
Introduction

There has been great interest in the use of interfer-

ing RNA (RNAi) to inhibit gene expression. Fire et

al. (1998) discovered that long double-stranded

RNA can induce gene silencing in Caenorhabditis

elegans while Hamilton and Baulcombe (1999)

found that short double-stranded RNAs caused

gene silencing in plants. Tushl et al. (1999) demon-

strated that the short RNA forms which are interme-

diates of the double-stranded RNA-induced

silencing process are suppressive and coined

the term “short interfering”, (si)RNA. It was soon

apparent that the genome uses inhibitory

microRNAs (reviewed in Denli and Hannon

2003). These endogenous RNAs arise from

fold-back structures and are cut by Dicer. How-

ever, they do not use the RNA induced silencing

complex (RISC) and, in animals, do not require

perfect complementarity to their target.

Successful methods for creating animal models

of genetic disease by the use of RNAi have been

greatly sought. Recently, one group reported

failure using short hairpin RNA (shRNA)

constructs to inhibit gene expression in transgenic

mice while such constructs introduced into

embryonic stem cells were both inhibitory

and successfully transmitted through the germ line

(Carmell et al. 2003).

RNA silencing or inhibition, seems to be

a universal property of eukaryotes (Hannon 2002;

Plasterk 2002) and the enzymes involved, e.g. Dicer,

are essential for development (Bernstein et al. 2003).

The long double-stranded RNA used to induce

RNAi in many species provokes a strong cytotoxic

response in mammalian cells (Hunter et al. 1975).

However, introduction of long double-stranded

RNAs function as RNAi in the preimplantation

embryo (Wianny and Zernicka-Goetz 2000;

Svoboda et al. 2000; Feodoriw et al. 2004),
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embryonal cells (Paddison et al. 2002) and may be

an explanation of the successful use of antisense

RNA in preimplantation embryos (Bevilacqua et al.

1988, 1989a, 1989b). The introduction of short,

double-stranded RNA complexes by transfection

has been found to be a very efficient way to

“knock down” gene expression in cultured

mammalian cells (Elbashir et al. 2001, 2002)

and, when introduced by injection, in embryos

(Calegari et al. 2002). Very recently, a number

of laboratories have shown that plasmids directing

the synthesis of shRNAs promoted by polymerase

III promoters would effectively result in gene

suppression by RNAi in cultured cells

(Brummelkamp et al. 2002; Miyagishi and Tiara

2002; Lee et al. 2002; Paul et al. 2002; Paddison

et al. 2002; Sui et al. 2002). In direct comparisons,

RNAi was much more effective than antisense

oligodeoxynucleotides (ODNs) targeted to

the same gene (Miyagashi et al. 2003) and showed

a longer duration of effect (Bertrand et al. 2002).

Lack of specificity, as previously shown with

ODNs (Woolf 1992) has been found (Oates et al.

2000; Jackson et al. 2003).

Attempts to create mice with genes silenced by

RNAi have also been made. Both tail-vein injec-

tion of short inhibitory double-stranded RNAs

and/or plasmids resulted in short term inhibition of

gene expression in mouse livers (Lewis et al.

2002; McCaffrey et al. 2002). However, this mas-

sive volume dilution (a volume equivalent to 5–10

% of the mouse’s weight) is not generally applica-

ble and the RNAi effect was short lived. Thus,

methods of generating transgenic mice with long

term expression of shRNAs have been sought.

Carmell et al. (2003) did not find distinct or repro-

ducible phenotypes that were expected for

hypomorphic alleles (of 8 genes with visible phe-

notypes which were each targeted by 3 con-

structs). There was successful germ line

transmission with lower levels of gene suppres-

sion with plasmids, which were selected in embry-

onic stem cells (Carmell et al. 2003), our con-

structs frequently do not show germline

transmission.

The shRNA constructs we used targeted aryla-

mine N-acetyltransferases (NAT). NATs catalyze

the acetylation of the extracyclic amino groups of

aromatic amine and hydrazines. The successful in-

hibition of the endogenous Nat1 and 2 would not

be expected to be harmful since the knockout of

Nat2 (Cornish et al. 2003) and both Nat1 and 2

(Sugamori et al. 2003) did not show a phenotype.

However, there was poor transmission to offspring

with little inhibition by the shRNA constructs.

Material and methods

The siRNA sequences targeting mouse and human

N-acetyltransferase genes were synthesized by

MGW Biotech Inc. (Table 1) and terminated in

5 thymidines to provide the P0l III termination sig-

nal.

H1 promoter

The H1-RNA promoter was PCR amplified using

the following primers: 5’CCATGGAAT

TCGAACGCTGACGTC-3’ and 5’GCAAGCT

TAGATCTGTGGTCTCATACAGAACTTATA

AGATTCCC-3’ (Brummelkamp et al. 2002).

The PCR product was digested with EcoR I

and Hind III enzymes and cloned into pBKSII.

The SiRNA sequences were designed with

the Bg1 II and Hind III site in the two ends

and cloned into the Bg1 II-Hind III sites

of pSUPER. A purified 335 pb fragment including

the H1 promoter and duplex siRNA were cut from

pH1-siNat1, pH1siNat2, and pH1-siNAT1

plasmids with Xba I and Sal I and purified for in-

jection.
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Table 1. Design of shRNA for transgenic injection

Target
gene

Promoter
Position

from
ATG

Length
base pair

Sequence for dsRNA*

Nat1 H1 78 21 AGTTCTTCAGCACCAGATGCG

Nat1 U6 78 21 AGTTCTTCAGCACCAGATGCG

Nat2 H1 123 19 ACATCCATTGTGGGGAATC

NAT1 H1 138 21 GCCATGGACTTAGGCTTAGAG

NAT1 U6 138 21 GCCATGGACTTAGGCTTAGAG

*all with loop sequence TTCAAGAGA and 5 terminal Ts.



U6 promoter

The mU6pro vector contains the mouse U6 RNA

promoter (Paul et al. 2002). DNA oligos were de-

signed (Table 1) with the BamH I and Xba I sites in

both ends and subcloned into the BamH I and Xba

I sites of U6 RNA promoter. Digests

of pU6-siNat1 and pU6-siNAT1 with Hind III

and Pvu II resulted in a 800 bp fragment including

the U6 promoter and duplex siRNA which were

purified from gel for injection.

Injection

DNA was injected into C57Bl/6 × DBA/2J zy-

gotes (Genetically Modified Mouse Service, Uni-

versity of Arizona). Founder animals and their

offspring were identified as described below.

Typing

Mice were tail-tipped, DNA was prepared and typ-

ing for the presence of a transgene was performed

using the primers in Table 2. The PCR reactions

were performed in a 25 �L volume with 40 cycles

with a 95°C denaturation for 30 s, 58°C annealing

for 45 s and 72°C extension for 1 minute.

RT-PCR for Nat1, Nat2 mRNA quantitation

Tissue Samples

Liver, lung, and kidney were taken from positive

mice and were immediately frozen in liquid

nitrogen. Total RNA was extracted using TRIzol

Reagent (Invitrogen) according to the manufac-

turer’s instructions. Genomic DNA potentially

present in RNA samples was removed by

incubating the RNA with RNAse free DNase I

(Promega). RNA quantification was performed by

spectrophotometry at 260 nm, and integrity of

the RNA was verified by electrophoresis of 1 �g of

total RNA on a 1.2% agarose gel stained with

ethidium bromide.

Synthesis of cDNA and real time Reverse

Transcription PCR

Two �g total RNA was reverse-transcribed into

first strand cDNA using TaqMan Reverse

Transcription Reagents (Applied Biosystems,

Roche). In order to optimize the real time PCR

conditions we used a 10X SYBR Green I master

mixture of 100 mM Tris-HC1, pH8.5, 500 mM

KC1, 25 mM MgCl2, and 1.5% X-100 (Karsai

et al). Real time PCR was performed using

a thermal cycler system (Cepheid, USA).
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Table 2. Primers for typing transgenic mice

Constructs Primer Product

H1-Nat1
5’-GAATTCGAACGCTGACGTCA-3’
5’-TGAACGCATCTGGTGCTFAA-3’

249 bp

H1-Nat2
5’-GAATTCGAACFCTGACGTCA-3’
5’-GAAGGATTCCCCACAATGGA-3’

246 bp

U6-Nat1
5’-CCCACTAGTATCCGACGCCCGGATCTCTA-3’
5’-TGAACGCATCTGGTFCTFAA-3’

353 bp

H1-NAT1
5’-GAATTCGAACFCTFACFTCA-3’
5’-GAACTCTAAGCCTAAGTCC-3’

249 bp

U6-NAT1
5’-CCCACTAGTATCCFACFCCFCCATCTCTA-3’
5’-GAACTCTAAGCCTAAGTCC-3’

353 bp

Table 3. Primers for quantitating target mRNA and oligoadenylate synthetase 1

Primer
Product Concentration in

PCR
Anneal

temperature C°

Nat1
5-TGT,TAA,CTC,AGA,CCT,CCT,TG-3
5-TAC,AAA,CAC,AGA,TGC,TGG,CG-3 130 bp 11.7 pmol 58

Nat2
5-GAG,AGC,AGT,ATG,TTC,CAA,ACC-3
5-AGA,CGC,TGG,TGA,TGT,CTG,AA-3 148 bp 15 pmol 60

Oas1
5’TGCTGCCAGCCTATGATTTA-3’
5’-CGACAGTTCAGGAAGTACTT-3’ 156 bp 16.7 pmol 56

GAPDH*
5-TTC,ACC,ACC,ATG,GAG,AAG,GC-3
5-GGC,ATG,GAC,TGT,GGT,CAT,GA-3

236 bp 16.7 pmol 60

*The GAPDG primer is located in different exons that only mRNA is measured.



The reactions were performed in a 25 �L vol-

ume with concentrations and annealing tempera-

tures optimized for each specific primer (Table 3).

A typical protocol included a 300 s denaturation

step followed by 45 cycles with 95°C denaturation

for 30 s, annealing for 45 s and 72oC extension for

1 minute. To confirm amplification specificity,

the PCR products from each primer pair were sub-

jected to a melting curve analysis and subsequent

agarose gel electrophoresis. All experiments were

performed at least three times with separate RNA

preparations.

For a standard curve, 2–4 fold serial dilutions

were made starting from the original concentra-

tion. The parameters were: Nat1: Y = –3.5315X

+ 23.227, R2 + 0.999 (2 fold dilution); Nat2:

Y = –2.315X + 23.552, R2 = 0.993 (4 fold

dilution); Oas1: Y = –3.2821X + 28.907,

R2 = 0.987 (2 fold dilution); and GAPDH:

Y = –3.87X + 16.016, R2 = 0.991 (4 fold dilution).

Results

U6 promoter

Mouse Nat1 and human NAT1 were targeted in
separate gene injections with shRNA driven by the
U6 promoter. Human NAT1 was chosen as an ex-
ogenous target since there might be toxicity re-
lated to endogenous targets; NAT1 was expressed
in other transgenic mice which we planned to
cross with these transgenic mice. Multiple found-
ers for both constructs were obtained but there
were relatively few positive offspring to study.
Five out of six founders generated offspring. Two

of these gave 10 positive versus 31 negative (�2 �
0.002) among surviving pups while the remaining

3 had no positive offspring among 39 surviving.
There were higher proportions of transgenics
among dead fetuses removed before they were
eaten: 3/4 for 1 transmitting founder and 2/5 for
another; 1/1 for 1 non-transmitting founder. There
was no consistent pattern of inhibition in liver,
kidney or lung (Table 4). Neither of two U6-NAT1
founders transmitted (in crosses to CMV-pro-
moted, NAT1 transgenics; 2 offspring for
1 founder; 22 for the other) so the degree of inhibi-
tion of the exogenous targeted transgene could not
be studied.

H1 promoter

The human polymerase III H1-RNA gene pro-

moter has also been successfully used to drive ex-

pression of shRNAs to inhibit gene expression

(Brummelkamp et al. 2002). We separately tar-

geted mouse Nat1 and Nat2 and human NAT1 with

shRNA driven by this promoter. The NAT1 target

also provided the potential to test

a nonendogenous gene. While only 2 founders
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Table 4. U6-promoted, shRNA effects on endogenous

Nat1 mRNA levels

% inhibition*

mouse #
founders

lung kidney liver

283 89.7 84.2 13.6

285 91.6 –95.8 71.9

offspring

40 (from 283) 19.2 –258.3 –26.1

124 (from 284) –19.5 –73.9 –21.4

127 (from 284) 60.1 22.5 19.7

* means, std. dev. not presented since the triplicates were from single

mice

Table 5. Transmission of H1-Nat1 RNAi transgenes

Founder
#

Sex Bred to Alive Dead Fetuses

positive negative positive negative positive negative

118 female B6 15 3 8 2 7

119 female B6 10 2 2 10

168 male ICR

ICR
4 7 6* 11*

169 male B6

ICR

B6

3
13

10

170 male B6

ICR
5*

7

13*

171 male ICR

B6
8 8 2* 6*

173 female B6 26

* fetus < 13d



transmitted the transgene to liveborn offspring,

5 transmitted to dead newborns or fetuses (where

the mother was sacrificed for these studies) with

a trend to a higher percentage of positive offspring

in younger fetuses (Table 5). When Nat1 was

the target, inhibition of target endogenous mRNA

was inconsistent (Table 6). Three founders with

constructs targeting human NAT1 did not have

positive offspring among liveborns (50), dead

newborns (6), or fetuses (10 from just 1 founder).

Thus, early death was not explained by toxicity re-

lated to an endogenous target since it was also

found with an exogenous target. Two out of 5

founders transgenic for the H1-Nat2 construct had

positive offspring but at possibly lower frequen-

cies than expected: 12 positive versus 22 negative

(�2, p = 0.09). There was no significant inhibition

of endogenous Nat2 mRNA (lung: 70%, 36%; kid-

ney: 61%, 257%; liver: 186%, 53% in 2 founders).

Transgenic lines containing H1-driven

shRNAs targeted to Nat1 and Nat2 were eventu-

ally established. There was little or no inhibition of

expression of the endogenous genes (Figure 1)

which could now be studied in multiple mice.

2’5’ oligoadenylate synthetase (OAS) induction

Several recent papers have indicated that, contrary

to earlier studies, RNAi can stimulate the inter-

feron response in mammalian cells (Bridge et al.

2003; Sledz et al. 2003). Inasmuch as this response

could be toxic to the early embryo and result in the

pattern of more positive transgenics in younger

versus older fetuses that we observed, OAS

mRNA levels were measured. Transgenic fetuses

from 3 different founders had variably elevated

levels (Table 7).
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Figure 1. Real time RT-PCR quantitation of target Nat1 or 2 mRNA levels in H1-transgene positive mice compared to

controls (mean ± std error) in liver and kidney. Nat1�, Nat 2�

Table 6. H1-promoted shRNA effects on endogenous

Nat1 mRNA levels in 5 founders % inhibition*

Mouse # Lung Kidney Liver

119 93.1 86.7 75.8

118 24.7 –70.8 –8.6

48 98.6 –20.4 91.9

168 5.8 –316.7 –38.8

171 73.3 –139.6 –30.1

* means, std. dev. not presented since the triplicates were from single

mice

Table 7. Oligoadenylate synthase 1 mRNA levels in

transgenic fetuses from various founders by real time

RT-PCR

mRNA/GAPDH
mRNA

Non-transgenic fetuses (3) 0.114 ± 0.067*

Transgene positive from 119 (2) 1.75 ± 0.12+

Transgene positive from 168 (4) 0.787 ± 0.54

Transgene positive from 171 (2) 0.157 ± 0.067

* (n) mean ± std dev
+ p � 0.001 against non-transgenics



Discussion

N-acetyltransferases were chosen as targets since

their knockouts are viable (Cornish et al. 2003;

Sugamori et al. 2003). Two genes, NAT1

and NAT2, have been isolated and characterized

from humans and several animal species (see

review Hein et al. 2002). Human NAT1

preferentially catalyzes the acetylation of

substrates like p-aminobenzoic acid (PABA)

while isoniazid (INH) is a substrate for human

NAT2. Little is known about the physiological

significance of these enzymes. Human NAT1

catalyzes the acetylation of a breakdown product

of folic acid, p-aminobenzoylglutamate, leading to

the suggestion that NAT1 may play an as yet

undefined role in folic acid metabolism (Minchin

1995; Ward et al. 1995; Payton et al. 1999; Upton

et al. 2000; Smelt et al. 2000). All the NAT genes

are located on chromosome 8 in mice and humans

(Mattano et al. 1988; Blum et al. 1991; Hickman

et al. 1994; Fakis et al. 2000).

While the percentage of liveborn mice that

were transgene positive after pronuclear injection

with shRNA constructs ranged from 5.9% for

U6NAT1 to 13.9% for H1Nat1, in the general

range for other constructs, the transmission to

subsequent generations was deficient. This was

unusual. Generally, only about 15% of transgenic

founders are mosaics which do not transmit to

subsequent generations while up to 30% are

germline mosaics (Wilkie et al. 1986). There were

low transmission ratios to offspring that survived

to weaning (15%) with higher ratios among dead

newborns (38%), and early fetuses (30%), but not

late fetuses (8%) (Table 6). This suggests that

the shRNA constructs were toxic to the develop-

ing embryos. The fact that the same lack of

transmission occurred with a non-endogenous

target makes it unlikely that the toxicity was

related to reaction with the endogenous target,

Nat1 or 2. Although mice deficient in Nat2 or both

Nat1 and Nat2 have no phenotype (Cornish et al.

2003; Sugamori et al. 2003), the silencing

complex attached to the target gene could

potentially be toxic.

One possibility is that induction of an inter-

feron response, expected for double-stranded

RNAs of 30 pb or longer, but not for the shRNAs,

was responsible for this fetal lethality. Induction

of the mRNA of Oas1, an indicator for this

response, ranged from 1.4 to 15.3 fold,

comparable to the about 3 fold increases found

using microarrays (Sledz et al. 2003) but lower

than the 100 fold responses found by Bridge et al.

(2003). Thus, an interferon response to highly

expressing shRNA constructs may contribute to

apparent early fetal lethality of these constructs.

This interferon response could be related to

the amount of shRNA generated by the transgene

and it is very possible that the transgenic founders

which transmitted and allowed the establishment

of lines had lower levels of shRNA than those

which did not.
The constructs in this study were designed to

function as siRNAs, not miRNAs. Recent
advances in understanding of the mechanisms of
RNA silencing have led to better designs for RNAi
(Silva et al. 2003). Schwarz et al. (2003) showed
that the antisense strand of a double-stranded
RNA was more efficiently incorporated into
the RNA silencing complex and was associated
with less stable hydrogen-bonding at the 5’ end.
Comparative analyses of natural silencing RNAs
led to a similar conclusion (Khvorova et al. 2003).
Effective double-stranded silencing RNAs also
were thermodynamically less stable internally
from positions ± 10 to ± 15. The targeted
sequences for Nat1 and Nat2 (Table 1) fit these
specifications quite well. However, the target
sequence for NAT1 (a human transgene present in
other lines), does not fit these specifications since
it was G-C rich in those internal positions. Other
aspects of shRNA (chemistry included) have
recently been explored (Harborth et al. 2003).

It is interesting to compare the current results

and those of Carmell et al. (2003) who also had

highly variable degrees of inhibition of target

genes with transgenics expressing shRNA but did

not comment on a deficiency in transmission of

the transgenes. It is possible that the difference is

the target gene, an enzyme involved in phase II

xenobiotic metabolism with no visible phenotype

in knockout mice, in contrast to Carmell et al.

(2003) who targeted genes encoding visible

phenotypes. Important differences may also be

the promoter used. Carmell et al. (2003) did not

list the promoters for their constructs and they are

not given in the supplementary information to that

paper. However, the H1 promoter was used for all

3 shRNA constructs expressed in embryonic stem

cells and may have been used in the transgenics.

Differences in promoters may be important since

products of different polymerase III promoters

localize to different sub-regions of cells (Ilves

et al. 1996).
More recently, lentiviral vectors have been

shown to effectively deliver polymerase III
promoted, shRNA constructs for knockdown
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transgenesis (Rubinson et al. 2003; Tiscornia et al.
2003). For CD8 silencing, copy numbers ranged
from 2–6 and did not correlate with percent
decrease in expression (Rubinson et al. 2003).
Although numbers of offspring are not presented,
it appears that there is a discrepancy between
the percentage of positive liveborns (decreased)
and embryos in the work of Tiscornia et al. (2003).
Thus, the lentiviral approach to shRNA
transgenics may suffer from some of the same
limitations that we have found with “standard”
pronuclear injection transgenics.

The mechanism of action of the RNAi
produced from the shRNA constructs is also not
known. Hall et al. (2002) showed that a shRNA
driven from the U6 promoter but with strand
reversal, such that an accessible anti-sense
3 terminus was not available, still markedly
suppressed the target gene expression. Thus, these
shRNAs might not require primer extension
amplification. Perhaps gene silencing involving
heterochromatin modification which has been
found to occur with RNAi in fission yeast (Volpe
et al. 2002; Hall et al. 2002), could be involved.
It is also of interest that the shRNA constructs
which efficiently suppress gene expression in
mammalian cells do not contain introns and poly-
adenylation signals. Thus, they may have to
function in the nucleus or are efficiently
transported to the cytoplasm despite lacking these
export signals. Constructs with introns work better
than ones without in plants (Smith et al. 2000) but,
perhaps, for other reasons.

The interest in using RNAi in transgenic mice
is partly driven by the potency of RNAi compared
to antisense oligodeoxy-nucleotides. Two studies
have found shRNAs to be much more potent than
similarly targeted antisense oligodeoxynucle-
otides (Bertrand et al. 2002; Miyagashi et al.
2003). A polymerase II promoter has been shown
to be effective with shRNA in ES cells suggesting
that these cells may have an increased sensitivity
to RNAi (Grabarek et al. 2003). Transgenic incor-
poration of polymerase III driven shRNA by
electroporation of ES cells has led to variable de-
grees of inhibition in embryos (Kunath et al. 2003)
and in the adults resulting from chimeric mice re-
sulting from blastocyst injection of the ES cells
(Carmell et al. 2003).

Conclusions

In conclusion, a large number of founders were
generated from embryo injection of constructs us-
ing Pol III promoters to generate shRNA. Poor

transmission to the next generation suggests toxic-
ity of the constructs which may be explained by an
interferon response. The transgenic mouse lines
which were eventually established showed little or
no inhibition of expression of the target genes.
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