerable predicates', Ak.
Nauk USSR, Ser. Math. 35, 3{30.

Unification theory 521

Meseguer J., Goguen J. A. and Smolka G. [1989], `Order-sorted uni�cation', J. Symbolic
Computation 8, 383{413.

Moser M. [1993], Improving transformation systems for general E-uni�cation, in C. Kirchner,
ed., `Proceedings of the 5th International Conference on Rewriting Techniques and Applica-
tions', Lecture Notes in Arti�cial Intelligence, Springer-Verlag, Montreal, Canada, pp. 92{105.

Narendran P. [1996a], Solving linear equations over polynomial semirings, in `Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science', IEEE Computer Society
Press, New Brunswick, New Jersey, pp. 466{472.

Narendran P. [1996b], `Uni�cation modulo ACI+1+0', Fundamenta Informaticae 25(1), 49{57.

Narendran P. and Otto F. [1990], Some results on equational uni�cation, in M. E. Stickel,
ed., `Proceedings of the 10th International Conference on Automated Deduction', Vol. 449 of
Lecture Notes in Arti�cial Intelligence, Springer-Verlag, Kaiserslautern, Germany, pp. 276{
291.

Nieuwenhuis R. and Rubio A. [1994], AC-superposition with constraints: No AC-uni�ers
needed, in A. Bundy, ed., `Proceedings of the 12th International Conference on Automated De-
duction', Vol. 814 of Lecture Notes in Arti�cial Intelligence, Springer-Verlag, Nancy, France,
pp. 545{559.

Nipkow T. [1990], `Uni�cation in primal algebras, their powers and their varieties', J. of the

ACM 37(1), 742{776.

Nutt W. [1990], Uni�cation in monoidal theories, in M. E. Stickel, ed., `Proceedings of the 10th
International Conference on Automated Deduction', Vol. 449 of Lecture Notes in Arti�cial

Intelligence, Springer-Verlag, Kaiserslautern, Germany, pp. 618{632.

Nutt W. [1991], `The uni�cation hierarchy is undecidable', J. Automated Reasoning 7(3), 369{
381.

Nutt W., R�ety P. and Smolka G. [1989], `Basic narrowing revisited', J. Symbolic Computation
7(3,4), 295{317.

Oliart A. and Snyder W. [1998], A fast algorithm for uniform semiuni�cation, in H. Kirchner
and C. Kirchner, eds, `Proceedings of the 15th International Conference on Automated Deduc-
tion', Vol. 1421 of Lecture Notes in Arti�cial Intelligence, Springer-Verlag, Lindau, Germany,
pp. 239{253.

Paterson M. S. and Wegman M. N. [1978], `Linear uni�cation', J. Computer and System

Sciences 16(2), 158{167.

P�ecuchet J. P. [1981], �Equations avec constantes et algorithme de Makanin, Th�ese de doctorat,
Laboratoire d'Informatique, University of Rouen.

Peterson G. [1983], `A technique for establishing completeness results in theorem proving with
equality', SIAM J. Computing 12(1), 82{100.

Peterson G. and Stickel M. E. [1981], `Complete sets of reductions for equational theories
with complete uni�cation algorithms', J. of the ACM 28(2), 233{264.

Pierce B. C. [1991], Basic Category Theory for Computer Scientists, MIT Press, Cambridge,
Mass.

Plandowski W. [1999a], Satis�ability of word equations with constants is in NEXPTIME, in
T. Leighton, ed., `Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing (STOC'99)', ACM Press, Atlanta, Georgia.

Plandowski W. [1999b], Satis�ability of word equations with constants is in PSPACE, in
P. Beame, ed., `Proceedings of the Fortieth Annual IEEE Symposium on Foundations of
Computer Science (FOCS'99)', IEEE Computer Society Press, New York City, NY.

Plotkin G. [1972], `Building in equational theories', Machine Intelligence 7, 73{90.

Pottier L. [1991], Minimal solutions of linear diophantine equations: Bounds and algorithms,
in R. V. Book, ed., `Proceedings of the 4th International Conference on Rewriting Techniques
and Applications', Vol. 488 of Lecture Notes in Computer Science, Springer-Verlag, Como,
Italy, pp. 162{173.

Prawitz D. [1960], `An improved proof procedure', Theoria 26, 102{139.

522 Franz Baader and Wayne Snyder

R�ety P. [1987], Improving basic narrowing techniques, in P. Lescanne, ed., `Proceedings of the
2nd International Conference on Rewriting Techniques and Applications', Vol. 256 of Lecture
Notes in Computer Science, Springer-Verlag, Bordeaux, France, pp. 216{227.

Ringeissen C. [1992], Uni�cation in a combination of equational theories with shared constants
and its application to primal algebras, in A. Voronkov, ed., `Proceedings of the Conference
on Logic Programming and Automated Reasoning', Lecture Notes in Arti�cial Intelligence,
Springer-Verlag, St. Petersburg, Russia, pp. 261{272.

Robinson J. A. [1963], `Theorem proving on the computer', J. of the ACM 10(2), 163{174.

Robinson J. A. [1965], `A machine oriented logic based on the resolution principle', J. of the
ACM 12(1), 23{41.

Robinson J. A. [1971], `Computational logic: The uni�cation computation',Machine Intelligence

6, 63{72.

Rydeheard D. E. and Burstall R. M. [1985], A categorical uni�cation algorithm, in `Proceed-
ings of the Workshop on Category Theory and Computer Programming', Vol. 240 of Lecture
Notes in Computer Science, Springer-Verlag, Guildford, UK, pp. 493{505.

Schmidt R. A. [1998], E-uni�cation for subsystems of S4, in T. Nipkow, ed., `Proceedings of the
9th International Conference on Rewriting Techniques and Applications', Vol. 1379 of Lecture
Notes in Computer Science, Springer-Verlag, Tsukuba, Japan, pp. 106{120.

Schmidt-Schau� M. [1986a], Uni�cation in many-sorted equational theories, in `Proceedings
of the 8th International Conference on Automated Deduction', Vol. 230 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 538{552.

Schmidt-Schau� M. [1986b], `Uni�cation under associativity and idempotence is of type
nullary', J. Automated Reasoning 2(3), 277{282.

Schmidt-Schau� M. [1989a], Computational Aspects of an Order Sorted Logic With Term

Declarations, Vol. 395 of Lecture Notes in Arti�cial Intelligence, Springer-Verlag.

Schmidt-Schau� M. [1989b], `Uni�cation in a combination of arbitrary disjoint equational the-
ories', J. Symbolic Computation 8(1,2), 51{99.

Schmidt-Schau� M. [1992], Some results for uni�cation in distributive equational theories,
Internal Report 7/92, Universit�at Frankfurt, Frankfurt, Germany.

Schmidt-Schau� M. [1996a], An algorithm for distributive uni�cation, in H. Ganzinger, ed.,
`Proceedings of the 7th International Conference on Rewriting Techniques and Applications
(RTA-96)', Vol. 1103 of Lecture Notes in Computer Science, Springer-Verlag, New Brunswick,
NJ, USA, pp. 287{301.

Schmidt-Schau� M. [1996b], `Decidability of uni�cation in the theory of one-sided distributivity
and a multiplicative unit', Journal of Symbolic Computation 22(3), 315{344.

Schulz K. U. [1992], Makanin's algorithm for word equations: Two improvements and a gen-
eralization, in K. U. Schulz, ed., `Proceedings of the 1st International Workshop on Word
Equations and Related Topics (IWWERT '90)', Vol. 572 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, Berlin, Germany, pp. 85{150.

Schulz K. U. [1993], `Word uni�cation and transformation of generalized equations', J. Auto-
mated Reasoning 11, 149{184.

Schulz K. U. [1997], A criterion for intractability of E-uni�cation with free function symbols
and its relevance for combination of uni�cation algorithms, in H. Comon, ed., `Proceedings
of the 8th International Conference on Rewriting Techniques and Applications', Vol. 1232 of
Lecture Notes in Computer Science, Sitges, Spain, pp. 284{307.

Schulz K. U. [1999], `Tractable and intractable instances of combination problems for uni�cation
and disuni�cation', J. Logic and Computation . To appear.

Siekmann J. H. [1979], Uni�cation of commutative terms, in `Proceedings of the International
Symposium on Symbolic and Algebraic Manipulation, EUROSAM'79', Vol. 72 of Lecture
Notes in Computer Science, Springer-Verlag, Marseille, France, pp. 531{545.

Siekmann J. H. [1989], `Uni�cation theory: A survey', J. Symbolic Computation 7(3,4), 207{274.

Unification theory 523

Siekmann J. H. and Szab�o P. [1989], `The undecidability of the DA-uni�cation problem', J.
Symbolic Computation 54(2), 402{414.

Snyder W. [1991], A Proof Theory for General Uni�cation, Birkh�auser, Boston, Basel, Berlin.

Socher-Ambrosius R. [1994], A re�ned version of general E-uni�cation, in A. Bundy, ed.,
`Proceedings of the 12th International Conference on Automated Deduction', Vol. 814 of
Lecture Notes in Arti�cial Intelligence, Springer-Verlag, Nancy, France, pp. 665{677.

Stickel M. E. [1975], A complete uni�cation algorithm for associative-commutative functions,
in `Proceedings of the 4th International Joint Conference on Arti�cial Intelligence', Tblisi,
USSR, pp. 71{82.

Stickel M. E. [1981], `A uni�cation algorithm for associative commutative functions', J. of the
ACM 28(3), 423{434.

Szab�o P. [1982], Uni�kationstheorie Erster Ordnung, Ph.D. thesis, Universit�at Karlsruhe. In
German.

Tid�en E. [1986], Uni�cation in combinations of collapse-free theories with disjoint sets of function
symbols, in J. H. Siekmann, ed., `Proceedings of the 8th International Conference on Auto-
mated Deduction', Vol. 230 of Lecture Notes in Computer Science, Springer-Verlag, Oxford,
UK, pp. 431{449.

Tid�en E. and Arnborg S. [1987], `Uni�cation problems with one-sided distributivity', J. Sym-
bolic Computation 3(1{2), 183{202.

Tommasi M. [1991], Automates avec tests d'�egalit�es entre cousins germains, Master's thesis,
Universi�e de Lille, France.

Venturini-Zilli M. [1975], `Complexity of the uni�cation algorithm for �rst order expressions',
Calcolo 12(4), 361{371.

Vogel E. [1978], Uni�cation von Morphismen, Diploma thesis, Univ. Karlsruhe, Institut f�ur
Informatik I, Karlsruhe, Germany. In German.

Walther C. [1983], A many-sorted calculus based on resolution and paramodulation, in

A. Bundy, ed., `Proceedings of the 8th International Joint Conference on Arti�cial Intelli-
gence', Vol. 2, Karlsruhe, Germany, pp. 882{891.

Walther C. [1987], A Many-Sorted Calculus Based on Resolution and Paramodulation, Re-
search Notes in Arti�cial Intelligence, Pitman Ltd.

Weidenbach C. [1996], `Uni�cation in sort theories and its applications', Annals of Mathematics

and Arti�cial Intelligence 18(2{4), 261{293.

Weidenbach C. [1998], Sorted uni�cation and tree automata, in W. Bibel and P. Schmidt, eds,
`Automated Deduction { A Basis for Applications, Vol. I: Foundations { Calculi and Methods',
Vol. 8 of Applied Logic Series, Kluwer Academic Publishers, Dordrecht, NL, pp. 291{320.

Yelick K. [1987], `Uni�cation in combinations of collapse-free regular theories', J. Symbolic
Computation 3(1,2), 153{182.

524 Franz Baader and Wayne Snyder

Index

Symbols
[�] . 448
? . 489

A
A . 476
Abelian group . 480
AC .478
ACI . 479
ACU . 478, 498

ACUI . 479, 498
ACUZI . 479
AG . 480, 498
alien subterm . 509
associativity . 476

associativity-commutativity 478
associativity-commutativity-idempotency 479
at least in�nitary . 465
at most �nitary . 465

B
B . 490

termination of . 450
basic . 489
basic rewrite sequence 484
blocking rules . 497

Boolean algebra . 498
Boolean ring .480, 498
Boolean semiring BS 500
BR .480
BS . 500

C
C . 477
CF (E) . 475
coequalizer . 475
collapse-free theory 508

combination problem 507
commutative ring .480
commutative theory 503
commutativity .477
complete set .469

complete set of E-uni�ers464
completeness451, 457, 483
complexity of uni�cation 447
CRU . 480

D
D . 478
decision procedure for E-uni�cation . . 466

decomposed form .509
distributivity . 478
disuni�cation . 513, 514
Dl . 478

Dr . 478

E
E! . 486
eager reduce strategy 495
eager rule application494

E-free algebra . 471
elementary E-uni�cation problem467
End . 480
endomorphisms .480
equal modulo E . 463

equational class . 471
equational theory .463

non-trivial .471
trivial . 471

equational uni�cation442, 463

E-uni�able . 463
E-uni�cation . 442
E-uni�cation algorithm466

minimal . 466
E-uni�cation problem 463

elementary . 467
general . 468
with constants .468
with lcr . 473
with linear constant restrictions . . 473

E-uni�cation procedure 466
minimal . 466

E-uni�er . 463
most general . 464

F
F-term . 445
�nitary . 465

at most . 465
free algebra . 471
free amalgamated product 513

G
G .482
general E-uni�cation problem 468
Gr�(E) . 484

H
hereditary restrictions 489
higher-order uni�cation442

Unification theory 525

I
idempotency . 479
idempotent constant503
identity . 463
implicit operation . 503
index of a rule 490, 492, 497
in�nitary . 465

at least .465
inhomogeneous linear equation 501
instantiation . 441
instantiation quasi-ordering446

instantiation quasi-ordering modulo E 464,
467

L
labelling function .510
lazy paramodulation482
lcr . 473
left distributivity . 478
linear constant restrictions473
linear equation in BS500
linear equation in N500
linear equation in semiring 498
linear equation in Z 500
linear ordering . 510

M
matching . 513
matrix over SE .504
mgu 446, 447, 449, 451{453, 458

equivalent . 452
idempotent . 452
properties of . 452
uniqueness of .452

minimal complete set 469
minimal complete set of E-uni�ers464
minimal E-uni�cation algorithm 466
minimal E-uni�cation procedure466
monoidal theory . 502
more general

modulo E . 464
most general E-uni�er 464
most general uni�er441, 446

in category . 475
modulo E . 464

multiset . 446

N
N . 492
narrowing . 482, 489

basic . 490, 493
inference rule for 493, 497
standard . 492

non-trivial equational theory 471

O
occurs check 449, 451, 456, 457
oriented ground instance 484

P
partition . 510
Plotkin's procedure 466, 477
positive AE fragment 471
positive AE sentence 471
positive AE theory 471
positive existential fragment 471
positive existential sentence 471
positive existential theory 471
positive fragment . 471
positive sentence . 471
positive theory . 471
primal algebra .498
pure uni�cation problem509

R
RE .484
redex orderings . 495
reduction ordering 484, 490, 491
regular theory . 508
rewrite proof . 482
right distributivity 478
ring of integers . 500

S
S .490, 494
�S . 448
schema term . 458
SE . 504
semantic approach 481, 497
semi-additive category 503
semiring .498

corresponding to E 504
semiring N . 500

semiuni�cation . 513
set of identities . 463
shared variable . 510
Sig(E) . 463
signature . 444
simpli�cation . 493
solved form .448
sorted uni�cation .514
soundness . 451, 457
structure sharing . 454
substitution . 445

idempotent 446, 448, 450, 452
more general . 446
reduced . 483
triangular form 445

syntactic approach 481

526 Franz Baader and Wayne Snyder

syntactic uni�cation 441
system

constraint . 489
of equations . 448

T
T (F ;V) . 444
term dag

de�nition of . 454
substitution as relation on 454
uni�cation of . 453

trivial equational theory 471
type zero . 465

U
U . 478
U . 448, 486, 489

correctness . 450
solutions from . 450

UE(�) . 463
uni�cation algorithms

almost linear . 457
complexity 447, 452, 457, 462
correctness447, 450, 462

implementation447
naive . 446
recursive descent on dags 455
recursive descent on trees447
rule-based . 448

uni�cation closure . 458
uni�cation modulo E 442
uni�cation problem446

in a category . 475
uni�cation type . 465

w.r.t. elementary uni�cation 468
w.r.t. general uni�cation468
w.r.t. uni�cation with constants . . 468

uni�er . 441, 446
in category . 475
most general441, 446

unitary . 465

V
V (E) .471
variable abstraction 495
variable elimination 449, 451, 489, 492, 495

basic . 490
variable identi�cation510
variable renaming . 446
variety . 471
Vars(t) .445

Z
Z . 500

