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Abstract. In this document we present SHAvite-3, a secure and efficient hash func-
tion based on the HAIFA construction and the AES building blocks. SHAvite-3 uses a
well understood set of primitives such as a Feistel block cipher which iterates a round
function based on the AES round. SHAvite-3’s compression functions are secure against
cryptanalysis, while the selected mode of iteration offers maximal security against black
box attacks on the hash function. SHAvite-3 is both fast and resource-efficient, mak-
ing it suitable for a wide range of environments, ranging from 8-bit platforms to 64-bit
platforms (and beyond).

1 Introduction

The recent security findings on the (lack of) collision resistance in SHA-1 [24, 59] mark the close
end of SHA-1’s useful life. Although the use of SHA-256 may be a solution for this specific issue,
the recent collision finding techniques as well as the results on the second preimage resistance
of Merkle-Damg̊ard hash functions and the similarity of the SHA-256 design to the design of
SHA-1, motivated the US National Institutes of Standards and Technology to issue a call for a
successor algorithm to be named SHA-3. The essential requirements for SHA-3 are the support
for message digests of 224, 256, 384, and 512 bits.

In this document, we present a candidate for SHA-3. Our design philosophy is to use well-
understood components to achieve high security and competitive performance. We find this
approach the most reasonable one given the advances in cryptanalysis of hash functions, and
specifically, the results on SHA-1 and on Merkle-Damg̊ard hash functions.

A hash function is usually composed of a compression function and a mode that iterates
this compression function to deal with arbitrarily long messages. For the compression function
we developed a construction based on the well understood Davies-Meyer transformation of a
block cipher into a compression function. The underlying block cipher is a Feistel construction
which uses the AES round as a building block.

The hash function then iterates the compression function using the HAsh Iterative FrAme-
work (HAIFA). The result is a fast and secure hash functions, which can be used to produce
any digest size up to 512 bits. For digests of up to 256 bits we allow messages of up to (264− 1)
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bits, and for longer digests we allow messages of up to (2128 − 1) bits in line with the current
FIPS tradition of SHA-1 and the SHA-2 family, ensuring easy transition to SHAvite-3.

As SHAvite-3 is based on AES building blocks, as well as the HAIFA mode of iteration, it
is assured to be compact and efficient, and suitable for many platforms (both modern CPUs,
as well as smart cards and 8-bit machines). Our current implementation of SHAvite-3 achieves
for 256-bit digests a speed of 35.3 cycles per byte on a 32-bit machine and of 26.7 cycles per
byte on a 64-bit machine. For 512-bit digests, SHAvite-3 achieves speeds of 58.4 cycles per byte
on a 32-bit machine, and 38.2 cycles per byte on a 64-bit machine.

SHAvite-3 is named after its speed and security, as it is both a secure hash function, and
fast (vite in French). In Hebrew, the meaning of the word shavite is comet, a fast natural
phenomena. The current proposed version is SHAvite-3 (pronounced “shavite shalosh”, as in
Hebrew), as it is the third variant of the design (the first two are unpublished).

This document is organized as follows: In Section 2 we describe the AES round function
and some mathematical background related to it. Section 3 outlines HAIFA which is the way
SHAvite-3 iterates its compression function. The full specifications of SHAvite-3 are given in
Section 4. The design criteria and motivation are outlined in Section 5. The security analysis is
detailed in Section 6, and we introduce an efficient MAC based on SHAvite-3 in Section 7. We
present our performance analysis in Section 8. Several test vectors are given in Appendix A.
We summarize the proposal in Section 9.

2 AES and Some Mathematical Background

Our construction relies on the round function used in AES [55]. The advanced encryption
standard is an SP-network with block size of 128 bits which supports key sizes of 128, 192, and
256 bits. A 128-bit plaintext is treated as a byte matrix of size 4x4, where each byte represents
a value in GF (28). An AES round applies four operations to the state matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times in parallel on
each byte of the state,

– ShiftRows (SR) — cyclic shift of each row (the i’th row is shifted by i bytes to the left),
– MixColumns (MC) — multiplication of each column by a constant 4x4 matrix over the field

GF (28), and
– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

We outline an AES round in Figure 1. We note that we only use the full round function of AES,
and thus we omit here the full description of the key schedule and the exact definition of AES.

Throughout this document we denote by AESRoundsubkey(x) one round of AES as defined
in Federal Information Processing Standard 197 [55], using the subkey subkey applied to the
input x. Specifically,

AESRoundsubkey(x) = MC(SR(SB(x))) ⊕ subkey.

In AES, each byte represents a value in the field GF (28), i.e., the byte value 0x13 corresponds
to the polynomial x4 + x + 1. In order to explicitly the AES designers picked the following
irreducible polynomial used to generate this field:

m(x) = x8 + x4 + x3 + x + 1.

Thus, to multiply two elements p(x), q(x) ∈ GF (2)/m(x) (which we denote by •, following
the Federal Information Processing Standard 197 [55]), first compute the product of p(x)q(x)
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Fig. 1. An AES round

(as polynomials over GF (2)), and then reduce the outcome modulo m(x). For example, let
p(x) = x6 + x5 + x2 + 1 (i.e., p(x) represents the value 65x) and let q(x) = x7 + x3 + x (i.e.,
q(x) represents the value 8Ax), then p(x) • q(x) = x7 + x4 + x3 + x2 + 1 (i.e., corresponding to
9Dx) as

p(x)q(x) =
[

x6 + x5 + x2 + 1
]

·
[

x7 + x3 + x
]

=

x13 + x12 + x8 + x6 + x5 + x

which reduces to x7 + x4 + x3 + x2 + 1 modulo m(x) = x8 + x4 + x3 + x + 1.

The MixColumns operation takes each 4-byte column (b0, b1, b2, b3)
T , and multiplies it (from

the left) with an MDS matrix over the field GF (28), thus the output (d0, d1, d2, d3)
T is computed

as
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The computation of the S-box is done as follows:

– Given the input x, compute r = x−1 in the field GF(28) (where zero is considered its own
inverse).

– Compute y = A · r + b as linear equations over GF (2) where

A =
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

– Output y.

For completeness, we provide the S-box in Table 1.
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0 1 2 3 4 5 6 7 8 9 A B C D E F

00 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
10 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
20 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
30 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
40 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
50 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
60 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
70 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
80 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
90 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A0 E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B0 E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C0 BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D0 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E0 E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F0 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table 1. AES’ S-box (all values are given in hexadecimal)

3 HAsh Iterative FrAmework

The most widely used mode of iteration is the Merkle-Damg̊ard construction [23, 46, 47]. While
the collision resistance of the compression function is preserved in the Merkle-Damg̊ard con-
struction, this is not the case for second preimage resistance as suggested in [1, 26, 39]. Other
undesired properties in such iteration were also suggested: extensions attacks (which lead to
some differentiability results [20]) and chosen target preimage attacks [38].

The HAsh Iterative FrAmework allows to overcome these problems while maintaining a
simple construction and at the same time allowing for a more flexible hash function (for example,
it contains an integrated support for variable digest length). Under reasonable assumptions, it
is claimed that HAIFA does preserve the major security notions and is indeed second preimage
resistant [17]. In particular, we show that the HAIFA mode of iteration is protected against the
second preimage attacks and the chosen-target preimage attacks of [1, 26, 38, 39].

Moreover, HAIFA has an integrated support for keys, thus defining families of hash functions
(when needed). This can also be used as a base for more efficient message authentication codes
based on the hash function (as we suggest in Section 7).

3.1 Specifications of HAIFA

Hashing with HAIFA involves few steps:

1. Message padding, according to the HAIFA padding scheme.
2. Compressing the message using a HAIFA-compatible compression function.
3. Truncating the output to the required length.

The message padding used in HAIFA is very similar to the one used in Merkle-Damg̊ard,
but offers a better security, as well as better support for different digest sizes. The compression
is done using a compression function with four inputs:

– A chaining value (of length mc),
– A message block (of length n),
– The number of bits hashed so far including the current block (a counter of length c),

4



SHAvite-3 Proposal to NIST for SHA-3

– A salt (of length s).

Hence, to compress a message M , the user first chooses a salt salt at random. The salt can
be application specific (e.g., a string identifying the application), a serial number within the
application (e.g., the serial number of the message being signed), or even a counter. However, a
careful application would ensure that the salt contains enough randomness to be unpredicted.

In order to compute HAIFAC
salt(M) using the compression function C : {0, 1}mc×{0, 1}n×

{0, 1}b×{0, 1}s→ {0, 1}mc the message is first padded, and divided into l blocks of n bits each,
pad(M) = M1||M2|| . . . ||Ml. Now, the user:

1. Sets h0 as the initial value (according to the procedure defined in Section 3.3).
2. Computes iteratively

hi = C(hi−1, Mi, #bits, salt).

3. Truncates hl (according to the procedure defined in Section 3.3).
4. Output the truncated value as HAIFAC

salt(M).

3.2 The Padding Scheme

Let n be the block length (e.g., n = 512 or 1024). The padding of a message M is:

1. Pad with a single bit of 1.
2. Pad with as many 0 bits as needed such that the length of the padded message (with the

1 bit and the 0’s) is congruent modulo n to (n− (t + r)).
3. Pad with the message length encoded in t bits.
4. Pad with the digest length encoded in r bits.

We note that when a full padding block is added (i.e., the entire original message was already
processed by the previous calls to the compression function, and the full message length was
already used as an input to the previous call as the #bits parameter), the compression function
is called with the #bits parameter set to zero. This property ensures that the additional full
padding block is processed with a different #bits parameter than for prior invocations of the
compression function.

3.3 Variable Digest Length

Different digest lengths are needed for different applications. HAIFA supports variable digest
length while preventing relations between the digests of the same message with different hash
sizes. For generating a digest of length m,

1. The initial value h0 is computed by h0 = C(MIV, m, 0, 0), where MIV is a master IV , and
m is encoded as the content of the block.

2. The digest length is used by the padding schemes, and thus directly affects the compression
of the last block.

3. After the final block is processed, the digest is composed of m bits of the last computed
chaining value hl.

Note that h0 can be computed during the initialization of the hash function or can be
computed in advance, and be hard-coded into the implementation.
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3.4 The Security of HAIFA Hash Functions

The HAIFA mode of iteration preserves many useful properties of the compression function.
If the compression function is collision resistant, so does the hash function. The same is true
with respect to PRF features of the compression function, i.e., if the compression function is
PRF, then so does the hash function. This makes HAIFA ideal for message authentication codes
besides hashing. HAIFA also offers maximal security against (second) preimage attacks.

3.4.1 Collision Resistance Preservation The proof that HAIFA preserves the collision
resistance of the compression function is very similar to the one used to prove that Merkle-
Damg̊ard hash functions retain the collision resistance of the underlying compression function.

As HAIFA uses salts, we shall consider the strongest definition of a collision in the com-
pression function where the adversary may control all the input parameters to the compression
function including the salt, and tries to generate the same output. Under this strong assumption
we assume that the adversary can even manipulate the #bits parameter.

Let M1 and M2 be the two colliding messages, i.e., HAIFAC
salt1

(M1) = HAIFAC
salt2

(M2),
with respective lengths l1 and l2. If the lengths l1 and l2 are different, or the salts are different,
then the last blocks are necessarily different. Therefore, a collision in the (full) hash function
allows to find a collision in the compression function of the last block.

If the lengths of the messages are the same and the salts are the same, one can start from
the equal digest and equal last block and trace backwards till the point where the inputs
to the compression function (either the input block or the input chaining value) differ, as
at some point they must differ (otherwise M1 = M2). The same argument as the one for
the Merkle-Damg̊ard mode shows that there must exist a message block i such that M1

i 6=
M2

i or h1
i−1 6= h2

i−1 (where the superscript denotes the corresponding message), for which
C(h1

i−1, M
1
i , salt, #bits) = C(h2

i−1, M
2
i , salt, #bits), i.e., a collision of the compression function

is found.

3.4.2 Security Against Extension Attacks HAIFA uses a bit counter, which is processed
in each and every compression function call. This extra input offers great security advantages,
one of which is the prefix-free encoding of the inputs to the compression function, which is
independent of the messages themselves.

The reason for that is that the last block (or the one before it, in case an additional padding
block is added) is compressed with the number of bits that were processed so far. If this value
is not a multiple of the block size then the resulting chaining value is not equal to the chaining
value that is needed to extend the message. If the message is a multiple of a block, then an
additional block is hashed with the parameter #bits = 0. Thus, the chaining value required for
the extension remains obscure to the adversary.

We conclude that as long as the compression function is secure, it is not possible to compute
HAIFAsalt(m||x), given HAIFAsalt(m) for any x (even if the salt salt is known). This has
some interesting security features (besides the obvious suitability for simpler MAC construc-
tions).

3.4.3 PRF Preservation and PRO Preservation The bit counter scheme allows a prefix-
free encoding of the message. Among other things, this fact proves that HAIFA (when instan-
tiated with a random oracle as a compression function) preserves the pseudorandom oracle
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property [20]. Hence, a HAIFA hash function can be distinguished after q queries to the com-
pression function with probability at most O(q2/2mc) (or if mc = m — with probability at
most O(q2/2m)).

The prefix-free encoding also ensures the preservation of the pseudorandom function prop-
erty of the compression function [6]. And thus, the only way to distinguish a HAIFA hash
function effectively from a random string/random oracle is to use internal collisions, providing
security of min{2s, 2m, 2mc/2} against these attacks. The 2m option is for cases where more
than half of the bits of the internal state are truncated (and thus, “exhaustive search”-like
attacks require less effort than attacks based on internal collisions).

3.4.4 Security Against Second Preimage Attacks HAIFA offers full security against
second preimage attacks, i.e., finding a second preimage or a chosen target preimage of an m-
bit digest requires 2m compression functions calls. We first consider some of the latest results on
Merkle-Damg̊ard, and show that they do not apply to HAIFA. We then discuss some theoretical
reasoning why even future attacks are expected to fail.

– Dean’s expandable message technique (second preimage attack) — Dean’s at-
tack [26] is based on finding fix-points for the compression function, which can be iterated
repeatedly. While it may be easy to find a fix-point for an instance of the compression func-
tion, the use of the #bits counter prevents the repeated concatenation of the fixed-point
to itself (as for different #bits different fix-points are expected). Moreover, even if a fixed-
point for multiple #bits value is found, the phase of connecting the expandable message
to the target message requires the adversary to commit to a specific location (i.e., which
message block is replaced), which means, that the connection of the expandable message
to the challenge message requires 2mc operations.

– Kelsey and Schneier’s expandable message (second preimage attack) — Kelsey
and Schneier’s attack [39] is based on constructing an expandable message using Joux’s
multicollision technique [35]. As noted before, even if such a message was constructed, the
cost of connecting it to the challenge message is like the cost of finding a second preimage of
the compression function. Moreover, to generate the expandable message, one needs to be
able to connect from a given chaining value two sequences of blocks with differing lengths
resulting in a common chaining value that can be connected to different positions in the
sequence of chaining values. The best possible approach would be to set the length after
one block of this multicollision (e.g., block l), find a one block/two block collision that
leads to the given length (i.e., start from position l − 1 and find a message block that
leads to a collision with a two message block starting at position l − 2) and find from this
location a collision between one message block with three blocks. The result is a very limited
“expandable message” of between two and five blocks which must be used starting at block
l − 2 (and then its length is either 3 or 5 blocks) or at block l − 1 (and then its length is
either 2 or 4 blocks). All other options are foiled by the #bits parameter which has to be
determined in other locations as well. We recall that despite the “expandable message”, the
connection phase still requires the adversary to commit to a specific location, i.e., the time
complexity of the online phase of the attack is not reduced at all (and is 2m).

– The Herding Attack (chosen target preimage attacks) — In the herding attack [38],
the adversary constructs a diamond structure, a set of many chaining values from which
the adversary knows how to get to a specific target value. As HAIFA contains salts, the
adversary has either to choose the salt on his own (making the attack scenario less realistic)
or generate a diamond structure for every possible salt. If the salt length is equal to half
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the chaining value size (or even longer), this approach takes pre-processing time which
is larger than a preimage attack and whose memory storage makes standard time-memory
attacks more favorable. Moreover, unlike the Merkle-Damg̊ard construction where the same
diamond structure can be used in any possible location, in HAIFA, the diamond structure
is fixed to a given location in the stream due to the #bits parameter, thus reducing the
applicability of the attack.

– Second Preimage Attack Based on Herding — The latest second preimage attack
suggested in [1] uses a diamond structure to allow the adversary to generate short “patches”
to the message, and thus obtain a second preimage attack which is slightly slower than
other techniques, but at the same time can deal with more hash function constructions. As
stated earlier, the fact that the diamond structure is fixed to a given position, renders this
impractical (or more precisely makes this attack equivalent to exhaustive search against the
compression function).

While the above issues deal with concrete attacks, one might ponder whether there are other
second preimage attacks which may break HAIFA hash functions. Though the general case is
not yet solved, the results of [17] claim that if the compression function is a random oracle,
then indeed there is no a shortcut second preimage attack on HAIFA.

The main reason for the security is that the bit counter prevents applying any attack in
more than one specific location (i.e., the adversary has to commit in advance to the location
where the second preimage is to be found) even in the theoretical settings studied in [17]. Hence,
the best strategy an adversary could apply is to try and find a single block second preimage,
which requires an exhaustive search if the compression function is strong.

3.4.5 The Security Advantages of the Salt The salt parameter can be considered as
defining a family of hash functions as needed by the formal definitions of [52] in order to ensure
the security of the family of hash functions. This parameter can also be viewed as an instance of
the randomized hashing concept [31]. Thus, it inherits all the advantages of the two concepts:

– The ability to define the security of the hash function in the theoretical model.
– Transformation of all attacks on the hash function that can use precomputation from an

off-line part and an on-line part to only an on-line part (as the exact salt is not known in
advance).

– Increasing the security of digital signatures, as the signer chooses the salt value, and thus,
any attack aiming at finding two messages with the same hash value has to take the salt
into consideration. See [31] for more details about this property.

We note that the salt can be application specific (e.g., a string identifying the application),
a serial number that follows the application (e.g., the serial number of the message signed), a
counter, or a random string. It is obvious that the salt can also be set as a combination of these
values. However, we emphasize that applications that need the extra security suggested by the
salt should use as many random bits of salt as possible.

4 Specifications of SHAvite-3

SHAvite-3 has two flavors, according to the used compression function and digest size:

1. SHAvite-3256 uses the compression function C256 and produces digests of up to 256 bits,
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2. SHAvite-3512 uses the compression function C512 and produces digests of 257 to 512 bits.

Specifically, digest lengths 160, 224, and 256 bits (required by the NIST call, as well as needed
for a SHA-1 replacement) are to be produced by SHAvite-3256 (with truncation, as defined
by HAIFA). The digest lengths 384 and 512 bits required by the call are to be produced by
SHAvite-3512.

4.1 Specifications of SHAvite-3256

SHAvite-3256 is a HAIFA hash function, based on the compression function C256. The com-
pression function C256 accepts a chaining value of 256 bits (i.e., mc = 256), a message block of
size 512 bits (n = 512), a salt of size 256 bits (s = 256), and a bit counter of 64 bits (b = 64).

We use an underlying block cipher E256 in a Davies-Meyer transformation to construct C256.
The block cipher is a 12-round Feistel block cipher. Each round function of the block cipher
is composed of three full rounds of AES. The plaintext size is 256 bits (the 256 bits of the
chaining value), while the “key” (composed of the message block, the salt, and the counter)
size is 512 + 64 + 256 = 832 bits. Not all the “key” bits are treated equally, as 512 of these bits
are the message block, 64 bits are the bit counter, and the remaining 256 bits are the salt.

4.1.1 The C256’s Underlying Block Cipher — E
256 The block cipher accepts a 256-

bit plaintext P , treated as an array of eight 32-bit words P [0, . . . , 7]. The plaintext is divided
into two halves P = (L0, R0), where L0 contains words P [0, . . . , 3], and R0 contains words
P [4, . . . , 7]. We note that bytes 0,1,2,3 of L0 are P [0], while bytes 12,13,14,15 of R0 are P [7].
Then, the round function is repeated 12 times:

(Li+1, Ri+1) = (Ri, Li ⊕ F 3
RKi

(Ri)).

F 3(·) accepts an input of 128 bits, Ri, as well as a 384-bit subkey, RKi = (k0
i , k1

i , k2
i ), and

applies three full rounds of AES, using k0
i as a whitening key before the first internal round,

k1
i the subkey of the first round, k2

i the subkey of the internal second round (and all zeroes as
the subkey of the third internal round):

F 3
(k0

i
,k1

i
,k2

i
)(x) = AESRound0128(AESRoundk2

i
(AESRoundk1

i
(x⊕ k0

i ))).

We note that the last round’s subkey (which is XORed) is the all zero value (thus, this oper-
ation can be omitted). We also note that all the AES rounds are full AES rounds (with the
MixColumns operation).

The ciphertext C = (L12, R12) is the output of the block cipher, where bytes 0,1,2,3 of L12

compose the first 32-bit word of the ciphertext. We outline the block cipher E256 in Figure 2.

4.1.2 The Message Expansion The message expansion of C256 (the key schedule algorithm
of E256) accepts a 512-bit message block, a 64-bit counter, and a 256-bit salt. All are treated as
arrays of 32-bit words (containing 16, 2, and 8 words, respectively), which are used to generate
36 subkeys of 128 bits each, or a total of 144 32-bit words.

Let rk[0, . . . , 143] be an array of 144 32-bit words, let msg[0, . . . , 15] be the message array
(of 32-bit each), cnt[0, 1] be the counter array (we parse the 64-bit counter #bits as a two word
array, where cnt[0] contains the least significant part of #bits), and salt[0, . . . , 7] be the salt.

The first 16 words of rk[·] are initialized with the message words themselves. After that we
repeat a process that generates 16 words in a nonlinear manner and then 16 words in a linear
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Fig. 2. The underlying block cipher of C256

manner. The nonlinear process takes four rk[·] words, encrypts them under the salt (twice under
the first four words of the salt, and twice under the last four words of the salt), and XORs the
outcome with four (other) rk[·] words to produce the next four words (this is repeated four
times in each iteration of the nonlinear process). The linear process takes two words from rk[·]
and XORs them to produce the next word (this is repeated sixteen times in each iteration of
the linear process).

Eight of the produced words are XORed with the counter (four with cnt[0] and four with
cnt[1]), thus preventing any slide properties of the cipher: rk[16], rk[54], rk[91], and rk[124]
are XORed with cnt[0] during their update, and rk[17], rk[53], rk[90], and rk[127] are XORed
with cnt[1].

A summary of the computation of rk is as follows:

– For i = 0, . . . , 15 set rk[i]← msg[i].
– Set i← 16
– Repeat four times:

1. Nonlinear Expansion Step: Repeat twice:
(a) Let

t[0..3] = AESRound0128((rk[i−15]||rk[i−14]||rk[i−13]||rk[i−16])⊕(salt[0]||salt[1]||salt[2]||salt[3])).

(b) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i + j − 4].
(c) If i = 16 then rk[16]⊕ = cnt[0] and rk[17]⊕ = cnt[1].
(d) If i = 84 then rk[86]⊕ = cnt[1] and rk[87]⊕ = cnt[0].
(e) i← i + 4.

10
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Message words 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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The salts are XORed to the inputs before the SubBytes operations.
We note that the counters are added in different positions in different iterations of the nonlinear
expansion step.

Fig. 3. The Message Expansion of C256

(f) Let

t[0..3] = AESRound0128((rk[i−15]||rk[i−14]||rk[i−13]||rk[i−16])⊕(salt[4]||salt[5]||salt[6]||salt[7])).

(g) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i + j − 4].
(h) If i = 56 then rk[57]⊕ = cnt[1] and rk[58]⊕ = cnt[0].
(i) If i = 124 then rk[124]⊕ = cnt[0] and rk[127]⊕ = cnt[1].
(j) i← i + 4.

2. Linear Expansion Step: Repeat sixteen times:

(a) rk[i]← rk[i− 16]⊕ rk[i− 3].
(b) i← i + 1.

Figure 3 outlines the message expansion algorithm.
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Once rk[·] is initialized, its 144 words are parsed as 36 subkeys of 128-bit each, which are
then used as 12 triplets of subkeys, i.e.,

RK0 = (k0
0 , k

1
0 , k

2
0) = ((rk[0], rk[1], rk[2], rk[3]), (rk[4], rk[5], rk[6], rk[7]), (rk[8], rk[9], rk[10], rk[11]))

RK1 = (k0
1 , k

1
1 , k

2
1) = ((rk[12], rk[13], rk[14], rk[15]), (rk[16], rk[17], rk[18], rk[19]),

(rk[20], rk[21], rk[22], rk[23]))
...

...
...

RKi = (k0
i , k1

i , k2
i ) = ((rk[12 · i], rk[12 · i + 1], rk[12 · i + 2], rk[12 · i + 3]),

(rk[12 · i + 4], rk[12 · i + 5], rk[12 · i + 6], rk[12 · i + 7]),
(rk[12 · i + 8], rk[12 · i + 9], rk[12 · i + 10], rk[12 · i + 11]))

...
...

...

4.1.3 Summary of C256 Each compression function call to C256 has four inputs. The mes-
sage block Mi, the salt salt, and the bit counter #bits are viewed as a key of the block cipher
E256, while the chaining value hi−1 is treated as the plaintext. Then,

hi = C256(hi−1, Mi, salt, #bits) = E256
Mi||#bits||salt(hi−1)⊕ hi−1.

4.1.4 Generating Digests of up to 256 Bits In order to hash the message M into an
m-bit digest, for m ≤ 256, first compute IVm which is

h0 = IVm = C256(MIV256, m, 0, 0),

where

MIV256 = C256(0, 0, 0, 0) = 62F4F5C5 DFDE7372 B1363F69 D90121BA

0DB1E936 56E69E08 9DBD1479 DE6E4E0Fx.

Table 2 lists the values of IVm for 224, 256, and 160-bit versions of SHAvite-3256.
Let |M | be the length of M before padding, measured in bits. Pad the message M according

to the padding scheme of HAIFA:

1. Pad a single bit of 1.
2. Pad as many 0 bits as needed such that the length of the padded message (with the 1 bit

and the 0’s) is congruent modulo 512 to 432.
3. Pad |M | encoded in 64 bits.
4. Pad m encoded in 16 bits.

Now, divide the padded message pad(M) into 512-bit blocks, pad(M) = M1||M2|| . . . ||Ml, and
perform:

1. Set #bits← 0.
2. Set h0 ← IVm.
3. For i = 1, . . . , ⌊|M |/512⌋:

– Set #bits← #bits + 512.
– Compute hi = C256(hi−1, Mi, #bits, salt).

12
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IVm Value
(IVm[0]||IVm[1]|| . . . IVm[7])

IV160 63128A01 3047C73E 83B982ED E6F9DAE2

375B2554 F79A82F6 E7D69EB1 A3698BC4x

IV224 D617833B 68EA6C8F FF3DF700 E5B807EF

6FDB4E75 F966482E 3B40F9B2 755891B2x

IV256 AE9F3281 5F867848 0C988766 D00B409D

31C1F23F 5361AAB9 FB5E1BF6 889EE275x

Table 2. IVm for Common Values of the Digest Size

4. – If the message length is a multiple of the block length (|M | = 0 mod 512), compute
hl = C256(hl−1, Ml, 0, salt) (where Ml is a full padding block), else

– If the message length allows for the padding to be in the same block as the last message
block (i.e., |M | mod 512 ≤ 431), compute hl = C256(hl−1, Ml, |M |, salt), else

– Process some of the padding block with the last block containing message, i.e., compute
hl−1 = C256(hl−2, Ml−1, |M |, salt), and then compute hl = C256(hl−1, Ml, 0, salt) for
processing the additional (partial) padding block.

5. Output truncatem(hl), where truncatem(x) outputs the m leftmost bits of x, i.e., x[0]||x[1]| . . ..

4.2 Specifications of SHAvite-3512

SHAvite-3512 is a HAIFA hash function, based on the compression function C512. The compres-
sion function C512 accepts a chaining value of 512 bits (i.e., mc = 512), a message block of size
1024 bits (n = 1024), a salt of size 512 bits (s = 512), and a bit counter of 128 bits (b = 128).

C512 is constructed similarly to C256, as a Davies-Meyer transformation of a block cipher.
The underlying block cipher has 14 rounds, and has a generalized Feistel structure. The plaintext
size is 512 bits (the 512 bits of the chaining value), while the “key” (composed of the message
block, the salt, and the counter) size is 1024+128+512 = 1664 bits. The plaintext (the chaining
value) is divided into four 128-bit words, and each round two of these 128-bit words enter the
nonlinear round function and affect the other two (each word enters one nonlinear function and
affect one word). The nonlinear function F 4(·) is composed of four full rounds of AES.

4.2.1 The C512’s Underlying Block Cipher — E
512 The block cipher accepts a 512-bit

plaintext P , treated as an array of sixteen 32-bit words P [0, . . . , 15]. The plaintext is divided
into four 128-bit words P = (L0, A0, B0, R0), where L0 contains words P [0, . . . , 3], and R0

contains words P [12, . . . , 15]. We note that bytes 0,1,2,3 of L0 are P [0], while bytes 12,13,14,15
of R0 compose P [15]. Then, the round function is repeated 14 times:

(Li+1, Ai+1, Bi+1, Ri+1) = (Ri, Li ⊕ F 4
RK0,i

(Ai), Ai, Bi ⊕ F 4
RK1,i

(Ri)).

F 4(·) accepts an input of 128 bits (either Ri or Ai) as well as 512-bit subkey RKi,j =
(k0

i,j , k
1
i,j , k

2
i,j , k

3
i,j), and applies four rounds of AES, using k0

i as a whitening key before the
first internal round, and where the AddRoundKey operation of the fourth internal round is
omitted (or done with the all-zero key).

F 4
(k0

i,j ,k1
i,j ,k2

i,j ,k3
i,j)

(x) = AESRound0128(AESRoundk3
i
(AESRoundk2

i
(AESRoundk1

i
(x⊕ k0

i )))).
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Fig. 4. The Underlying Block Cipher of C512

As in E256, the last round’s subkey is the all-zero key, and all the rounds are full AES rounds
(i.e., with the MixColumns operation).

The ciphertext C = (L14, A14, B14, R14) is the output of the block cipher, where bytes 0,1,2,3
of L14 compose the first 32-bit word of the ciphertext. We outline the block cipher E512 in
Figure 4.

4.2.2 The Message Expansion of C512 The message expansion of C512 (the key schedule
algorithm of E512) accepts a 1024-bit message block, a 128-bit counter, and a 512-bit salt. All
are treated as arrays of 32-bit words (of 32, 4, and 16 words, respectively), which are used to
generate 112 subkeys of 128 bits each, or a total of 448 32-bit words.

Let rk[·] be an array of 448 32-bit words, let msg[0, . . . , 31] be the message array, cnt[0, . . . , 3]
be the counter array, and salt[0, . . . , 15] be the salt. The first 32 words of rk are initialized with
the message words themselves. Then, we repeat a process that generates 32 words in a nonlinear
manner and 32 words in a linear manner. Sixteen of the produced words are XORed with the
counter (four with each cnt[i]). The computation of rk[·] is done as follows:

– For i = 0, . . . , 31 set rk[i]← msg[i].
– Set i← 32
– Repeat six times:

1. Nonlinear Expansion Step: Repeat twice:

14
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(a) Let

t[0..3] = AESRound0128((rk[i−31]||rk[i−30]||rk[i−29]||rk[i−32])⊕(salt[0]||salt[1]||salt[2]||salt[3])).

(b) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(c) If i = 32 then rk[32]⊕ = cnt[0], rk[33]⊕ = cnt[1], rk[34]⊕ = cnt[2], and rk[35]⊕ =

cnt[3].
(d) i← i + 4.
(e) Let

t[0..3] = AESRound0128((rk[i−31]||rk[i−30]||rk[i−29]||rk[i−32])⊕(salt[4]||salt[5]||salt[6]||salt[7])).

(f) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(g) If i = 164 then rk[164]⊕ = cnt[3], rk[165]⊕ = cnt[2], rk[166]⊕ = cnt[1], and

rk[167]⊕ = cnt[0].
(h) i← i + 4.
(i) Let

t[0..3] = AESRound0128((rk[i−31]||rk[i−30]||rk[i−29]||rk[i−32])⊕(salt[8]||salt[9]||salt[10]||salt[11])).

(j) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(k) If i = 440 then rk[440]⊕ = cnt[1], rk[441]⊕ = cnt[0], rk[442]⊕ = cnt[3], and

rk[443]⊕ = cnt[2].
(l) i← i + 4.

(m) Let

t[0..3] = AESRound0128((rk[i−31]||rk[i−30]||rk[i−29]||rk[i−32])⊕(salt[12]||salt[13]||salt[14]||salt[15])).

(n) For j = 0, . . . , 3: rk[i + j]← t[j]⊕ rk[i− 4 + j].
(o) If i = 316 then rk[316]⊕ = cnt[2], rk[317]⊕ = cnt[3], rk[318]⊕ = cnt[0], and

rk[319]⊕ = cnt[1].
(p) i← i + 4.

2. Linear Expansion Step: Repeat 32 times:

(a) rk[i]← rk[i− 32]⊕ rk[i− 7].
(b) i← i + 1.

– Repeat the Nonlinear Expansion Step an additional time.
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Once rk[·] is initialized, its 448 words are parsed as 112 words of 128-bit each, which are
the subkeys (14 double quartets of 128-bit words each), i.e.,

RK0,0 = (k0
0,0, k

1
0,0, k

2
0,0, k

3
0,0) = ((rk[0], rk[1], rk[2], rk[3]), (rk[4], rk[5], rk[6], rk[7]),

(rk[8], rk[9], rk[10], rk[11]) (rk[12], rk[13], rk[14], rk[15]))
RK1,0 = (k0

1,0, k
1
1,0, k

2
1,0, k

3
1,0) = ((rk[16], rk[17], rk[18], rk[19]), (rk[20], rk[21], rk[22], rk[23])

((rk[24], rk[25], rk[26], rk[27]), (rk[28], rk[29], rk[30], rk[31]))
...

...
...

RK0,i = (k0
0,i, k

1
0,i, k

2
0,i, k

3
0,i) = ((rk[32 · i], rk[32 · i + 1], rk[32 · i + 2], rk[32 · i + 3]),

(rk[32 · i + 4], rk[32 · i + 5], rk[32 · i + 6], rk[32 · i + 7]),
(rk[32 · i + 8], rk[32 · i + 9], rk[32 · i + 10], rk[32 · i + 11]),
(rk[32 · i + 12], rk[32 · i + 13], rk[32 · i + 14], rk[32 · i + 15]))

RK1,i = (k0
1,i, k

1
1,i, k

2
1,i, k

3
1,i) = ((rk[32 · i + 16], rk[32 · i + 17], rk[32 · i + 18], rk[32 · i + 19]),

(rk[32 · i + 20], rk[32 · i + 21], rk[32 · i + 22], rk[32 · i + 23]),
(rk[32 · i + 24], rk[32 · i + 25], rk[32 · i + 26], rk[32 · i + 27]),
(rk[32 · i + 28], rk[32 · i + 29], rk[32 · i + 30], rk[32 · i + 31]))

...
...

...

4.2.3 Summary of C512 Each compression function call to C512 has four inputs. The mes-
sage block Mi, the salt salt, and the bit counter #bits are viewed as a key of the block cipher
E512, while the chaining value hi−1 is treated as the plaintext. Then, the output of the com-
pression function is

hi = C512(hi−1, Mi, salt, #bits) = hi−1 ⊕ E512
Mi||#bits||salt(hi−1).

4.2.4 Generating Digests of 257 to 512 Bits In order to hash the message M into an
m-bit digest, for 256 < m ≤ 512, first compute IVm which is

h0 = IVm = C512(MIV512, m, 0, 0).

where

MIV512 = C512(0, 0, 0, 0) = 1FA9BAD2 9AD8E2A5 713898D1 7B528545

908EA84D 035E2C9E 57C1E9A0 74392F7F

F0D780C2 298519CD E387BCEC 12261052

EEB5CE28 A005D17A 6558949A EFAFDDF1x.

As before, let |M | be the length of the message M before padding, measured in bits. Pad the
message M according to the padding scheme of HAIFA:

1. Pad a single bit of 1.
2. Pad as many 0 bits as needed such that the length of the padded message (with the 1 bit

and the 0’s) is congruent modulo 1024 to 880.
3. Pad |M | encoded in 128 bits.
4. Pad m encoded in 16 bits.
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IVm Value (IVm[0]||IVm[1]|| . . . IVm[15])

IV384 1E41CEC0 E742F23B 5E195589 DDCFE7A0

827678F1 97AB48F6 5306C06C 00064879

15FE61A9 79FFC139 10426AA1 F255945e

5573B567 B9BDA1CA CEF5447F 1A4A03A7x

IV512 8A671C48 21FBB075 6C11F5A0 2B153831

C6192444 1254BA09 ADBD2BF9 6956353E

51ECE04E B38D02EC 3CCCC57B B76EA6DA

DDED39A5 ACB431B4 9452E478 F2DCEE8Dx

Table 3. IVm for Common Values of the Digest Size

Now, divide the padded message pad(M) into 1024-bit blocks, pad(M) = M1||M2|| . . . ||Ml, and
perform:

1. Set #bits← 0.

2. Set h0 ← IVm.

3. For i = 1, . . . , ⌊|M |/1024⌋:
– Set #bits← #bits + 1024.

– Compute hi = C512(hi−1, Mi, #bits, salt).

4. – If |M | = 0 mod 1024, compute hl = C512(hl−1, Ml, 0, salt), else

– If |M | mod 1024 ≤ 879, compute hl = C512(hl−1, Ml, |M |, salt), else

– Compute hl−1 = C512(hl−2, Ml−1, |M |, salt), and compute hl = C512(hl−1, Ml, 0, salt).

5. Output truncatem(hl).

Table 3 lists the values of IVm for 384-bit and 512-bit digests produced by SHAvite-3512.

4.3 Degenerate Salts

In applications where a salt cannot be used or when the additional functionality is not needed
(possibly in exchange for loss in security) it is possible to use a fixed salt. While better security
can be achieved if any such application would have its own salt, in certain cases an agreed fixed
salt would better be used. As all fixed salts presumably have the same strength, we suggest the
use of the all-zero salt in these cases. This salt can be hardcoded into unsalted implementations.
The speed using such hardcoded salt (in particular the all-zero salt) is expected to be slightly
faster than for the general case).

We note that the KAT/MCT answers for the NIST call were produced using these fixed salts.

5 Design Criteria and Rationale

In the recent few years, several advances in hash functions cryptanalysis were reported. These
results show that small nonlinearity in bit-wise operations, diffused using a mixture of XORs,
modular additions, and rotations, are insufficient to offer good security. Hence, in order to
generate a good compression function, one has to use strong nonlinear components.
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5.1 Designing the Compression Function

As we use the well-understood Davies-Meyer transformation, the problem of devising a secure
compression function is reduced to the problem of constructing a secure block cipher. We have
chosen a Feistel construction (or a generalized Feistel one) as a well understood construction,
whose security properties are known. Adding to that the use of the AES round function, we
obtain a secure compression function.

We use consecutive rounds of AES in the round function, and adapt the results on the secu-
rity of AES to the security of SHAvite-3. This decision also allows the adaption of optimization
techniques used for AES, offering an efficient construction. This also ensures that devices which
need to include both AES and SHAvite-3 are expected to do so with fewer gates for both of
them than in the case of AES and SHA-512 (for example). The same holds for software packages
which include the two primitives. Thus, our choice makes the development and certification of
products easier, as the AES round can be implemented and verified only once. This fact is
expected to shorten the time required for the deployment of SHAvite-3.

We have set several requirements for the security of the compression functions in use: First
of all, any differential characteristic of the block cipher should have a very low probability (i.e.,
less than 2−m). This is the first step in offering a secure cipher, but as presented in the recent
results, this is not sufficient, as the adversary can control the key (message). This extra control
allows the adversary to find right pairs with respect to the differential despite its low probability,
by picking messages that lead to satisfaction of some differential transitions. Thus, we aim at
reducing the probability of any related-key differential of the block cipher, where the adversary
has control over the key as well. We therefore ensure that the best related-key differential
would has as low differential probability as possible (it may be at most 2−m/2 for m-bit digest
to prevent any collision attacks, but need to be about 2−m to prevent any differential-based
second preimage attacks).

In order to ensure that the differential properties of the key schedule would not interact in an
unpredictable manner with the “encryption” part of the block cipher, we designed the message
expansion with two types of operations — AES based operations which offers high nonlinearity,
and linear operations which offer diffusion and “break” the sequence of AES operations.

5.2 Designing the Mode of Iteration

For the iteration method, we considered the following modes of iteration:

– Merkle-Damg̊ard — Following the recent results on the lack of second preimage resistance,
we find the use of this mode unfit for a modern hash function.

– Enveloped Merkle-Damg̊ard — While the enveloped Merkle-Dang̊ard mode offers the preser-
vation of the pseudo random properties of the compression function, it does not offer full
second preimage resistance for long messages and is not secure against the herding attack.
Hence, we decided to avoid the use of this mode.

– Tree-hash — While modes of iterations based on trees offer a great deal of parallelization in
the implementation, they suffer from various flaws. For example, a preimage attack faster
than exhaustive search on tree hash is presented in [1]. This lack of security, as well as the
fact that the memory requirements for tree hash functions are too large for constrained
environments (such as smart cards), make tree hashes unsuitable for SHA-3.

– Sponge constructions — Even though sponge constructions have strong theoretical founda-
tions [10], we identify two issues concerning their use. The first is the fact that the internal

18



SHAvite-3 Proposal to NIST for SHA-3

state is large, making it unsuitable for constrained environments, and may lead to perfor-
mance penalties when sufficient cache memory is not available. The second issue concerns
the gap between theory and practice. A sponge construction is secure if the round function
is strong as a whole. However, as the internal state is large, such a function is expected to
be very slow and hard to analyze. Explicit constructions solve this issue by using a weak
round function, which is a very dangerous practice [22, 50].

– Widepipe — This mode offers security with a relatively small performance penalty [43].
Double internal state (i.e., mc ≥ 2m) is the minimal size that suggests full (second) preimage
resistance of 2m for an m-bit digest. It requires the function to handle twice the number of
bits of the chaining value. Even this expansion rate of two causes a loss of resources (more
gates are needed to store the chaining value, the compression function has to process more
bits, etc.) and thus undesirable if can be avoided.

– HAIFA — HAIFA offers security against all known cryptanalytic attacks on modes of
iteration, while incurring no (or very little) performance penalties.

As can easily be seen, HAIFA is the best solution that suggests full security without increas-
ing the internal state. The performance penalty of a larger state in a hardware implementation
is apparent. At a first glance, the penalty in software may be considerably small. However, when
multiple instances of the hash function are being run in parallel or when the available cache
memory is small, each additional cache-miss increases the running time of the hash function
significantly.

The choice of HAIFA is thus natural. It offers the best performance for the required security
for an m-bit hash function with collision resistance of 2m/2 and (second) preimage resistance
of 2m.

5.3 Choices of Parameters

The choice of parameters was motivated by several arguments. First, we decided to maintain the
same input parameters as the SHA-2 family. This decision was made to facilitate an easy tran-
sition for any application that is expected to use SHAvite-3, allowing for a faster development
and deployment.

The salt must be at least half the size of the chaining value in order to protect against
herding attacks (i.e., s > mc/2) [15]. Nevertheless, we decided to pick the salt size equal to
the chaining value size, for the sake of applications that use SHAvite-3 in ways where an m-bit
digest requires a 2m security, which we wanted to maintain even against attacks targeting the
salt.

5.4 Choices of Constants

SHAvite-3 uses a relatively small number of constants. There are constants used in the AES
round over which we have no control. The only constants of SHAvite-3 we chose are the values
of MIV256, MIV512, the “tap” positions in the message expansion, and the locations of where
the counter and salt are mixed.

In order to allow implementations to save memory, we decided to pick MIV256 = C256(0, 0, 0, 0)
and MIV512 = C512(0, 0, 0, 0). These values can be easily computed on the fly, or precomputed
and stored. In any case, we just tried to pick relatively random strings (as much as a fixed string
can be random), without resorting to the standard set of “common constants” (i.e.,

√
2, ϕ, . . .).

As for the tap positions, we first note that we use a register of 16 32-bit words in SHAvite-
3256 and 32 words in SHAvite-3512 in the message expansion. We choose to perform a layer of
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AES rounds and only then to perform the XORs (of the nonlinear expansion step), in order to
allow parallel computation of all the AES rounds of the nonlinear expansion step.

In SHAvite-3256, we have chosen the feedback taps of the linear feedback register to be 3
and 16 (i.e., rk[i] = rk[i−3]⊕rk[i−16]). This choice ensures that the entire process is reversible
and offers a good diffusion. Similarly, the choice of 7 and 32 ensures it in SHAvite-3512.

For the locations where the counter is mixed, we chose locations which allow good mixing of
the counter, and prevent slide properties. The locations were chosen to be in the four different
nonlinear expansion steps. We also chose that inside the nonlinear expansion step, the counter
is mixed in different respective locations, and we ensured that the distance between the different
locations is not regular, and does not repeat, thus foiling any slide property. In SHAvite-3512

we picked four out of the seven nonlinear update steps (taking the odd ones). Using similar
considerations, we made sure to pick different respective locations in the nonlinear expansion
step. Mixing the order of the counter words used each time only serves to further prevent any
slide attack and prevent the existence of “weak” bit counters.

Hence, there are no slide properties in the underlying block ciphers. Even if (somehow) the
attacker can generate the same state in different positions, the counters break this property.
As the bit counters change between different invocations of the compression function, this also
assures that such relations cannot exist for more than a short number of rounds even between
different invocations of the compression function.

In order to reduce the memory consumption, and prevent the need of storing tables of
constants (which costs memory and/or gate area), we decided that SHAvite-3 would not use
any other round constants. Even though this may seem to weaken the hash function, there
are two good argument why this is not the case. The first is the fact that some constants are
embedded into the AES round constant, and we see no reason to add more (as the issue of
possibly weak values is solved by AES’ constants and its design criteria). The second reason is
the fact that the only conceivable problem following the use of the same constants (of the AES
round function) over and over again is the existence of slide properties. As noted before, this
is impossible, and thus, we conclude that there is no need for any additional round constants.

6 The Security of SHAvite-3

The security of SHAvite-3 is based on the security of its compression functions C256 and C512,
and the security of the mode of iteration used (HAIFA). Thus, we perform security analysis of
each of these two parts independently, starting from the security of the compression functions.

6.1 The Security of the Compression Functions

SHAvite-3’s compression functions are based on AES. We therefore recall a few results con-
cerning the security of AES.

Lemma 1. ([37]) The exact 2-round AES maximal expected differential probability is equal to

53/234 ≈ 1.656 · 2−29.

Lemma 2. ([37]) The 4-round AES maximal expected differential probability is upper bounded

by (53/234)4 ≈ 1.881 · 2−114.

Note that the upper bound given in Lemma 2 is not tight. Under the assumption that 4-
round AES behaves like a random permutation, the maximal expected differential probability
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is about 80 · 2−128 = 2−121.7. This probability is derived from the Poisson distribution of the
difference distribution table, whose maximal entry (besides the 0→ 0 entry) is expected to be
78 · 2−128 or 80 · 2−128 with an overwhelming probability [49].

As C256 uses 3-round AES as the round function, we use the following lemma:

Lemma 3. The maximal expected differential probability of 3-round AES is upper bounded by

2−49.

Proof. Any 3-round differential can be decomposed into two (overlapping) 2-round differ-
entials (one without the first round, and one without the last round). In each of these 2-
round constructions, the differential with the highest probability has only one active AES’
Super-box (2-round AES can be decomposed into 4 independent ciphers, each with input
and output of 32 bits, called a Super-box). Having two active Super-boxes in the first (or
the last) two rounds necessarily bound the probability of the differential to be no more than
(53 · 2−34)2 = 2809 · 2−68 ≈ 1.372 · 2−57. Thus, a better differential (with higher probability)
can have only one active Super-box in the first two rounds and in the last two rounds. This is
possible if and only if there is one active S-box in the second round (being the last round of
the first Super-box, and the first round of the second Super-box).

This differential has one active Super-box in the first two rounds, and four active S-boxes
in the third round. Consider a possible output difference of this differential and consider all
the one-round characteristics which lead to this output difference. In each active S-box there
are 127 input differences which lead to the desired output difference with non-zero probability.
Now, consider the second round. If it has only one active S-box, then there are only 255
possible differences after the second round, whose differences in the active four bytes is linearly
dependent (due to the MixColumns operation). In other words, setting the input difference to
one of the active S-boxes of the third round, immediately fixes the input difference of the other
active S-boxes. Hence, for the given output difference there are at most 127 possibilities for the
output difference of the 2-round differentials in the first two rounds. In the computation of the
upper bound, we take into consideration the fact that any 2-round differential has probability of
at most 53 ·2−34, and that in the one-round characteristics there are four active S-boxes. For the
given output difference in each active S-box there are 126 input differences with probability 2−7

and one with probability 2−6, each of the one-round characteristics has probabilities between
2−24 and 2−28. But not all the characteristics have probability 2−24, as for each active S-box
there is only one input difference with probability 2−6 that leads to the desired output difference.
Therefore, we conclude that the maximal expected differential probability is upper bounded by

53 · 2−34 ·
(

2−24 + 126 · 2−28
)

= 53 · 142 · 2−34−28 = 7526 · 2−62 ≈ 1.837 · 2−50.

⊓⊔

Considering the above lemma, we follow to prove the following results concerning E256:

Lemma 4. The differential properties of E256:

Except for the trivial 0→ 0 characteristic,

– There is no iterative differential characteristic of 2-round E256.

– Any 4-round iterative differential characteristic E256 has probability lower than 2−147.

– Any 3-round differential characteristic of E256 has probability of no more than 2−98.

– Any 9-round differential characteristic of E256 has probability of no more than 2−294.

Proof.

21



SHAvite-3 Proposal to NIST for SHA-3

– Any 2-round iterative differential characteristic of a Feistel cipher requires that both rounds
have a zero output difference. As the round function of E256 is invertible, it follows that
the input differences are zero as well which results in the trivial 0→ 0 characteristic.

– 4-round iterative characteristic cannot have two rounds with zero input difference (these two
rounds cannot be next to each other, as this causes two rounds to have zero input difference,
i.e., the whole difference is zero, and if they are separated by a non-zero input/output round,
we obtain the same case as the 2-round iterative characteristics). Thus, the characteristic
has at most one round with a zero input/output difference, and has probability of at most
(2−49)3 = 2−147.

– It can be easily seen that at least two rounds in any non-trivial 3-round characteristics have
non-zero input difference. Therefore, the maximal probability is (2−49)2 = 2−98.

– Following the previous lemma, it is easy to see that any 9-round differential characteristic
of C256 has at most probability of (2−98)3 = 2−294.

⊓⊔

Lemma 5. The differential properties of E512:

Except for the trivial 0→ 0 differential:

– There is no iterative differential characteristic of 2-round E512.

– Any 3-round differential characteristic of E512 has probability of no more than 2−226.

– Any 9-round differential characteristic of E512 has probability of no more than 2−678.

Proof.

– As E512 can be represented as a Feistel block cipher with a bijective round function of
256 bits,1 Hence, similarly to the case of E256, there is no 2-round iterative differential
characteristic.

– Recall that F 4(·) is composed of four AES rounds. Thus, the maximal expected differen-
tial probability of any non-zero differential of F 4(·) is less than 2−113. Hence, if we look
at the Feistel representation of E512 in each active round, the maximal expected differen-
tial probability is 2−113 (corresponding to only one of the F 4(·) being active). Any non-
trivial differential cannot have two consecutive rounds with input difference zero. Due to
the bijectiveness of the round function. Hence, there are at least two active rounds, and
the maximal differential probability of any 3-round differential characteristics is at most
(2−113)2 = 2−226.

– Following the previous lemma, it is easy to see that any 9-round differential characteristic
of E512 has a maximal expected differential probability of (2−226)3 = 2−678.

⊓⊔

6.1.1 The Security of the Underlying Block Ciphers Following the previous lemmas,
it is easy to see that the underlying block ciphers E256 and E512 offer security against differen-
tial cryptanalysis. While we did not discuss linear cryptanalysis, it is possible to offer similar
assurances against linear cryptanalysis (even though the use of linear cryptanalysis in the hash
function context is unclear).

The block ciphers in use are also secure against other cryptanalytic attacks. For example,
the low probability of the best non-trivial differentials even for a small number of rounds,

1 We note that in this representation there is also a re-ordering bit permutations before the first round
and after the last round, similar to the initial and final permutations of DES.
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suggest that boomerang attacks (or amplified boomerang attacks) are not applicable to the
block ciphers, and indicate that the amplified boomerang attack in the context of hash functions
is likely avoided [36].

As the underlying block ciphers E256 and E512 are not used as block ciphers, there seems
to be no apparent reason to analyze their security against other cryptanalytic techniques. Still,
for completeness, we present results concerning the security of the two block ciphers, showing
that their security is indeed intact:

– Linear Cryptanalysis — Results similar to the differential results, can be obtained for
linear hulls of 3-round AES and 4-round AES. In [37] the 2-round maximal expected linear
probability is found to be 1.638 · 2−28 and the 4-round maximal expected linear probability
is upper bounded by 1.802 · 2−110. Using a similar procedure as in the differential case,
we obtain that the maximal expected linear probability of 3-round AES is no more than
2−47.4. Hence, linear cryptanalysis is likely to fail for both E256 and E512.

– Impossible Differential Cryptanalysis — E256 is a Feistel block cipher with a bijective
round function. This implies the existence of a 5-round impossible differential. However, due
to the strong diffusion of the round function, we do not expect a longer impossible differ-
ential in E256. For E512, there is a 9-round impossible differential (following the structural
impossible differential suggested in [40]). The strong round function suggests that there are
no longer impossible differentials, and we conclude that E512 is secure against impossible
differential as well.

– Differential-Linear Cryptanalysis — Given the probabilities of the best differentials
and the best linear approximations, it is easy to see that there is no high probability
differential-linear approximation in any of the underlying block ciphers.

– Algebraic Approaches — While the level of the threat algebraic attacks pose to block
ciphers (and specifically to hash functions) is still open (see [18, 42]), we analyze the secu-
rity of the underlying block cipher to this kind of attacks. Consider the round functions
F 3(·) and F 4(·). As they are composed of AES rounds, the best possible algebraic relations
are of quadratic nature over GF (28). As each additional round doubles the degree, the ex-
pected degree of algebraic relations concerning the input and output of the round functions
over GF (28) is 8 in F 3(·) and 16 in F 4(·). The repetition of the rounds increases the alge-
braic degree very quickly, and is expected to reach the maximal value after a few rounds.
Specifically, in the case of E256, after four rounds, the expected degree of any relation is 29

(more than the actual possible degree), which means that it achieved the maximal possible
degree. In the case of E512, after four rounds, the expected degree of any relation is 212,
which means that the maximal degree is achieved. Besides the high degree, it appears that
the resulting equations are more dense than in AES, thus making algebraic attacks which
exploit the sparse nature of the equations less likely to be applicable. We also note that
this seems to render cube attacks [27] on the full cipher unuseful.

– Slide Attacks — Slide attacks exploit the self-similarity of the cipher. The standard solu-
tion to the problem is to use different round constants, but these are not found in SHAvite-3.
Despite that, SHAvite-3’s underlying block ciphers are secure against slide attacks due to
the bit counters. The bit counters are added in positions which break any self similarity
property that may exist. The only problematic case is when #bits = 0, which happens
only during initializations (where the adversary has almost no control over the inputs), and
during the processing of a full padding block (again, where the adversary has no control
over the inputs).

– Square Attacks — SHAvite-3 uses the AES building block which is susceptible to square
attacks in small number of rounds. The longest square properties that can be found are
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of four consecutive AES rounds, and using the Feistel structure of the underlying block
ciphers, we can use them to find square properties of up to three rounds of E256 and E512.
Hence, the underlying block ciphers are secure against Square attacks.

6.1.2 Resistance to Collision Attacks on the Compression Function Without loss of
generality we discuss the case of C256 — the results in the case of C512 are much stronger.

We will now assume that a random salt has been selected, and we will approximate the
probability of a differential given that fixed random salt.

Clearly, due to the properties of an AES round, at least 5 bytes are active in the input
and the output in any layer of AES rounds in the message expansion of SHAvite-3. Without
loss of generality, we concentrate on the second AES layer. We can assume that the differences
in these 5 bytes are distinct (and even linearly independent) - the assumption that the salt is
selected at random assures that the attacker cannot select the exact differences to his favorable
values. The linear transforms evolve each of the (at least) 5 independent differences into at
least 4 S-boxes at the input of the next AES layer (third layer) (or at the output of the first
layer, in case of the input of the S-box). Therefore, in total, we get more than 20 active bytes
at the input of layer 3 and output of layer 1. At the output of layer 1, the number of active
bytes is usually a lower bound for the number of active S-boxes (due to the inverse mix column
operation, which will rarely reduce the number of the active bytes, especially if the original
differences are linearly independent as assumed).

Now without loss of generality, assume that the number of active bytes at the output of
layer two is larger or equal to the number of active bytes in the input, i.e., there are at least
10 active bytes in the input of the third layer, and at least 10 active S-boxes in the third layer.
We can then safely assume that with a very high probability a majority of the S-boxes at the
fourth layer are active, and therefore, that almost all the 128 rk[·] bytes generated after that
layer are active.

We therefore conclude that except for a negligible probability, the number of active bytes
in rk[·] is much higher than 1+20+32+128 = 181. When counting the active bytes generated
between the second and third layer, and between the third and the fourth, which are not directly
an input to the AES layers, the total number of active bytes in rk[·] is expected to be way over
200.

We therefore conclude that either the attacker make trial hashing of a huge number of
messages in order to get one with fewer than 200 active bytes — and this process will be very
time consuming, or that the 200 or more active bytes in rk[·] will affect the computation of the
main function with 200 active ‘hits’, each of them may be canceled at random with probability
2−8 on average, i.e., the probability of any characteristic may not be over 2−1600. As the total
size of the input to the compression function is 512+256+256+64=1088 bits, we expect that
there is not even a single right pair for almost all the characteristics, and a very small number
of right pairs for the rest. Under these circumstances, no differential attack may be performed.

6.1.3 Resistance to (Second) Preimage Attacks on the Compression Function The
use of Davies-Meyer makes the inversion of the compression function impossible without weak-
nesses in the block cipher. As analyzed before, the block cipher is secure, and thus no such
attacks are feasible.

In some instances, collision attacks can be transformed for a second preimage attacks for
a set of “weak messages”, i.e., messages which satisfy some collision producing differential. As
we showed before, there are none of these, and thus there are no such classes of weak message,
i.e., the second preimage resistance is optimal.
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6.1.4 Security in the Presence of Multiple Salts Our previous analysis assumed that
the adversary has control over the salt, but has to choose the same salt for both message
blocks. Repeating the previous analysis when the adversary has more control (additional 256-
bit freedom in SHAvite-3256 and 512 more bits of freedom in SHAvite-3512), reveals that both
hash functions are still secure, as difference in the salt may cancel message differences when
rk[·] and the salt have an active column in the same position. On the other hand, when rk[·]
has no active column, the salt difference leads to an active column.

In other words, if the adversary uses two different salts, then the evolution of differences in
the message expansion is faster. Bytes that earlier were not active, get activated by the salt
difference (bytes can also become inactive with some probability/lose of freedom).

Thus, even in the presence of multiple salts, the security properties of collision resistance
and (second) preimage resistance, are preserved.

6.2 The Security of HAIFA

The HAIFA mode of iteration offers security against many attacks. As noted earlier, HAIFA
maintains the security of the compression function. The standard security features which are
preserved, as well as the more advanced properties, make SHAvite-3 a secure candidate.

The above claim might seem contradictory to the results obtained in [2] which claim that
HAIFA does not preserve various properties of the compression function. The claim of [2] is
based on constructing a special compression function which posses undesired and unrealistic
properties, and using these properties to attack the hash function (despite the security of
the compression function). The compression functions we use are strong, and do not posses
the weaknesses used in the special construction (or any weakness for that matter). Moreover,
recent results obtained in [17], show that if the compression function is secure (i.e., is a fixed
input length random oracle), then there are no shortcut second preimage attacks on the hash
function. Thus, we conclude that SHAvite-3 is a secure hash function.

Both HAIFA and SHAvite-3 ensure that there are no related-salts issues. The best way
to find a pair of messages and salts (M, salt) and (M ′, salt′) such that SHAvite-3salt(M) =
SHAvite-3salt′(M

′) (or that satisfy any other relation) is best achieved by generic attacks, e.g.,
the birthday attack. Moreover, given a digest y, the best approach to find a pair of message
and salt (M, salt) such that SHAvite-3salt(M) = y requires the use of generic attacks (i.e.,
exhaustive search or time-memory tradeoff attack).

Another security property that HAIFA hash functions (and thus SHAvite-3) posses is the
lack of extension attacks. While for many iterated constructions h(x||z) can be derived from
h(x) and z, without even knowing x, in HAIFA this is impossible. The reason for that is the
way the last block (or the last two blocks, in case an additional padding block is added) is
treated. In the last block, the compression function is called with the number of bits that were
processed so far. If this value is not a multiple of a block, then the resulting chaining value is
not equal to the chaining value that is needed in case the message is extended. If the message is
a multiple of a block, then an additional block is processed (with the parameter #bits set to 0).
Thus, the chaining value required for the extended message remains unknown to the adversary.

As noted earlier, HAIFA maintains the collision resistance of the compression function. The
underlying compression functions of SHAvite-3 are strong under the assumption that the block
ciphers used are secure (which is the case), and thus SHAvite-3 offers a secure pseudorandom
oracle and pseudorandom function behavior (up to the birthday bound, or more precisely,
up to min{2m, 2128} for digests of length m ≤ 256 bits, or up to 2256 for digests of length
257 ≤ m ≤ 512).
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6.3 Security of the Constructions Using SHAvite-3

As SHAvite-3 is a secure hash function, each construction using it in a “sane” manner is
expected to be secure. This is also true for signatures schemes such as RSA-PSS and message
authentication codes such as HMAC. Moreover, SHAvite-3 offers an inherent secure mode for
randomized hashing through the use of salts.

6.3.1 Security of Signature Schemes As SHAvite-3 is a collision resistant and second
preimage resistance hash function, it can be used in secure signature schemes. SHAvite-3 can
replace SHA-1, any of the SHA-2 family, or any other used hash function (which provides digests
of length up to 512 bits). Explicitly, SHAvite-3 can be used in any of these constructions with
the fixed salt.

In applications where the salt can be communicated as well, e.g., the Digital Signature
Standard (DSS) [54], one could use the randomness as the salt as well (or as part of the
salt). As the use of salts increases the security of the hash function (just like in randomized
hashing [31]), we suggest new signature schemes to allow for a mechanism to communicate the
salt.

6.3.2 Support for Randomized Hashing in SHAvite-3 The main purpose of random-
ized hashing is to reduce the level of requirements from the compression function in order to
achieve more secure hash function [31]. The randomized hashing is especially useful for digital
signatures, where the additional random inputs allow for a weaker compression function to be
used. This even motivated NIST to put forward a special publication on the matter [57].

In [31] two constructions offering better security for hash functions are presented (and
proved to be secure). While these proofs show that randomized hashing increases the security
of unsalted hash functions (i.e., SHAvite-3 with fixed salts), we believe that better security can
be achieved by just using the random value as the salt in a simple SHAvite-3 call.

6.3.3 Security of HMAC-SHAvite-3 HMAC’s security is based on the pseudorandomness
of the underlying compression function [5]. We recall that HAIFA preserves the pseudorandom-
ness of the compression function and that C256 and C512 are secure when keyed by a random
salt. Hence, we conclude that SHAvite-3 offers a secure base for HMAC.

In Section 7 we present a message authentication code which offers the same security as
HMAC based on SHAvite-3, while offering better performance. Thus, we suggest that users of
SHAvite-3 would use the more efficient construction.

7 HAIFA-MAC and SHAvite-3-MAC

HAIFA hash functions are protected against extension attacks and offer PRF preservation of
the compression functions. Thus, unlike unsalted constructions, if the salt of the compression
function is treated in a strong manner2 than it is possible to define a secure HAIFA-MAC.
HAIFA-MAC using the compression function C(·) and the key k is defined as:

HAIFA-MACC
k (M) = HAIFAC

k (M).

2 HAIFA does not define exactly in which manner the salt has to be mixed. However, our intentions
are that the salt is mixed appropriately, offering a true effect of the salt on the compression function.
For example, some weak possibilities (where the salt does not enter the real compression function)
are identified and discussed in [4].

26



SHAvite-3 Proposal to NIST for SHA-3

Construction Null string 1500-Byte String n-Byte String

SHA-256 1 24 ⌈(n + 8)/64⌉
HMAC-SHA-256 2 25 1 + ⌈(n + 8)/64⌉

SHAvite-3 1 24 ⌈(n + 10)/64⌉
SHAvite-3-MAC 1 24 ⌈(n + 10)/64⌉

Table 4. Number of Compression Function Calls of SHA-256, HMAC-SHA-256, SHAvite-3, and
SHAvite-3-MAC (for 256-bit digest/tag)

Given the PRF preservation of HAIFA, then the above construction is a secure MAC if the
compression function C(·) is a PRF. Thus, it is possible to replace more complex hash-based
message authentication codes with a simple instance of HAIFA.

Moreover, the different IVm for different digest sizes (and different tag sizes), as well as
the encoding of the digest (tag) size in the padding of the message, ensure that even under
the same key, the same message have completely different and uncorrelated digests (tags) of
different lengths.

In order to offer true security, the compression function C(·) has to be indeed a pseudoran-
dom function (and preferably related-key pseudorandom function). As SHAvite-3 has a secure
compression function, we define

SHAvite-3-MACk(M) = SHAvite-3k(M).

We note that for tags of up to 256 bits, one should use SHAvite-3256 as the hash function, while
for tags of longer tags (of up to 512 bits), one should use SHAvite-3512. Of course, in this case
the key used as salt is to be kept secret.

The efficiency of SHAvite-3-MAC is better than of HMAC-SHAvite-3. Consider a message
M , and a tag of size up to 256 bits. Computing SHAvite-3-MACk(M) takes ⌈|M | + 81/512⌉
compression function calls and requires one initialization (including one initialization of the
key). When computing HMAC-SHAvite-3 of the same message, the compression function is
called ⌈|M |+ 81/512⌉+ 1 times, and there are two initializations. Even if the hash function in
use does not add the tag size to the last block, the number of calls to the compression function
in HMAC is ⌈|M |+ 65/512⌉+ 1, which in most cases is still one more call to the compression
function. In Table 4 we compare the number of compression function calls when using SHA-
256, HMAC-SHA-256, SHAvite-3, and Shavite-3-MAC (when they are used to produce a 256-bit
digest/tag).

The performance advantage may seem small (one compression function call), but for short
messages (up to 53 bytes), it offers a 50% gain (also in the number of initializations), and
for messages of 1500 bytes (a very common message size) the gain is 4% in the number of
compression function calls.

8 Performance

SHAvite-3 is well suited for various platforms and machines, just like the AES. The byte-
oriented structure and the AES building blocks, make SHAvite-3 “native” on 8-bit machines,
32-bit machines, 64-bit machines, and actually any machine that already supplies or uses AES.

The running times of our current (slightly optimized) ANSI-C code is 35.3 cycles per byte
for 224-/256-bit digests, and 58.4 cycles per byte for 384-/512-bit digests on 32-bit Intel ma-
chines. On a 64-bit machine, the corresponding running times are 26.7 and 38.2 cycles per
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byte, respectively. The code uses a relatively simple optimization techniques for AES, but does
not use any special assembly or extended instruction sets, and thus well-optimized SHAvite-3
implementations are expected to be much faster.

We note that these numbers are based on a general 32-bit/64-bit machines architecture.
Once the AES instruction set will be added to the Intel CPUs (expected in the second quarter
of 2009), these speeds will improve significantly, as instead of performing an AES round in
21–29 cycles (the best known speeds at the moment on common CPUs), the speed of an AES
round would be reduced to roughly 6 cycles and several of these rounds can run in parallel. Of
course, not all of the speed up can be “exploited”, but it is reasonable to assume that SHAvite-3
would enjoy at least 60% speed increase, and arguably even more.

8.1 Software Implementation Ideas

8.1.1 8-Bit Machines Just like AES, SHAvite-3 is highly suitable for 8-bit machines, and by
using a table lookup for the S-box, a straightforward implementation of SHAvite-3 is possible.
For the implementation of the MixColumns operation (the only non-byte operation) one can
use the same suggestion as in [21]:

“The only field multiplication used in this algorithm is multiplication with the element
02, denoted by ‘xtime’.

t = a[0]⊕ a[1]⊕ a[2]⊕ a[3]; / ∗ a is a column ∗ /
u = a[0];
v = a[0]⊕ a[1]; v = xtime(v); a[0] = a[0]⊕ v ⊕ t;
v = a[1]⊕ a[2]; v = xtime(v); a[1] = a[1]⊕ v ⊕ t;
v = a[2]⊕ a[3]; v = xtime(v); a[2] = a[2]⊕ v ⊕ t;
v = a[3]⊕ u; v = xtime(v); a[3] = a[3]⊕ v ⊕ t; ”

SHAvite-3256 deploys 52 AES rounds, as well as about 192 32-bit XOR operations (which
may be implemented by 192 · 4 = 768 8-bit XORs). In [51] an AES-128 implementation which
takes 3766 cycles for a block is reported on an AVR processor. This speed is about 377 cycles
per full AES round. Hence, the running time of SHAvite-3256 on AVR is expected to be about
20370 cycles per each invocation of the compression function, or about 318 cycles per byte.
SHAvite-3512 uses 168 rounds of AES and 528 32-bit XOR operations, and thus the expected
running time of C512 for each invocation is about 65450 cycles per byte, or a speed of 511 cycles
per byte.

In [53] the 8-bit AVR core was extended with about 1100 gates, to reach speeds of 1300
cycles per 10-round AES encryption/decryption. This extension allows for implementing one
round of AES in about 130 cycles. Thus, with this small extension, the speed of SHAvite-3 can
be greatly improved to about 118 cycles per byte for digests of up to 256 bits, and 187 cycles
per byte for digests of 257 to 512 bits.

8.1.2 32-Bit Machines For 32-bit machines, one can join together the accesses for the
S-boxes along with the MixColumns operation, exploiting the linearity of the MixColumns
operation. This approach requires the use of four tables, each containing 256 elements of 32
bits each (note that as we use only the full round, there is no need for the fifth table usually
required for encryption in this approach). We note that we can also embed the salt into the
tables (by having several instances of the tables), which would save the XOR of the salt in
exchange for an additional memory.
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One can use some of the suggestions in [3, 9] to speed up assembly implementations of AES
(and thus of SHAvite-3), using CPU-specific instructions. The exact performance is hard to
predict, but we expect that better coding practices, and the use of assembly would improve
our current speed of 35.3 cycles per byte on a 32-bit machine (AMD Sempron(tm) Processor
3200+, 1800 MHz, 128 KB cache, 1 GB RAM, running in a full 32-bit mode, compiled with
gcc 4.0.3).

On a different 32-bit machine, Intel Pentium4 f12, Bernstein and Schwabe report a speed
of 14.13 cycles per byte for 10-round AES (in counter mode) [9]. While encryption in counter
mode can be easily parallelized, it seems that it is a valid assumption that the speed of 10-round
AES implementation of ECB on this machine can reach speeds of less than 18 cycles per byte
(or 18 · 16 = 288 cycles in total) which are about 29 cycles per round. SHAvite-3 with digests
of up to 256 bits uses 52 AES rounds, as well as about 192 32-bit XOR operations. Hence,
we estimate a fully optimized code for this particular machine to achieve speeds of about 1700
cycles in total, or slightly less than 26.6 cycles per byte. SHAvite-3512 has a running time of
55.0 cycles per byte on the same Sempron machine, where it seems that a more optimized code
may achieve speeds of about 5420 cycles per block which are 42.3 cycles per byte.

For comparison, on the same machine, which we obtained 35.3 cycles per byte for (not-well-
optimized) SHAvite-3256, the fastest SHA-1 implementation has a running time of 9.8 cycles
per byte, SHA-256 had a running time of 28.8 cycles per byte, and SHA-512 had a running
time of 77.8 cycles per byte. All measurements were done using the NESSIE test suite [48].

8.1.3 64-Bit Machines There are several approaches to implement AES on 64-bit machines.
The first one follows the previously mentioned improvements and optimizations, while taking
into consideration the larger number of registers and commands available on newer machines. A
different approach is the use of of bit-sliced implementation proposed in [11], which were applied
in [44, 45] to implement AES efficiently. Even though these implementations claim record speeds
of less than 10 cycles per byte for 10-round AES, they are unsuitable for SHAvite-3, as bit-sliced
approach is well suited for independent executions (which is not the case for SHAvite-3).

On the other hand, it seems that the speed of AES on 64-bit machine can reach 10.5 cycles
per byte in counter mode, even without bit-slicing [9]. Thus, we assume that a fully optimized
AES implementation can reach the speed of 13 cycles per byte, or about 21 cycles per round,
on 64-bit machines. Thus, it is estimated that C256 would require about 1200–1300 cycles for
each call, i.e., a speed of 18.6–20.3 cycles per byte should be reachable in a fully optimized
code. Similar analysis for SHAvite-3512 reveals prospective speed of about 28.4–31.8 cycles per
byte in an optimized implementation.

At the moment, our C-implementation of SHAvite-3256 has a running time of 26.7 cycles
per byte on AMD Athlon(tm) 64 X2 Dual Core Processor 4200+ (2200 MHz, 512 KB cache,
1 GB RAM, compiled with gcc 4.2.4). The code of SHAvite-3512 has a running time of 38.2
cycles per byte. For comparison, on this machine, SHA-1 takes 9.5 cycles per byte, SHA-256
takes 25.3 cycles per byte, and SHA-512 takes 16.9 cycles per byte.

8.2 Future Platforms

It is evident that adding the set of AES commands to Intel CPUs is expected to speed up
AES implementations as well as SHAvite-3’s implementations. The expected latency of this
command is 6, i.e., it would take 6 cycles to perform one AES round [34]. Also, the platform is
expected to allow multiple calls for the command (i.e., it is possible to compute two independent
AES rounds in parallel within 7 cycles).
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Hash Function 32-Bit Platform 64-Bit Platform

MD5 7.4 8.8
SHA-1 9.8 9.5
SHA-256 28.8 25.3
SHA-512 77.8 16.9

SHAvite-3256 (measured) 35.3 26.7
SHAvite-3256 (conjectured) 26.6 18.6
SHAvite-3256 (with AES inst.) < 8
SHAvite-3512 (measured) 55.0 38.2
SHAvite-3512 (conjectured) 35.3 28.4
SHAvite-3512 (with AES inst.) < 12

Table 5. Speed Comparison of Hash Functions (in cycles/byte)

With such a command, and sufficient number of registers, we expect that the speed of
SHAvite-3256 could be improved to a total of about 500 cycles per each invocation of C256

without applying AES rounds in parallel, and much faster when independent AES rounds may
be performed in parallel. This would lead to a running time of less than 8 cycles per byte on
such CPUs.

For SHAvite-3512, where we expect even better use of the command, non-interleaved code
(with 168 AES rounds and 528 32-bit XORs) is expected to have a running time of about 1540
cycles per invocation, or 12 cycles per byte. However, this figure is an overestimation, as the
calls for the AES round instructions themselves can be interleaved.

8.3 Hardware Implementations of SHAvite-3

AES is well suited for hardware platforms such as Application Specific Integrated Circuit (ASIC)
and Field Programmable Gate Arrays (FPGAs). SHAvite-3 implementations are expected to
be very similar to an AES implementation, up to the larger internal state, and the XORs used
in the Feistel construction. Thus, we first summarize some performance results on AES, and
then predict the expected hardware efficiency.

AES was implemented in many ways and manners, trying to optimize for various goals. At
the moment, we discuss two optimization goals: size (gates or slices) and speed. Hence, we are
interested in each of the two technologies in order to estimate the size and speed of SHAvite-3
implementations in them.

8.3.1 Implementations of AES in Hardware The smallest AES implementation in ASIC
is reported in [29]. The suggested implementation uses about 3400 gates, and has a throughput
of 9.9 Mbps in a 80 MHz maximal frequency (the implementation used a 0.35µ technology). Of
the 3400 gates, about 60% (about 2040) are reported to store 256 bits of the internal state (a
rate of about 8 gates per memory bit).

While there are only a few papers on fast ASIC implementations of AES, they try to achieve
high throughput by using many pipelined application of AES. This, of course, can only work
if the cipher is used in ECB or CTR modes of operation. With one pipeline per round (i.e., 10
encryptions in parallel), the results of [33] are a throughput of about 44 Gbps using slightly
less than 250,000 gates. In this implementation, the round function is implemented 10 times,
and the subkeys are fixed. Hence, there are about 128 · 11 memory bits containing subkeys
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and additional 128 · 10 memory bits to store intermediate encryption values. The total of 2688
memory bits take about 21,500 gates, giving an estimate of 228500 gates for fully implemented
10-round AES and the combining logic around it. Hence, we assume that the cost of a (very
fast) AES implementation in hardware is about 22,850 gates per round running on a 0.18µ
technology at about 340 MHz.

For FPGA implementations, we consider again the two optimization targets. In [30], an
implementation of AES on a Spartan-II FPGA is reported to take a total of 264 slices (both for
the data and the memory), of which 124 slices compose the actual encryption process, and the
remaining 140 slices contain the memory. The throughput of this implementation is 2.2 Mbps
in a 67 MHz clock frequency.

The fastest FPGA implementation we could locate was the one of [63]. The implementation
reaches speeds of 23.57 Gbps (in ECB/CTR mode) with 16398 slices running at speed of 184.16
MHz. The latency is 162.9 nano-second, i.e., it takes 30 cycles to encrypt a 16-byte block.

8.3.2 Implementing SHAvite-3256 in Hardware When implementing SHAvite-3256 in
hardware using an AES implementation we need to consider several factors:

– The memory consumption of C256 is larger. The implementation stores 512-bit message
register (containing 16 words of the expanded message), 256-bit salt, 64-bit counter, 256-
bit input chaining value, and 256-bit intermediate compression value.

– There is a need for three consecutive AES rounds in F 3(·).
– The message expansion can be computed four 32-bit words at a time.

Hence, an area efficient approach would implement the AES round once, and use it repeat-
edly for each application. Due to the way SHAvite-3 works, an implementation based on [29]
would need another 128-bit of internal state to store intermediate results of the AES round.
Hence, we estimate that the implementation would require about 8832 gates for storing all the
internal state bits (assuming each bit requires about 6 gates) and another 1360 gates for the
AES core,3 along with about 100 more gates for the XORs and control overhead. This results in
a full implementation of SHAvite-3256 in about 10300 gates. We note that some of these gates
are part of memory that may be stored outside the core of the hash function (e.g., the 64-bit
counter can be stored in a different area, which probably would cost less gates in the core of
the compression function).

The speed of this implementation is about 100 cycles for an AES round (at 80 MHz), which
implies a speed of about 5200 cycles for an invocation of C256, or a throughput of about 7.6
Mbps.

For the fast ASIC implementation we consider a similar methodology, but using the different
implementation figures of [33]. First of all, we note that SHAvite-3256 can be implemented
using only two AES-round cores (rather than 10), as in any case there are at most two AES
rounds occurring at the same time (one in F 3(·) and one in the message expansion). Thus,
besides storing the same amount of bits as in the small area size implementation (which takes
8832 gates), we need the two AES round implementations (each takes 22,850 gates), and an
overhead of about 400 gates for the XOR and additional control area (the control in high speed
environments is usually larger). The total gate count is therefore expected to be about 55,000
gates. The speed of an AES round is one cycle in this implementation. The critical datapath

3 We note that this core also contains the key schedule circuit, which can be omitted for SHAvite-3.
However, its size is relatively small, which can be approximated as zero when estimating the total
circuit size.
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of C256 is of 36 rounds of AES, and thus, it seems that one invocation of this implementation
of C256 takes about 36 cycles. Hence, using 55,000 gates, the expected throughput of this
implementation is 604.4 Mbps.

We can apply exactly the same analysis to FPGA implementations. The smallest FPGA
implementation of AES uses 124 slices for the AES round, and 70 slices to store 256 bits of
internal state. Hence, we estimate that 385 slices would be sufficient to store all the data for
C256, and thus, along with the 124 slices of the AES round, we expect a total of about 510 slices
for a full implementation of SHAvite-3256. The speed of the FPGA implementation is about
3900 cycles per each 10-round AES call, or about 390 cycles for one round. Hence, the speed
for one call to C256 is expected to be about 20,300 cycles, or a throughput of 1.7 Mbps.

When analyzing the above mentioned fast FPGA implementation, we can see that the are
about 30 instances of AES running in parallel, which takes quite a lot of memory. We shall
assume that of the 16398 slices, 16000 are used for the logic and only 400 are used as memory
(this is an overestimation of the logic). Hence, one AES round can be implemented using 1600
slices in such a way that it takes three cycles to compute. Using the same ideas as for the
fast ASIC implementation, we expect 3200 slices for the two rounds of AES and about 385
more slices for the memory. We conclude that this implementation is expected to use about
3585 slices, and takes 108 cycles for each compression function call (i.e., a throughput of 872.3
Mbps).

8.3.3 Implementing SHAvite-3512 in Hardware Applying the same methodology as for
SHAvite-3256 to reduced size ASIC implementation, we obtain the following estimations: The
implementation needs to store 2816 bits (128 bits for the AES state, 1024 bits for the message
block, two 512-bit registers for the chaining value (before and after E512) and 128 bits for the
counter). Hence, the implementation is expected to use about 18500 gates, and achieve a speed
of about 4.7 Mbps.

When implementing C512 targeting a fast implementation in ASIC using the methodology
described in [33], three AES round cores need to be used with some additional memory.4 This
increases the circuit size to about 81,000 gates. As the critical datapath has 48 rounds of AES,
we expect a throughput of about 907.7 Mbps.

For a small area FPGA implementation, the expected size is 895 slices (the difference is
due to the additional internal memory) and the expected throughput of about 1.0 Mbps. The
fast FPGA implementation is expected to use 7170 slices and achieve speeds of 168 cycles for
a compression function call (which means a throughput of 1.12 Gbps).

9 Summary

In this document we have presented SHAvite-3, a new efficient and secure hash function. We de-
vised SHAvite-3 with large security margins in order to ensure security for years to come. At the
same time, we have also considered efficiency of both software and hardware implementations.

We would like to thank the following people: Charles Bouillaguet, Yaniv Carmeli, Rafi Chen,
Pierre-Alain Fouque, Nicolas Gama, Edmond Halley, Sebastiaan Indesteege, Nathan Keller,
Gaëtan Leurent, Osnat Ordan, Adi Shamir, and Frederik Vercauteren. Our discussions with
them, as well as their good advice and heritage, made SHAvite-3 a better hash function.

4 The three cores are used as follows: one in each F 4(·), and one for the message expansion. There is
a requirement for some additional memory in the message expansion in this approach.
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A Test Vectors

A.1 Digests of 224-Bit Long

For salt = 0:

Message (M) Digest (SHAvite-30(M))
“” 7D9F1D40 5B2663DA FE1C0C7B 1C6C19BC 94E9CBE0 BD9565DC

B47FB00Bx

“A” 8204DABE A0BCE9A7 3019170 9D0DC1CD 5061A46A 958AB932

15CF7B9Bx

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”
617FA556 77960771 2FC71630 048A78D7 2F99480C 50DBAC48

5A6F9FAFx

“AAA. . . AA” (1,000,000 times)
BC0EC955 193E3135 D89CE37A 6554090F D7090E05 8173FF06

8AC7C359x

For the salt value salt = 11111111 11111111 . . . 11111111x:

Message (M) Digest (SHAvite-311111111 ... 11111111x
(M))

“” D41EDFA2 B2E691C6 77142337 E20F5B3E 79F9A23A 4B844E92

BA7BEA2Fx

“A” 71A4C3A2 31FACEE2 FD7E90C6 90825D0B 7654AA02 B3E808C1

9C8F6258x

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”
600F016F 57797724 FACA8B20 1808E519 70E17A3B BADCC1CB

6A560195x

“AAA. . . AA” (1,000,000 times)
62A43FB3 3249E98D 8EC5D7F9 73E6EF48 F7F2C403 6D151C1A

F36CFBB0x

A.2 Digests of 256-Bit Long

For salt = 0:
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Message (M) Digest (SHAvite-30(M))
“” 40A74666 D7F02BFD 75625297 327F7738 2CE204BE C7D64938

C2BCBB9F 00458FE6x

“A” 688B6434 861E3D91 7BEFE041 08F600D0 13ADAB82 60B42204

3C0F7BE9 5E586C62x

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”
4B8709C2 DDE33927 EA9D2493 9810E406 E5685B47 407AA8A1

5C012AB3 F7270717x

“AAA. . . AA” (1,000,000 times)
308CC7B5 C1D71055 2B987D49 4837F986 E71C586F 63F29DF4

CB88BF6F B5047057x

For the salt value salt = 22222222 22222222 . . . 22222222x:

Message (M) Digest (SHAvite-322222222 ... 22222222x
(M))

“” 5E3170B6 6138DCF1 585EFE6D 9C392719 7B9A2BBE 84A095AF

F059FE6E A21D7220x

“A” B1773B81 4711FE97 CB8B43B0 9472080F 2FA0846D 51732858

80F29321 BCF9137Fx

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”
F5C8D3DD 62C4E5FE 06C967E0 FA326CC9 E75F3AFB 3BA7E02D

26327DAF 8D84EB48x

“AAA. . . AA” (1,000,000 times)
FD53A881 08BC8E3F 049E3E61 97780A35 A28BFF50 E15F45B1

C3E7FE94 0EB72C0Bx

A.3 Digests of 384-Bit Long

For salt = 0:

Message (M) Digest (SHAvite-30(M))
“” 9F3140AC 7AB5BD6E BC2D0D82 9C8F2129 DF19A358 55D25106

A683DA0C 62578A77 7653EB0A 8D7D672A 19A4FDF6 49A3D9F1x

“A” 29CA127F B43666EA FC7AA9DF 0D39C572 0087A448 228A206E

0F673351 6E36986B DC31B388 69B1CD20 1D7F36E4 069D80A8x

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”
ED91E3CE 0C870C9A 43FAC5DB 1921CDC6 E9791999 62A520BA

89104D39 F4CB3CE5 ADA14057 B3E8709A 42A8634E 5BFCF6A8x

“AAA. . . AA” (1,000,000 times)
395D1054 4977600E 024FB44D 27BFBBEB 09543303 8A540089

C7C4943D D4DDD9B3 4031E492 0810579F 8E4F2CFA 43E44135x

For the salt value salt = 33333333 33333333 . . . 33333333x:
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Message (M) Digest (SHAvite-333333333 ... 33333333x
(M))

“” 2980CDDC 8DDC9FF8 69B4FC1F DE6AD53B 3F217C54 A5D3B782

DFB16B0A 9E80F1D5 9E896F89 E3FC3EE1 C9D7218D 59634006x

“A” 45513793 DD182058 1B3D0D04 B245EC88 53551592 D5E1E9C5

08B25934 40534150 39FCED7E 6B6D5897 2CFB5D71 1E932948x

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”
2BB39B67 3AA85B3A 05245404 E89B308E 8348B206 2BC1061C

4B72A4FB 12FE280F CE48D798 086F43D1 131B8700 5D006D9Dx

“AAA. . . AA” (1,000,000 times)
91EB16DC 0E9EA4DF 631A198F 5DAB30AF CBE8FCB8 4DDCBA72

8F6C5948 54CDD2F8 E0A56D0A 6861F360 4B29FB5D 0359F2DAx

A.4 Digests of 512-Bit Long

For salt = 0:

Message (M) Digest (SHAvite-30(M))
“” D7675CC2 C6D9004D B9C66894 872D3BE2 BF53F932 9DD77F09

89825AE1 BD3CBC07 E78E0B64 6E453AED 8708846A F65DE1ED

978CBAF4 2242F571 7E66DF67 556E1526x

“A” 2C90009C 4AA6AC77 24D69F76 2E90A7C8 4EC25814 0CA3A2F4

831FC93A 40C171A9 98A15906 96D9BAD4 CC587F57 6B377D39

57204E33 549C1D4A FA2458D4 EDF4D027x

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”
1FBA8163 192CCA3A 8E8D17D2 CD8702D9 72BA8A41 7D0EF27D

303D8818 E4E3A76B CF310F64 7DB46E95 97E7CCAC 42C5CCD5

7E53DDD8 DCED91C5 B28D95E4 A1472AA9x

“AAA. . .AA” (1,000,000 times)
B2825FC1 4180E600 11E75DE7 595A71D8 0D1C7555 B6B946BD

88A359B4 895F81FE 5C4FD7E1 8A9D4ACA 1FC5AE65 31B536D6

8042B004 C9ADB703 55051471 A1992061x

For the salt value salt = 44444444 44444444 . . . 44444444x:
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Message (M) Digest (SHAvite-344444444 ... 44444444x
(M))

“” C4701B86 C58DE5EC 46F724A4 9D2DFD4D C82F6B65 FDA8DEE6

FEDEFE04 956D0EAB 28F50B41 63E1C165 658CFD79 9D41F9DA

1DA8FE6B 7BA2166E 20824731 193795EEx

“A” 88BD7C5B 36C55498 5E7412FF EDEF4C87 EFB2161B F6275B8C

56EBFFBB 2BE18E52 508D051D 49B74F96 77F58639 1EDAAE91

982C91F4 384CEC47 99C6686D 9F0E074Bx

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”
A4C599A3 AE358DA4 3C2744BC A665A29A 61289DB7 44731A48

A78F54DC E1378CD3 741E06E3 7AC87DBE 9326537D 3808F9DC

F9A1AC5C 3689B8CD E815B2FA CC04C47Dx

“AAA. . . AA” (1,000,000 times)
9F5CE9B9 2308892A 0315CF5C F22752E7 BAAA25FA 7B1D4A6A

52766774 AC8C4B88 A882D2BA 8DD64110 F3E0FEE8 C4AB9CED

73DF065B 92CD912C 928204BD 1415F167x
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