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ABSTRACT We propose a novel Neyman-Pearson (NP) classifier that is both online and nonlinear as the
first time in the literature. The proposed classifier operates on a binary labeled data stream in an online
manner, and maximizes the detection power about a user-specified and controllable false positive rate.
Our NP classifier is a single hidden layer feedforward neural network (SLFN), which is initialized with
random Fourier features (RFFs) to construct the kernel space of the radial basis function at its hidden layer
with sinusoidal activation. Not only does this use of RFFs provide an excellent initialization with great
nonlinear modeling capability, but it also exponentially reduces the parameter complexity and compactifies
the network to mitigate overfitting while improving the processing efficiency substantially. We sequentially
learn the SLFN with stochastic gradient descent updates based on a Lagrangian NP objective. As a result,
we obtain an expedited online adaptation and powerful nonlinear Neyman-Pearson modeling. Our algorithm
is appropriate for large scale data applications and provides a decent false positive rate controllability with
real time processing since it only has O(N) computational and O(1) space complexity (N : number of data
instances). In our extensive set of experiments on several real datasets, our algorithm is highly superior over
the competing state-of-the-art techniques, either by outperforming in terms of the NP classification objective
with a comparable computational as well as space complexity or by achieving a comparable performance
with significantly lower complexity.

INDEX TERMS Neyman-Pearson, Online, Nonlinear, Classification, Large scale, Kernel, Neural network

I. INTRODUCTION

DESIGNING a binary classifier with asymmetrical costs
for the errors of type I (false positive) and type II

(false negative) [1]–[3], or equivalently designing a Neyman-
Pearson classifier [4], is required in various applications
ranging from facial age estimation [5], multi-view learning
[6] and software defect prediction [7] to video surveillance
[8] and data imputation [9]. For example, in medical diag-
nostics, type II error (misdiagnosing as healthy) has perhaps
more severe consequences, whereas type I error (misdiag-
nosing as unhealthy) may result in devastating psychological
effects [10]. In this example, the error costs must be set
probably asymmetrically for the cost sensitive learning [1],
[2] of the desired classifier, however, it could be difficult to
determine the right cost structure to be imposed on the errors.
Another example with the same difficulty is anomaly detec-

tion for the security and surveillance applications. In such
applications of detecting anomalies (e.g. accidents, crimes,
frauds, violations), the type I error rate must certainly be
controlled since giving a false alarm, i.e., false anomaly,
too often is frustrating and costly as it draws unnecessary
attention from security agents. It is also important to maintain
the reliability of detections and not fail to draw attention
in the case of a true anomaly. Hence, the user must set the
costs of both error types to match the bearable false alarm
rate, however, setting that correctly could be again difficult to
guarantee to not give a false alarm, for instance, no more than
once a day or week. Therefore, it is often more convenient
and practical -but technically equivalent [4]- to describe the
user needs by the maximum tolerable type I error, cf. [11]
and the references therein, instead of having to determine the
error costs to meet the tolerance. This leads to the Neyman-
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Pearson (NP) characterization of the desired classifier [4]
and false positive rate controllability, where the goal is to
maximize the detection power, i.e., minimize type II error,
while upper-bounding the false positive rate, i.e., type I error,
by a user-specified threshold. In this paper, we target and
solve the problem of designing a computationally highly
efficient NP classifier while achieving powerful nonlinear
data modeling with potential applications in, for instance,
security, surveillance and diagnostics.

To this goal, as the first time in the literature, we introduce
a novel online and nonlinear NP classifier based on a single
hidden layer feedforward neural network (SLFN), which
is sequentially learned with a Lagrangian non-convex NP
objective (i.e. maximum detection power about a controllable
user specified false positive rate). We use stochastic gradient
descent (SGD) optimization for scalability to voluminous
data and online processing with limited memory require-
ments. During the SGD iterations, we a) sequentially infer
the value of the Lagrangian multiplier in a data driven man-
ner to obtain the correspondence between the asymmetrical
error costs and the desired type I error rate, and b) update
all the SLFN parameters to maximize the detection power
(minimize the resulting cost sensitive classification error) at
the desired false positive rate. To achieve powerful nonlinear
modeling and improve scalability, we use the SLFN in a
kernel inspired manner, cf. [12] for the kernel approach to
nonlinearity. For this purpose, the hidden layer is initialized
with a sinusoidal activation to approximately construct the
high dimensional kernel space (of any symmetric and shift
invariant kernel under Mercer’s conditions, e.g., radial basis
function) through the random Fourier features (RFFs) [12].
The output layer follows with identity activation.

The main contribution of our work is that we are the first
to propose a Neyman-Pearson (NP) classifier that is both
online and nonlinear. Our algorithm -as an important novel
addition to the literature- is appropriate for contemporary fast
streaming large scale data applications that require real time
processing with capabilities of complex nonlinear modeling
and false positive rate controllability. In our extensive ex-
periments, the introduced classifier yields significantly better
results compared to the competing state-of-the-art NP tech-
niques; either performance-wise (in terms of the detection
power and false positive rate controllability) at a comparable
computational and space complexity, or efficiency-wise (in
terms of complexity) at a comparable performance. The
presented study is also the first to design a neural network (as
an SLFN) in the context of NP characterization of classifiers,
which is expected to open up new directions into deeper
architectures since the NP approach has been left surprisingly
unexplored in deep learning.

In the following Section II, we discuss state-of-the-art NP
classification methods. We provide the problem description
in Section III, and then introduce our technique for online
and nonlinear NP classification in Section IV. After the
experimental evaluation is presented in Section V, the results
are analyzed in Section VI and we conclude in Section VII.

II. RELATED WORK
Neyman-Pearson classification has found a wide-spread use
across various applications due to the direct control over the
false positive rate that it offers, cf. [11] and the references
therein. For example, an NP classifier is commonly employed
for anomaly detection, where the false positive rate control-
lability is particularly important. In the one class formula-
tion (due to the extreme rarity of anomalies) of anomaly
detection [13]–[16], the NP classification turns out (when
the anomalies are assumed uniformly distributed) estimating
the minimum volume set (MVS) that covers 1 − τ fraction
of the nominal data (τ is the desired false positive rate).
Then, an instance is anomalous if it is not in the MVS. A
structural risk minimization approach is presented in [13]
for learning the MVS based on a class of sets generated by
a dyadic tree partitioning. Geometric entropy minimization
[14] and empirical scoring [15] can also be used to estimate
the MVS, both of which are based on nearest neighbor
graphs. The scoring of [15] is later extended to the local
anomaly detection in [16] and a new one class support vector
machines (SVM) in [17]. Although the algorithms in these
examples with batch processing, i.e., not online, have decent
theoretical performance guarantees, they are not scalable to
large scale data due to their prohibitive computational as well
as space complexity and hence they cannot be used in our
scenario of fast streaming applications. Online extensions
to the original batch one class SVM [18], which can be
shown to provide an estimator of the MVS [19], have been
proposed for distributed processing [20] and wireless sensor
networks [21]. However, neither these online extensions nor
the original one class SVM address the false positive rate
controllability as they require additional manual parameter
tuning for that. In contrast, our proposed online NP classifier
directly controls (without parameter tuning) the false posi-
tive rate and maximizes the detection power with nonlinear
modeling capabilities. Furthermore, NP formulation in the
one class setting requires the knowledge of the target density
(e.g., anomaly), which is often unknown and thus typically
assumed to be uniform; but then the problem can be turned
into a supervised binary NP classification by simply sampling
from the assumed target density. On the other hand, when
there is also data from the target class, the one class for-
mulation in aforementioned studies does not directly address
how to incorporate the target data. Hence, our two class su-
pervised formulation of binary NP classification also covers
the solution of the one class classification, and our proposed
algorithm is consequently more general and applicable in
both cases of target data availability.

Among the two class binary NP classification studies (cf.
[11] for a survey), plug-in approaches (such as [22] and
[23]) based on density estimation as an application of the
NP lemma [24] are difficult to be applied in high dimen-
sion due to overfitting [14]. Particularly, [22] exploits the
expectation-maximization algorithm for density estimation
using a neural network with -however- batch processing and
manual tuning for finding the threshold to satisfy the NP
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type I error constraint. In [25], a neural network is trained
with symmetric error costs for modeling the likelihood ratio,
which is thresholded to match the desired false positive
rate but determining the threshold requires additional work.
Moreover, the approach of thresholding after training with
symmetric error costs (cf. [11] for other examples in addition
to [25]) does not yield NP optimality, since NP classification
requires training with asymmetric error costs corresponding
to the desired false positive rate. Unlike our presented work,
approaches in [22], [23], [25] are also not online and do
not allow real time false positive rate controllability. Recall
that NP classification is equivalent to cost sensitive learning
[4] when the desired false positive rate can be accurately
translated to error costs, but achieving an accurate translation,
i.e., correspondence, is typically nontrivial requiring special
attention [4], [26]. This correspondence problem is addressed
i) in [4] as parameter tuning with improved error estimations,
and ii) in [26] as an optimization with the assumption of class
priors and unlabeled data. Besides the exploitation of SVM
[4], other classifiers such as logistic regression [27] have
also been considered in [28] and incorporated into a unifying
NP framework as an umbrella algorithm. We emphasize that
these approaches, the SVM based tuning approach [4] and the
risk minimization of [24] as well as the umbrella algorithm
[28] in addition to the optimization of [26], do not satisfy
our computational online processing requirements, as they
are batch techniques and not scalable to large scale data.

In most of the contemporary fast streaming data applica-
tions, such as computer vision based surveillance [29] and
time series analysis [30], computationally efficient process-
ing along with only limited space needs is a crucial design
requirement. This is necessary for scalability in such appli-
cations which constantly generate voluminous data at un-
precedented rates. However, the literature about the Neyman-
Pearson classification (cf. [11] for the current state) appears
to be fairly limited from this large scale efficient processing
point of view. Out of very few examples, a linear-time al-
gorithm for learning a scoring function and thresholding is
presented in [31], which is still not an online algorithm (i.e.
it is not designed to process data indefinitely on the fly) since
batch processing is assumed with large space complexity and
processing latency. Moreover, scoring of [31] is similar to
the one of [15] but -unlike [15]- trades off NP optimality
for linear-time processing. Also, the technique of [31] is
restricted to linearly separable data only, and it requires
to adjust thresholding for false positive rate controllability
which can be seen impractical. The NP technique of [30]
is truly online (and one class) but it is strongly restricted
to Markov sources, thus fails in the case of general non-
Markov data (whereas our proposed algorithm has no such
restriction). Another online NP classifier is presented in [32]
without strict assumptions unlike [30], but for only linearly
separable data while leaving the online generalization to
nonlinear setting as a future research direction.

To our best knowledge, online NP classification has not
been studied yet in the nonlinear setting. Thus, as the first

time in the literature, we solve the online and nonlinear
NP classification problem based on a kernel inspired SLFN
within the non-convex Lagrangian optimization framework
of [32], [33], and use SGD updates for scalability. Our NP
classifier exploits Fourier features [12] and sinusoidal activa-
tions in the hidden layer of the SLFN (hence the name kernel
inspired) to achieve a powerful nonlinear modeling with
high computational efficiency and online real time processing
capability.

Random Fourier features (RFFs) and also kernels in gen-
eral have been successfully used for classification and re-
gression of large scale data (please refer to [12], [34], [35]
and [36] for examples). Our presented work also exploits
RFFs (during SLFN initialization) for large scale learning
but, in contrast, for the completely different goal of solving
the problem of online nonlinear Neyman-Pearson (NP) clas-
sification with neural networks in a non-convex Lagrangian
optimization framework. Furthermore, the presented work
learns the useful Fourier features with SGD updates beyond
the initial randomness. On the other hand, kernels and RFFs
have been previously studied in conjunction with neural
networks. For example, computational relations from certain
kernels to large networks are drawn in [37], and a kernel ap-
proximating convolutional neural network is proposed in [38]
for visual recognition. In particular, RFFs have been used
to learn deep Gaussian processes [39], and for hybridization
in deep models to connect linear layers nonlinearly [40]. A
radial basis function (rbf) network is proposed in [41] with
batch processing, i.e., not online, which briefly discusses a
heuristic by varying rbf parameters to manually control the
false positive rate. Note that our SLFN is not an rbf network
since we explicitly construct (during initialization) the kernel
space in the hidden layer without a further need for kernel
evaluations. We stress that the hidden layer of our SLFN for
NP classification is same as the RFF layer of [42] for kernel
learning (a simultaneous development of the same layer). The
RFF layer in [42] is proposed as a building block to deep
architectures for the goal of kernel learning. However, our
goal of designing an online nonlinear NP classifier is com-
pletely different. Hence, our formulation, network objective
and the resulting training process as well as our algorithm and
experimental demonstration in this paper are fundamentally
different compared to [42]. Moreover, online processing is
not a focus in these studies except that [38] and [39] address
scalability to voluminous data; and none of those (including
[42] for kernel learning, and [38] and [39] for scalability)
consider our goal of NP classification. Finally, we note that
the presented study comprehensively extends our previous
conference paper [43] that only had certain initial findings of
the preliminary version of our algorithm NP-NN presented
here. In this paper, compared to our conference paper [43],
we additionally 1) introduced Fourier feature learning (such
features have been randomly drawn and kept untrained in
[43]) in the nonconvex optimization framework of neural
networks, 2) performed significantly more extensive exper-
iments with a larger number datasets based on additional
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performance metrics (such as the NP-score), and 3) analyzed
from different perspectives such as statistical significance and
complexity.

III. PROBLEM DESCRIPTION
We provide the problem description in this section. Regard-
ing the notation, all vectors are column vectors and they are
denoted by boldface lower case letters. For a vector w, its
transpose is represented by w′ and the time index is given
as subscript, i.e., wt. Also, a) 1{·} is the indicator function
returning 1 if its argument condition holds, and returning 0,
otherwise; and b) sgn(·) is the sign function returning 1 if its
argument is positive, and returning −1, otherwise.

Neyman-Pearson (NP) classification [11] seeks a classifier
δ for a d dimensional observation Rd 3 x to choose one of
the two classes Hy : x ∼ py(x) as δ(x) = ŷ ∈ {−1,+1},
where y ∈ {−1,+1} (non-target: −1, target: 1) is the
true class label and py(x) are the corresponding conditional
probability density functions. The goal is to minimize the
type II error (non-detection) rate Pnd

Pnd(δ) =

∫
∀x∈Rd

1{ŷ=−1}p1(x)dx

= E1[1{ŷ=−1}]

(1)

(thus, the detection power Ptd = 1−Pnd is maximized) while
upper bounding the type I error Pfa (false positive) rate by a
user specified threshold τ as

Pfa(δ) =

∫
∀x∈Rd

1{ŷ=1}p−1(x)dx

= E−1[1{ŷ=1}] ≤ τ
(2)

with Ey being the corresponding expectations. Namely, δ∗ is
an NP classifier, if it satisfies

δ∗ = arg min
δ

Pnd(δ) subject to Pfa(δ) ≤ τ.

The Neyman-Pearson (NP) lemma [24], [44] states that
the likelihood ratio test provides an optimal solution to the
constrained optimization above once the false alarm rate of
the test is equated to the user specified threshold τ . Moreover,
such a likelihood ratio test always exists, and it is unique up to
a subset in the observations space that has a zero probability
mass under both hypotheses. We refer to [44] for a rigorous
proof. Thus, the likelihood ratio p1(x)

p−1(x) provides the NP test,
i.e.,

δ∗(x) = −1, if u(x) =
p1(x)

p−1(x)
− v(τ) ≤ 0, and

δ∗(x) = 1, otherwise,
(3)

where the offset v(τ) is chosen to satisfy the false positive
rate constraint. Hence, finding the discriminant function u is
sufficient for NP testing.

The discriminant function u can be simplified in many
cases, and it might be linear or nonlinear as a function of
x after full simplification. We provide two corresponding
examples in the following. For instance, if the conditional

densities py(x) are both Gaussian with same covariances,
then the discriminant is linear. On the other hand, in the
example of one class classification [18] with applications
to anomaly detection, there is typically no data from the
target (anomaly) hypothesis because of the extreme rarity of
anomalies, and there is also not much prior information due
to the unpredictable nature of anomalies. Hence, the usual
approach is to assume that the target density is uniform (with
a finite support) [15], i.e., p1(x) = c. Then, the critical
region MVS = {x ∈ Rd : 1/p−1(x) ≤ v(τ)} for the NP
test to decide non-target, i.e., δ∗(x) = −1, is known as the
minimum volume set (MVS) [13] covering 1− τ fraction of
the non-target instances, i.e., v(τ) is set with simplification
such that

∫
x6∈MVS⊂Rd p−1(x)dx = τ . Consequently, MVS

has the minimum volume with respect to the uniform target
density and hence maximizes the detection power. Here,
the MVS discriminant u(x) = 1/p−1(x) − v(τ) (after
simplification) is generally nonlinear, for instance, even when
p−1(x) is Gaussian with zero mean unit-diagonal covariance.
Therefore, we emphasize that the discriminant u of the NP
test1 might be arbitrarily nonlinear in general. Furthermore,
since the discriminant definition requires the knowledge of
the conditional densities py which are unavailable in most
realistic scenarios, the discriminant u is unknown. For this
reason, NP classification refers to the data driven statistical
learning of an approximation f∗ ∈ H of the unknown
discriminant u based on given two classes of data {(xt, yt)},
where H is an appropriate set of functions which is suffi-
ciently powerful to model the complexity of u.

As a result, the data driven statistical learning of the NP
classifier f∗ is obtained as the output of the following NP
optimization:

u ' f∗ = arg min
f∈H

P̂nd(f) subject to P̂fa(f) ≤ τ, (4)

where

P̂nd(f) =

∑
∀t:yt=1 1{f(xt)≤0}∑

∀t:yt=1 1
and

P̂fa(f) =

∑
∀t:yt=−1 1{f(xt)>0}∑

∀t:yt=−1 1

empirically estimates the type I (expectation in (1)) and
type II (expectation in (2)) errors, respectively. For example,
[32] studies this optimization in (4) for the set H of linear
discriminants, in which case -however- the resulting linear
NP classifier is largely suboptimal in most realistic scenarios;
for example, the MVS estimation for anomaly detection
requires to learn nonlinear class separation boundaries with a
nonlinear discriminant.

Our goal in the presented work is to develop, as the
first time in the literature to our best knowledge, an online
nonlinear NP classifier for any given user-specified desired

1Note that knowing the continues valued discriminant u is equivalent
to knowing the discrete valued test δ∗ due to one-to-one correspondence,
i.e., δ∗(x) = sgn(u(x)). Hence, in the rest of the paper, we refer to the
discriminant as the NP classifier as well.
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false positive rate τ with real time processing capability. In
particular, we use a kernel inspired single hidden layer feed
forward neural network (SLFN), cf. Fig. 1, to model the set
H of nonlinear candidate discriminant functions in (4) as

H = {f : f(x) = ho(hh(αx)′w + b),∀α,∀w,∀b}, (5)

where α and (w, b) are the hidden and output layer param-
eters, and hh and ho are the nonlinear hidden and identity
output layer activations. We sequentially learn the SLFN
parameters based on the NP objective (that is maximizing
the detection power about a user-specified false positive rate
as given in (4)) with stochastic gradient descent (SGD) to
obtain the nonlinear classification boundary, i.e., to estimate
the unknown discriminant u, in an online manner while
maintaining scalibility to voluminous data.

The data processing in our proposed algorithm is com-
putationally highly efficient and truly online with O(N)
computational and O(1) space complexity (N is the total
number of processed instances). Namely, we sequentially
observe the data xt ∈ Rd indefinitely without knowing a
horizon, and decide about its label ŷt ∈ {1,−1} as ŷt = 1
if the SLFN ft ∈ H at time t provides ft(xt) > 0, and
as ŷt = −1, otherwise. Then, we update our model ft, i.e.,
update the SLFN at time t, to obtain ft+1 ∈ H based on the
error yt − ŷt via SGD and discard the observed data, i.e., xt
and yt, without storing. Hence, each instance is processed
only once. In this processing framework, ft → f∗ ∈ H
models the NP discriminant u in (3). As a result of this
processing efficiency, our algorithm is appropriate for large
scale data applications.

IV. SLFN FOR ONLINE NONLINEAR NP
CLASSIFICATION
In order to learn nonlinear Neyman-Pearson classification
boundaries, we use a single hidden layer feed forward neural
network (SLFN), illustrated in 1, that is designed based on
the kernel approach to nonlinear modeling (cf. [12] and
the references therein for the mentioned kernel approach).
Namely, the hidden layer is randomly initialized to explicitly
transform the observation space (via φα1 ) into a high dimen-
sional kernel space with sinusoidal hidden layer activations
by using the random Fourier features [12]. We use a certain
variant of the perceptron algorithm [45] as the output layer
with identity activation followed by a sigmoid loss. Based on
this SLFN, we sequentially (in a truly online manner) learn
the network parameters, i.e., the classifier parameters wt, bt
as well as the kernel mapping parameters αt, through SGD
in accordance with the NP optimization objective (4).

In the hidden layer of the SLFN, the randomized initial
transformation φα1 : Rd → R2D at time t = 1,

Rd 3 x→ x̃ = φα1(x) ∈ R2D, (6)

is constructed based on the fact (as provided in [12]) that any
continuous, symmetric and shift invariant kernel can be ap-
proximated as k(xi,xj) , k(xi−xj) ≈ φα1(xi)′φα1(xj)
with an appropriately randomized kernel feature mapping.

FIGURE 1: The single hidden layer feed forward neural
network (SLFN) that we use for online nonlinear Neyman-
Pearson (NP) classification is illustrated. The hidden layer is
initialized to approximately construct the high dimensional
kernel space (e.g., radial basis function) via random Fourier
features (RFFs) with sinusoidal activation. The output layer
follows with identity activation. This network is compact and
strongly nonlinear with expedited learning ability thanks to
i) the exponential convergence of the inner products (w.r.t.
the number of hidden nodes) in the space of RFFs to the
true kernel with an excellent random network initialization,
and ii) the learning of Fourier features (instead of relying on
randomization) by the data driven network updates. We learn
the network parameters sequentially via SGD based on a non-
convex Lagrangian NP objective. The result is an exptedited
powerful nonlinear NP modeling with high computational
efficiency and scalibility.

Note that the kernel k(xi,xj) is an implicit access to the
targeted high dimensional kernel space as it encodes the
targeted inner products. This kernel space is explicitly and
approximately constructed by the sinusoidal hidden layer ac-
tivations of the SLFN in which the new inner products across
activations approximate originally targeted inner products.
Hence, linear techniques applied to the sinusoidal hidden
layer activations can learn nonlinear models. In our method,
we use the radial basis function (rbf) kernel2 k(xi,xj) =
exp(−g||xi−xj ||2) with the bandwidth parameter g (that is
inversely related to the actual bandwidth).

In order to obtain a randomized mapping that explicitly
constructs the kernel space, one can apply here the Bochner’s
theorem by using the derivation in [12]. This theorem states
that (quoting from [12]) “a continuous kernel k(xi,xj) =
k(xi−xj) on Rd is positive definite if and only if k(xi−xj)
is the Fourier transform of a non-negative measure". Then,

2We use the rbf kernel in this study as an example but it is not required.
Thus, the presented technique can be straightforwardly extended to any
symmetric and shift invariant kernel satisfying the Bochner’s theorem, cf.
[12].
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k(xi − xj) =

∫
Rd
p(ᾱ1) exp(ᾱ1

′(xi − xj))dᾱ1

=

∫
Rd
p(ᾱ1) cos(ᾱ1

′(xi − xj))dᾱ1

=

∫
Rd
p(ᾱ1)(cos(ᾱ1

′xi) cos(ᾱ1
′xj)+

sin(ᾱ1
′xi) sin(ᾱ1

′xj))dᾱ1

= Eᾱ1
[rᾱ1

(xi)rᾱ1
(xj)′], (7)

where the Fourier feature is

rᾱ1
(x) = [cos(ᾱ1

′x), sin(ᾱ1
′x)] (8)

and ᾱ1 is sampled from the d dimensional multivariate
Gaussian distribution p(ᾱ1) = N(0, 2gI) (which is the
Fourier transform of the kernel in hand) with Eᾱ1

being the
corresponding expectation. From the first equation above to
the second, we use that p(ᾱ1) is real since the kernel is real
and even. Hence, by replacing the expectation in (7) with the
independent and identically distributed (i.i.d) sample mean of
the ensemble {rᾱq

1
(xi)rᾱq

1
(xj)′}Dq=1 of size D, we define

our kernel mapping as

x̃ =φα1(x)

=

√
1

D
[rᾱ1

1
(x), rᾱ2

1
(x), · · · , rᾱD

1
(x)]′,

(9)

which can be directly implemented in the hidden layer of the
SLFN, cf. Fig. 1, along with the sinusoidal activation due to
the definiton of rᾱ1

.
Note that αt keeps all the hidden layer parameters

at time t as a matrix of size 2D × d consisting of
ᾱi

t’s corresponding to the hidden units, i.e., αt =
[ᾱ1

t , ᾱ
1
t , ᾱ

2
t , ᾱ

2
t , · · · , ᾱD

t , ᾱ
D
t ]′. And the hidden layer acti-

vation is sinusoidal: hh(m) = cos(m) and hh(m) = sin(m)
for the odd and even indexed hidden nodes, respectively, due
to the definition in (8). At time t = 1, α1 is randomly initial-
ized with an appropriate g of the rbf kernel so that the SLFN
starts with approximately constructing the high dimensional
kernel space H̄ = {f : f(x) = ho(hh(α1x)′w+b),∀w,∀b}
in its hidden layer, and in relation to (6), x̃ = φα1(x) =
hh(α1x). Note that H̄ of the rbf kernel readily provides a
powerful nonlinear modeling to the SLFN even if the hidden
layer is kept untrained. Thanks to this excellent network ini-
tialization, we achieve an expedited process of learning from
data. Moreover, in the course of our sequential processing,
the SLFN continuously updates and improves the hidden
layer, i.e., kernel mapping, parameters as αt. Therefore, we
optimize a nonlinear NP classifier in actually the larger space
H ⊃ H̄ (as our optimization is not restricted to α1 of the
random initialization, cf. the definition ofH in (5)) for greater
nonlinear modeling capability compared to the rbf kernel.

The SLFN in Fig. 1 that we use for online and nonlinear
NP classification is compact in principle since the required
number of hidden nodes is relatively small. The reason is

that the convergence of the sample mean of the i.i.d. en-
semble {rᾱq

1
(xi)rᾱq

1
(xj)′}Dq=1 of size D to the true mean

k(xi,xj) is exponentially fast with the order of O(e−D)
by Hoeffding’s inequality [12]. On the other hand, since
random Fourier features are independent of data, further
compactification is possible by eliminating irrelevant, i.e.,
unuseful, Fourier features in a data driven manner, cf. the
examples of feature selection in [35] and Nyström method
in [46] for this purpose. In contrast, and alternatively, we
distill useful Fourier features in the hidden layer activations
as a result of the sequential learning of the kernel mapping
parameters, i.e., ᾱi

t, via SGD. Hence, nodes of the SLFN are
dedicated to only useful Fourier features, and thus we achieve
a further network compactification by reducing the necessary
number of hidden nodes as well as reducing the parameter
complexity. Then, one can expect to better fight overfitting
with great nonlinear modeling power and NP classification
performance. This compactification does also significantly
reduce the computational as well as space complexity of
our SLFN based classifier, which -together with the SGD
optimization- yields scalability to voluminous data. Conse-
quently, the proposed online NP classifier is computationally
highly efficient and appropriate for real time processing in
large scale data applications.

Remark 1: We obtain a sequence of kernel mapping
parameters αt in the course of data processing. This means
that at the end of processing N instances, one can poten-
tially construct a new non-isotropic rbf kernel by estimating
the multivariate density of the collection {ᾱjN}Dj=1 (here,
we assume that D is large and the density is multivariate
Gaussian. If it is not Gaussian, then one can straightfor-
wardly incorporate a Gaussianity measure into the overall
network objective) and then finding out the corresponding
non-isotropic rbf kernel by taking back the inverse Fourier
transform of the estimated density. Therefore, our algorithm
is also kernel-adaptive since it essentially learns a new kernel
(and also improves the previous one) at each SGD learning
step. This kernel adaptation ability can be improved. For
instance, one can start with a random mapping as described
and estimate the density of the mapping parameters after
convergence, and then re-start with new samples from the
converged density. Multiple iterations of this process may
yield better kernel adaptation (but re-running would hinder
online processing and define batch processing, hence it is out
of scope of the present work), which we consider as future
work.

In the output layer of the SLFN, we use a certain
variant of perceptron [45] with the identity activation, i.e.,
ho(m) = m. Then, the classification model is defined
linearly after the hidden layer kernel inspired transformation
as f(x) = ho(〈w, x̃〉) + b = 〈w, x̃〉+ b = hh(αx)′w + b,
where w ∈ R2D is the normal vector to the linear separator
and b ∈ R is the bias. Thus, the decision of the SLFN is
ŷ = sgn(f(x)).

Regarding the overall network objective for sequential
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learning of the network parameters αt,wt, bt and solving
the NP optimization in (4) to obtain our SLFN based online
nonlinear NP classifier, we next formulate the NP objective
similar to [32] as

f∗ = arg min
f∈H

λ

2
||f ||2 + P̂nd(f)

subject to P̂fa(f) ≤ τ,
(10)

where the first term λ/2||f ||2 is the regularizer for which we
use the magnitude of the classifier parameters in the output
layer, i.e., λ/2||w||2, and λ is the regularization weight. For
differentiability, the non-detection P̂nd and false positive P̂fa
error rates are estimated based on data until time t as

P̂nd(f) =
1

nt+

∑
t′∈St1

l(f(xt′)) and

P̂fa(f) =
1

nt−

∑
St−1

l(−f(xt′))
(11)

with Stc = {t′ : 1 ≤ t′ ≤ t, yt′ = c}, nt+ = |St1| (set
cardinality) and nt− = |St−1|. Note that another appropriate
function can be used here to obtain a differentiable surrogate
for the 0 − 1 errors in (4) for estimating the error rates.
However, our results in the rest of this paper are based on
the sigmoid loss l(m) = 1/(1 + exp(m)).

For sequential optimization of the NP objective in (10), we
next define the following Lagrangian

L(f, γ) =
λ

2
||f ||2 + P̂nd(f) + γ(P̂fa(f)− τ), (12)

where τ is the user-specified desired false positive rate and
γ ∈ R+ is the corresponding Lagrange multiplier.

Since the saddle points of (12) correspond to the local
minimum of (10), cf. [32] and [33] for the details, we apply
the Uzawa approach [33] to search for the saddle points
of (12) and learn our parameters in the online setting with
SGD updates. To be more precise, we follow the optimiza-
tion framework of [32] and solve the min max optimization
f∗ = arg minf maxγ L(f, γ) via an iterative approach with
gradient steps, where one iteration minimizes L(f, γ) for a
fixed γ and the other maximizes L(f, γ) for a fixed f . Note
that the fixed-γ minimization

arg min
f∈H

L(f, γ) = arg min
f∈H

λ

2
||f ||2 + P̂nd(f) + γ(P̂fa(f)− τ)

= arg min
f∈H

λ

2
||f ||2 + P̂nd(f) + γP̂fa(f)

is a regularized weighted error minimization, where the ratio
of the type I error rate cost to the one of type II error rate is
γ. Hence, the unknown Lagrange multiplier γ defines (up to
a scaling with the prior probabilities) the asymmetrical error
costs that correspond to the false positive rate constraint in
(4). On the other hand, the gradient ascent updates γ ← γ +
β∇γL(f, γ) = γ+β(P̂fa(f)−τ) in the fixed-f maximization
determines the unknown multiplier γ so that the type I error
cost is decreased (increased) if the error estimate is below

(above) the tolerable rate τ in favor of detection power (true
negative detection). This provides an iterative learning of the
correspondence between the asymmetrical error costs and the
NP constraint.

To this end, inserting the definitions in (11) and (11) into
(12) with the regularization λ/2||f ||2 = λ/2||w||2 yields the
overall SLFN objective as follows

L(f, γ) =
λ

2
||w||2 +

1

nt+

∑
1≤t′≤t:yt′=1

l
(
yt′f(xt′)

)
+

γ

nt−

∑
1≤t′≤t:yt′=−1

l
(
yt′f(xt′)

)
− γτ

=
1

t

t∑
t′=1

(
λ

2
||w||2 + µt′ l

(
yt′f(xt′)

)
− γτ

)

=
1

t

t∑
t′=1

s(f, γ, t′),

(13)

where s(f, γ, t′) =

(
λ/2||w||2 + µt′ l

(
yt′f(xt′)

)
− γτ

)
and µt′ = t/nt+ if yt′ = +1, and γt/nt− , otherwise.

In order to learn the SLFN parameters for obtaining the
proposed online nonlinear NP classifier via the NP opti-
mization explained above, we use stochastic gradient descent
(SGD) to sequentially optimize the overall network objective
defined in (13). These network parameters are 1)α, to project
input x to the higher dimensional kernel space, 2) w and b,
which are the perceptron parameters of the output layer to
classify the projected input x̃, and 3) γ, to learn the corre-
spondence between the error costs and the NP constraint.

Suppose at the beginning of time t, we have an existing
model ft learned with the past data as well as the error
costs corresponding to γt; and a little later, we observe the
instance xt. SGD based optimization takes steps to update
ft and γt to obtain ft+1 and γt+1 with respect to the
partial derivatives of the instantaneous objective s(ft, γt, t).
Namely, ft+1 = ft − ηt∇fs(ft, γt, t) and γt+1 = γt +
βt∇γs(ft, γt, t). Based on the partial derivatives of the
instantaneous objective s(ft, γt, t) defined in (13), the
SGD updates for the SLFN parameters can be com-
puted ∀i ∈ {1, · · · , D} as wt+1 = wt − ηt

(
λwt +

µt∇wl
(
ytft(xt)

))
, bt+1 = bt − ηt

(
µt∇bl

(
ytft(xt)

))
,

ᾱi
t+1 = ᾱi

t − ηt

(
µt∇ᾱi l

(
ytft(xt)

))
, and γt+1 = γt +

βt

(
(1{yt=−1}t/nt−)l

(
ytft(xt)

)
− τ
)

, where ηt is the learn-
ing rate and βt is named as the Uzawa gain [33] controlling
the learning rate of the Lagrange multiplier. Using the sig-
moid l(m) = 1/(1 + exp(m)) yields the partial derivatives
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with x̃t = hh(αtxt) as

∇wl
(
ytft(xt))

)
= −x̃tl2(ytft(xt)) exp(ytft(xt))yt,

(14)

∇bl
(
ytft(xt))

)
= −l2(ytft(xt)) exp(ytft(xt))yt, and

(15)

∇
ᾱi l
(
ytft(xt))

)
= −xtl2(ytft(xt)) exp(ytft(xt))yt

(16)

×
(
− w2i−1

t sin(ᾱi′

t xt) + w2i
t cos(ᾱi′

t xt)
)
,

which can be straightforwardly incorporated into the back-
propagation.

In our experiments, we obtain an empirical false positive
rate estimate P̂fa based on a sliding window keeping the
0 − 1 errors for a couple hundreds of the past negative data
instances, and use the following γ update instead of the
aforementioned stochastic one:

γt+1 = γt

(
1 + βt

(
P̂fa − τ

))
, when yt = −1, (17)

which has been observed to yield a more stable and robust
performance. Note that this update is directly resulted from
(12), and does certainly not disturb real-time online process-
ing since a past window of positive decisions requires almost
no additional space complexity (only 200 bits in the case of,
for instance, storing binary decisions for 200 past negative
instances).

Based on the derivations above, we sequentially update the
SLFN at each time in a truly online manner withO(N) (here,
N : total number of processed data instances) computational
and O(1) space complexity in accordance with the NP ob-
jective. Hence, we construct our method called “NP-NN" in
Algorithm 1 that can be used in real time for online nonlinear
Neyman-Pearson classification. We refer to the Section V
of our experimental study for all the details about the input
parameters and initializations.

Remark 2: Recall that the goal in NP classification is to
achieve the minimum miss rate (maximum detection power)
while upper bounding the false positive rate (FPR) by a user-
specified threshold τ . Therefore, both aspects (minimum
miss rate and its FPR constraint) of this goal should be
considered in evaluating the performance of NP classifiers.
The NP-score of [4], [47] is defined as

NP-score = κmax(P̂fa(f)− τ, 0) + P̂nd(f), (18)

where f is the NP model to be evaluated and κ controls the
relative weights of the miss rate (with weight 1) and its FPR
constraint (with weight κ if the desired rate is exceeded, and
with weight 0 otherwise). Namely, κ controls the hardness
of the NP FPR constraint, and a smaller NP-score indicates
a better NP classifier. By enforcing a strict hard constraint
on FPR with a very large κ ' ∞, one can immediately
reject models (while evaluating various models) that violate
FPR constraint with even a slight positive deviation from
the desired FPR τ (a negative deviation does not violate).
However, even though the original NP formulation requires

Algorithm 1 Proposed Online Nonlinear Neyman-Pearson
Classifier (NP-NN)

1: Set the desired (or target) false positive rate (TFPR)
τ , regularization λ, number 2D of hidden nodes and
bandwidth g for the rbf kernel

2: Initialize the SLFN parameters α1, w1, b1, and learning
rates η1, β1, γ1

3: Set nt+ = nt− = 0, and sliding window size Ws = 200
4: for t = 1, 2, . . . do
5: Receive xt and calculate x̃t = hh(αtxt) and

ft(xt) = w′tx̃t + bt
6: Calculate the current decision as ŷt = sgn(ft(xt))

and observe yt
7: Calculate nt+ = nt+ + 1{yt=1} and nt− = nt− +

1{yt=−1}
8: Calculate µt = t/nt+1{yt=1} + γt/nt−1{yt=−1}

9: Updatewt+1 = wt− ηt
(
λwt +µt∇wl

(
ytft(xt)

))
,

cf. (14)
10: Update bt+1 = bt − ηt

(
µt∇bl

(
ytft(xt)

))
, cf. (15)

11: Update ᾱi
t+1 = ᾱi

t − ηt

(
µt∇ᾱi l

(
ytft(xt)

))
, cf.

(16)

12: Update γt+1 = γt

(
1 + βt

(
P̂fa− τ

))
, if yt = −1, cf.

(17) and the explanation about the estimate P̂fa of the
false positive rate

13: Update ηt+1 = η1(1+λt)−1 and βt+1 = β1(1+λt)−1

14: end for

a hard constraint, we consider that it is not appropriate to use
a hard constraint in practice, as also extensively explained in
[47], based on the following two reasons: (1) An NP classifier
is typically learned using a set of observations, and that set
is itself a random sample from the underlying density of
the data. Hence, the estimated FPR P̂fa(f) of the model is
also a random quantity, which is merely an estimator of the
unknown true FPR Pfa(f). Note that the true FPR Pfa(f) is
actually the one to be strictly constrained, but unavailable.
Thus, it is unreliable to enforce a strict hard constraint (with
a very large κ ' ∞) on the random estimator P̂fa(f), and a
relatively soft constraint has surely more practical value by
allowing a small positive deviation from the desired FPR τ .
(2) Also, one might be willing to exchange true negatives in
favor of detections with a small positive deviation from the
desired FPR τ , when the gain is larger than the loss as the
NP-score improves. Consequently, for parameter selections
with cross validation in our algorithm design as well as for
performance evaluations in our experiments, we opt for a
relatively soft constraint and use κ = 1/τ in accordance with
the recommendation by the authors [47]. This choice allows
a relatively small positive deviation from the desired FPR,
and normalizes the deviation by measuring it in a relative
percentage manner. For example, the positive deviations 0.1
and 0.001 both degrade the score equally by 50% when the
desired rates are 0.2 and 0.002, respectively. Various other
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NP studies in the literature do also practically allow small
positive deviations from the desired FPR τ . For instance, we
observe such a deviation in [32] with theirs and compared
algorithms [4] in the case of spambase dataset, in [31] with
theirs in the case of heart and breast cancer datasets, and
finally in [26] with one of the compared algorithms [48] in
all datasets.

A comprehensive experimental evaluation of our proposed
technique is next provided based on real as well as synthetic
datasets in comparison to state-of-the-art competing meth-
ods.

V. EXPERIMENTS
We present extensive comparisons of the proposed kernel
inspired SLFN for online nonlinear Neyman-Pearson classi-
fication (NP-NN), described in Algorithm 1, with 3 different
state-of-the-art NP classifiers. These compared techniques
are online linear NP (OLNP) [32], as well as logistic regres-
sion (NPROC-LOG) [27] and support vector machines with
rbf kernel (NPROC-SVM) [49] in the NP framework of the
umbrella algorithm described in [28]. Among these, OLNP
(linear NP classification) is an online technique with O(N)
computational complexity, whereas NPROC-LOG (linear NP
classification) and NPROC-SVM (nonlinear NP classifica-
tion) are batch techniques with at leastO(N2) computational
complexity, where N is the number of processed instances.
In contrast, we emphasize that to our best knowledge, the
proposed NP classifier NP-NN is both nonlinear and online
as the first time in literature, with O(N) computational and
negligible space complexity resulting real time nonlinear
NP modeling and false positive rate controllability. Conse-
quently, the proposed NP-NN is appropriate for challenging
fast streaming data applications.

Since our proposed algorithm NP-NN is the first online
and nonlinear NP classifier, there is technically no fully
comparable algorithm in the literature. Nevertheless, we set
our experiments in the fairest manner by considering com-
parisons among all possibilities: batch nonlinear (NPROC-
SVM), batch linear (NPROC-LOG), online nonlinear (our
proposed NP-NN) and online linear (OLNP). Although we
compare with NPROC-LOG, it is not particularly strong
in terms of efficiency with small computational and space
complexity, and it is also not particularly strong in terms of
nonlinear modeling capability. For this reason, we mainly
concentrate on comparisons to NPROC-SVM in terms of the
classification performance, and on comparisons to OLNP in
terms of the complexity. NPROC-SVM is extremely pow-
erful and well-known with regards to nonlinear modeling,
whereas OLNP is extremely powerful with regards to ef-
ficiency both computationally and space-wise. Otherwise,
there is no algorithm (except our proposed online and non-
linear algorithm NP-NN) in the literature which is powerful
in terms both nonlinear modeling and efficiency. In order
to further ensure fairness in our experiments, we pay spe-
cial attention to the followings. 1) Through extensive cross
validations, we optimize the parameters for each algorithm

and for each dataset separately in their respective contexts.
2) We run the algorithms on the same exact sequence in
each case of our datasets, which is particularly important
while comparing online algorithms (our algorithm NP-NN
and OLNP). 3) Note that a specific data sequence can favor
one algorithm by luck. In order to remove this dependency
on sequence order, we run the algorithms on 10 different
random permutations (all algorithms are run on the same
exact set of randomly permuted data sequences) and report
the mean performance along with the standard deviations. 4)
We do not rely on a specific performance measure. Instead,
we report the performance in terms of the area under the
ROC (receiver operating characteristics) curve (AUC) as well
as the NP-scores for each target false alarm rate separately.
Furthermore, we also report the achieved false alarm rate and
the true positive rate. 5) The proposed algorithm NP-NN and
the OLNP are online algorithms and thus they do not have
separate training and test phases. However, NPROC-SVM
is a batch algorithm with separate training and test phases.
Hence, to ensure fairness, we use separate training and test
phases while comparing with NPROC-SVM (although it is
certainly NOT needed for OLNP and the proposed NP-NN).
Otherwise, while comparing the proposed online algorithm
NP-NN with OLNP on large scale datasets, we test them
(NP-NN and OLNP) in the online data processing framework
(without separate training and test) that they (NP-NN and
OLNP) are originally designed for. 6) We present detailed
statistical significance (for fairly evaluating the performance
differences) and complexity analyses (for fairly evaluating
the complexity and running time differences) in the end as
two separate sections. After providing this summary and
important remarks about our experimental paradigm, next,
we continue with the details and present our results.

We conduct experiments based on various real and syn-
thetic datasets [50], [51] from several fields such as bioinfor-
matics and computer vision, each of which is normalized by
either unit-norm (each instance is divided by its magnitude)
or z-score (each feature is brought down to zero mean unit
variance) normalization before processing. For each dataset,
smaller class is designated as the positive (target) class. The
details of the datasets are provided in Table 1, where the
starred ones and unstarred ones are normalized with unit
norm and z-score, respectively. For performance evaluations,
we generate 15 random permutations of each dataset, and
each random permutation is split into two as training (%75)
and test (%25) sequences. We strongly emphasize that the
processing in the proposed algorithm NP-NN is truly online,
meaning that, there are no separate training and test phases.
However, since NPROC-LOG and NPROC-SVM are batch
algorithms requiring a separate training, we opt to use train-
ing/test splits in this first set of experiments for a fair and
statistically unbiased robust performance comparison. Such
a split is in fact not needed in practice in the case of the
proposed NP-NN that -by design- processes data on the fly.
Additional experiments based on two larger scale datasets to
demonstrate the ideal use-case (i.e. online processing without
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0
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0.054±
0.17
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0.955±
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0
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0±
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0
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0
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0
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0.148±
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0
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0
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0
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Svm
guide1*

(4000, 3089,4)
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0.011

0.051±
0.007

0.446±
0.068

0.68±
0.012

0.102±
0.01

0.369±
0.064

0.776±
0.008

0.204±
0.015

0.267±
0.045

0.831±
0.009

0.299±
0.013

0.186±
0.022

0.875±
0.009

0.4±
0.015

0.141±
0.023
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0.009
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0.01

0.148±
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0.004
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0.005
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0.006
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0.028

0.104±
0.012

0.245±
0.08

0.884±
0.017

0.204±
0.014
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0.301±
0.02
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0.947±
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0.024
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0.003
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0.004
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0.006
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0.023

0.75±
0.394
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0.044

0.13±
0.028

0.807±
0.238

0.609±
0.054

0.233±
0.027

0.557±
0.119

0.829±
0.036

0.312±
0.024

0.225±
0.065

0.912±
0.023

0.423±
0.045

0.169±
0.087

1±
0
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0.03

0.133±
0.329

1±
0
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0.027

0.009±
0.027

1±
0

0.144±
0.035

0.005±
0.016

1±
0

0.254±
0.041

0.013±
0.029

1±
0

0.366±
0.034
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0.01

1±
0

0.021±
0.017

0.03±
0.096

1±
0

0.065±
0.012

0±
0

0.986±
0.046

0.163±
0.029

0.017±
0.045

1±
0

0.285±
0.049

0.043±
0.09

1±
0

0.353±
0.029

0.001±
0.005

0.252±
0.015

0.375±
0

0.372±
0.006
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separate training/tests phases) of the proposed algorithm NP-
NN are presented in Fig. 4.

The rbf kernel bandwidth parameter g (for the proposed
NP-NN as well as NPROC-SVM), the error cost parameter
C (for NPROC-SVM) and the number 2D of hidden nodes
(for the SLFN in the proposed NP-NN) are all 3-fold cross-
validated (based on NP-score) for each random permuta-
tion using the corresponding training sequence by a grid
search with g ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10},
C ∈ {0.1, 1, 2, 4} and D ∈ {2, 5, 10, 20, 40, 80, 100} × d,
where d is the data dimension. As the regularization has been
observed to help little, we opt to use λ ∼ 0 along with
SGD learning updates ηt = 0.01 and 0.1 ≥ βt/ηt ≥ 0.01,
randomly initialized w1 and b1 (around 0) and γ1 = 1 for
both the proposed NP-NN and OLNP uniformly in all of
our experiments. We directly use the code provided by the
authors [28] for NPROC-LOG and NPROC-SVM and also
optimize it by the aforementioned cross validation in terms of
parameter selection. We observe that for the datasets of rela-
tively short length, algorithms using SGD optimization, i.e.,
OLNP and NP-NN, improve with multiple passes over the
training sequence. Hence, the length of the training sequence
of each random permutation is increased by concatenation
with additional randomizations for only OLNP and NP-NN
(not for NPROC-LOG and NPROC-SVM) during training
of both the cross-validation and actual training, resulting in
an epoch-by-epoch training procedure. This concatenation is
only for training purposes, and hence it is not used in testing
and validation, i.e., the actual data size is used in all types
of testing to avoid statistical bias and multiple counting. Our
proposed algorithm NP-NN does certainly not need such a
concatenation approach for data augmentation in the targeted
fast streaming data applications (cf. Fig. 4), where data is
already abundant and scarcity is not an issue.

We run all the algorithms on the test sequence of each
of the 15 random permutations (after training on the corre-
sponding training sequences), and record in each case the
achieved false positive rate, i.e., FPR, and true detection
rate, i.e., TPR, for the target false positive rates (TFPR)
τ ∈ {0.05, 0.1, 0.2, 0.3, 0.4}. For performance evaluation,
we compare the mean area under curve (AUC) of the re-
sulting 15 receiver operating characteristics (ROC) curves
of TFPR vs TPR, as well as the mean of the resulting 15
NP-scores [47], cf. (18) with κ = 1/τ . Note that the mean
AUC (higher is better) accounts only for the resulting detec-
tion power without regard to false positive rate tractability,
whereas the mean NP-score (lower is better) provides an
overall combined measure. We evaluate with the both (Table
1) in addition to visual presentation of the mean ROC curves
(Fig. 2) of FPR and TPR. Table 1 additionally reports the
mean TPRs and mean FPRs. We also provide the decision
boundaries and the mean convergence of the achieved false
positive rate during training for the visually presentable 2-
dimensional Banana dataset (Fig. 3). All of our results are
provided with the corresponding standard deviations.

We exclude the results of NPROC-LOG in Table 1 (in-

stead we keep NPROC-SVM since it generally performs
better than NPROC-LOG) due to the page limitation, as the
table gets too wide otherwise. One can access the results
of NPROC-LOG from our Fig. 2. Based on our detailed
analysis presented in Table 1 along with the visualization
with ROC curves in Fig. 2, we first conclude that in general
the algorithms NPROC-SVM and the proposed NP-NN with
powerful nonlinear classification capabilities significantly
outperform the linear algorithms OLNP and NPROC-LOG
in terms of both AUC and NP-score, hence the proposed NP-
NN and NPROC-SVM better address the need for modeling
complex decision boundaries in the contemporary applica-
tions. This significant performance difference in favor of
nonlinear algorithms NPROC-SVM and the proposed NP-
NN is much more clear (especially in terms of the AUC)
in highly nonlinear datasets such as Banana, Spiral, Iris,
SVMguide1 and Fourclass, as shown in Fig. 2. In the case
of a small size dataset that seems linear or less nonlinear
(e.g., Bupaliver), although OLNP and NPROC-LOG are both
linear by design and targeting this dataset with the right com-
plexity and hence expected to be less affected by overfitting,
the proposed NP-NN competes with the both well and even
slightly outperforms them in terms of AUC (while staying
comparable in terms of NP-score). We consider that this is
most probably due to the successful compactification of the
SLFN in the proposed NP-NN which reduces the parameter
complexity by learning the Fourier features in the hidden
layer.

As for the comparison between the nonlinear algorithms
NPROC-SVM and the proposed NP-NN, we first strongly
emphasize that NPROC-SVM has computational complex-
ity (in the worst case of full number of support vectors)
between O(N2) and O(N3) in training and O(N) in test,
where the space complexity is O(N). On the other hand,
the proposed NP-NN is truly online without separate training
or test phases, which only requires O(N) computational
andO(1) negligible space complexity. Hence, NPROC-SVM
cannot be applied in our targeted large scale data processing
applications due to its prohibitive complexity; nevertheless,
we opt to include it in our experiments to set a baseline that
is achievable by batch processing. According to the numeric
results in Table 1 and the ROC curves in Fig. 2, we first
observe that NPROC-SVM and the proposed NP-NN per-
form comparably in terms of the AUC, hence our technique
(thanks to its computationally highly efficient implementa-
tion) can be used in large scale applications (where NPROC-
SVM computationally fails) without a loss in classification
performance. In addition, our algorithm NP-NN outperforms
NPROC-SVM in terms of AUC in 3 datasets; and for small
target false positive rate (τ = 0.05), the proposed NP-NN has
higher TPR compared to NPROC-SVM in 6 datasets. On the
other hand, comparing in terms of the NP-score, NPROC-
SVM performs better as a result of enhanced false positive
rate controllability due to batch processing. However, this
advantage of NPROC-SVM over the proposed NP-NN seems
to disappear or decrease as the data size (relative to the
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FIGURE 2: Visual presentations of the results in Table 1 are provided via the receiver operating characteristics (ROC) curves
for all compared algorithms of OLNP, NPROC-LOG, NPROC-SVM and the proposed NP-NN, based on the achieved true
positive rates and achieved false positive rates, i.e., TPR vs FPR, corresponding to the targeted false positive rates TFPR ∈
{0.05, 0.1, 0.2, 0.3, 0.4}. Note that the presented ROC curves (TPR vs FPR) are mean curves over 15 trials of random data
permutations for which the standard deviations can be followed from Table 1. Overall, in terms of the area under ROC (AUC),
we observe that the proposed NP-NN and NPROC-SVM (due to their nonlinear modeling) outperform the other two. On the
other hand, the proposed NP-NN performs similarly with NPROC-SVM while providing significant computational advantages.
For the quantification of the false positive rate tractability alone, AUC alone and both as a combined measure, we refer to the
results in Fig. 3, the AUC scores in Table 1 and the NP-scores in Table 1, respectively.

dimension) and/or the desired false positive rate increases
as observed in the cases of, for instance, Banana and Cod-
rna datasets. Therefore, we expect no loss (compared to
NPROC-SVM) with the proposed NP-NN in terms of false
positive rate controllability as well, when data size increases
as in the targeted scenario of the big data applications where
NPROC-SVM cannot be used. Indeed, we observe a decent
nonlinear classification performance and false positive rate
controllability with the proposed NP-NN on, for example,
the Banana dataset (5300 instances in only 2 dimensions),
as clearly visualized in Fig. 3 which shows the false positive
rate convergence as well as the nonlinear decision boundaries
for various desired false positive rates. Lastly, NPROC-SVM
seems to be failing when TFPR requires only a few mistakes
in the non-target class. In this case, NPROC-SVM picks zero
mistake resulting in zero TPR and a poor NP-score in return.
In contrast, the propsed NP-NN successfully handles such
situations as demonstrated by, for instance, TFPR=0.05 at Iris
dataset in Table 1.

Our experiments in Table 1, Fig. 2 and Fig. 3 include
comparisons of the proposed NP-NN with certain batch
processing techniques (NPROC-SVM and NPROC-LOG).
Hence, we utilize separate training and test phases, along
with multiple passes over training sequences (due to small
sized datasets in certain cases such as Iris), in those exper-
iments for statistical fairness. However, we emphasize that
in the targeted scenario of large scale data applications: 1)
one can only use computationally scalable online (such as
the proposed NP-NN and OLNP) algorithms, 2) multiple

passes are not necessary as the data is abundant, and also
3) one can target for even smaller false positive rates such as
0.01 and 0.005. Therefore, to better address this scenario of
large scale data streaming conditions, we conduct additional
experiments to compare the online methods (OLNP and the
proposed NP-NN) when processing 2 large datasets (after
z-score normalization and 15 random permutations) on the
fly without separate training and test phases based on just a
single pass: covertype (581012 instances in 54 dimensions)
and Cod-rna (488565 instances in 8 dimensions, this is the
original full scale, for which we previously use in Table 1 a
relatively small subset for testing the batch algorithms). We
run for τ (TFPR) ∈ {0.005, 0.01} and present the resulting
TPR and FPR at each time (in a time-accumulated manner
after averaging over 15 random permutations) in Fig. 4.
Parameters are set with manual inspection based on a small
fraction of the data.

Although the false positive rate constraint is set harder (i.e.
smaller as τ (TFPR) ∈ {0.005, 0.01}) in this experiment
(compared to the smallest TFPR value 0.05 in Table 1), both
techniques (OLNP and the proposed NP-NN) successfully
converge (the proposed NP-NN appears to converge slightly
better) to the target rate (FPR → TFPR) uniformly in all
cases. Therefore, both techniques promise decent false pos-
itive rate controllability (almost perfect) when the data is
sufficient. On the other hand, the proposed NP-NN strongly
outperforms OLNP in terms of the TPR (again uniformly in
all cases), which proves the gain due to nonlinear modeling in
the proposed NP-NN. In terms of the NP-score, the proposed
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FIGURE 3: Using the visually presentable 2-dimensional Banana dataset, upper graphs show the variation in the decision
boundary of the proposed NP-NN as the target false positive rate (TFPR) changes as TFPR ∈ {0.05, 0.1, 0.3, 0.4}, and the
lower graphs show the mean convergence as well as the standard deviation of the achieved false positive rate (TPR) of the
proposed NP-NN over 15 trials of random data permutations with respect to the number of processed instances during training.
To better show the convergence, in each trial, length of the training sequence is increased with concatenation resulting in an
epoch-by-epoch training of multiple passes. Overall, as indicated by these results, we observe a decent nonlinear modeling as
well as a decent false positive rate controllability with the proposed NP-NN.
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FIGURE 4: We demonstrate the proposed online algorithm NP-NN on two large scale datasets (Cod-rna and Covertype) with
relatively small target false positive rates, i.e., TFPR ∈ {0.01, 0.005}. The data processing in this case is truly online, and based
on only a single pass over the stream without separate training and test phases. Hence, this experiment better demonstres the
typical use-case of our algorithm in large scale scenarios. Time accumulated false positive error rate (FPR) and detection rate
(TPR) are obtained after averaging over 15 trials of random data permutations. Overall, we observe that the proposed NP-NN
and OLNP are both decent and comparable in terms of the false positive rate controllability, whereas the proposed NP-NN
strongly outperforms OLNP in terms of both the detection power and NP-score.
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NP-NN again strongly outperforms OLNP (except one case,
where we observe comparable results). We finally emphasize
that the proposed NP-NN achieves this high performance
while processing data on the fly in a computation- as well as
space-wise extremely efficient manner, in contrast to failing
batch techniques in large scale streaming applications due to
complexity and failing linear techniques due to insufficient
modeling power.

VI. ANALYSIS OF RESULTS AND DISCUSSION
In the previous Section V, we have compared our proposed
online algorithm NP-NN with the competing algorithms
OLNP and NPROC-SVM based on 10 datasets in terms
of NP-scores and AUC. In this section, we next provide a
statistical significance analysis of the observed performance
differences as well as a detailed complexity analysis with
running times, and then discuss our findings.

A. STATISTICAL SIGNIFICANCE ANALYSIS
A manual inspection of the error bars (Table 1) is already
indicative about the significance of the performance dif-
ferences among the compared algorithms, which reinforces
our previous discussions/conclusions. In this section, we
further quantify the statistical significance for all pairwise
performance differences by following the recommendations
of the highly comprehensive study in [52], and opt to use
the Wilcoxon signed-rank test (WSRT) for this purpose.
Note that a paired t-test can also be considered to measure
the significance for each dataset separately across the 10
different runs. However, since such runs are based on random
permutations of the dataset with k-fold cross validation,
the train/test sets inevitably overlap and the independence
assumption of the t-test fails to hold, compromising (under
estimating) the standard error estimation. Thus, a paired t-test
is not recommended after k-fold cross validation. Then, one
can use 5×2 cross validation as a remedy, again followed by
the paired t-test. However, the paired t-test has its own weak-
nesses such as the failing Gaussian assumption when the
number of data samples is relatively small (≤ 30), the issue
of commensurability and the sensitivity to the outliers. Thus,
we use the Wilcoxon signed-rank test (WSRT) across all
datasets as recommended (as a better alternative to the paired
t-test) in [52]. The advantages of WSRT are: testing across
datasets (not separately for each) satisfies the independence,
ranking is less sensitive to outliers, Gaussian distribution is
not assumed, and the issue of commensurability is relieved
as it is considered only qualitatively. We refer to [52] for
an elegant treatment of this topic of comparing classifiers
statistically.

We conduct the WSRT for all pairwise performance dif-
ferences (in Table 1) of the compared algorithms across
all datasets, and present the corresponding T-statistics (of
WSRT) in Table 2. We consider the AUC differences as
well as the NP-score differences for the target false positive
rates τ ∈ {0.05, 0.1, 0.2, 0.3, 0.4}. Note that when the T-
statistic is less than 3 (or less than 8 but greater than 3),

NP-NN vs OLNP NP-NN vs NPROC-SVM NPROC-SVM vs OLNP

τ = 0.05 7∗(+) 18∗∗(−) 1(+)

0.1 0(+) 16.5∗∗(−) 0(+)

0.2 0(+) 2.5(−) 0(+)

0.3 6.5∗(+) 0.5(−) 0(+)

0.4 2.5(+) 1.5(−) 0(+)

AUC 0(+) 25∗∗(+) 6∗(+)

TABLE 2: We present the T-statistics of Wilcoxon signed-
rank significance tests [52] for the pairwise comparisons of
the algorithms based on their performance results (across
all 10 datasets) in Table 1. The last row is based on the
AUC scores whereas the others are based on the NP scores.
All performance differences are highly significant with the
level p < 0.01, except the three single-starred cases where
the performance differences are significant (but not highly)
since the level is 0.01 < p < 0.05 as well as the three
double-starred cases where the performance differences are
considered insignificant since the level is p > 0.05. Also,
for a comparison x vs y, we use the sign “+" (or “-") if the
performance difference is in favor of the algorithm x (y).

then the difference is highly statistically significant at the
level p < 0.01 (or still significant but not highly at the
level 0.01 < p < 0.05). We consider that a difference is
insignificant if the corresponding T-statistic is greater than 8
since then the significance is p > 0.05. The critical values
here (3 and 8) are from the two sided t table [52]. We observe
that all pairwise performance differences are statistically
highly significant, except the three single-starred (Table 2)
ones that are only significant (not highly) and except the
three double-starred ones that are insignificant. Note that
the sign “+" (or “-") in Table 2 is used to indicate that the
performance difference is in favor of the algorithm x (or y) in
the comparison x vs y.

This statistical significance analysis firmly supports our
performance conclusions in Section V. First, our algorithm
strongly (cf. the high performance differences in favor of
our online algorithm NP-NN within each dataset of Table 1)
outperforms OLNP (uniformly in all cases of NP-scores or
AUC across datasets as seen in Table 2) and the performance
difference is statistically either highly significant (in four
cases of Table 2) or significant (in the remaining two cases of
Table 2). Second, our algorithm performs comparably with
NPROC-SVM in terms of AUC as well as in terms of NP-
score (two cases of τ = 0.01 and τ = 0.05) since the corre-
sponding performance differences are not significant. In the
remaining three cases, NPROC-SVM performs better than
NP-NN. On the other hand, we emphasize that our online
algorithm NP-NN provides huge computational advantages
compared to NPROC-SVM despite their, for instance, com-
parable AUC performance as well as comparable NP-score
performances in two cases. We next provide our complexity
analysis.

B. COMPLEXITY ANALYSIS
Recall that our algorithm NP-NN is an online algorithm
with the computational complexity O(NDd), where N is
the number of data instances, 2D is the number of hidden
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units and d is the data instance dimension. The compared
algorithm OLNP is also online with the computational com-
plexity O(Nd). Note that the online algorithms (NP-NN
and OLNP) do not have separate training and test phases.
Whereas the compared NPROC-SVM is a batch algorithm
(not online) with the computational complexity O(N2

trNSVd)
in training and O(NtestNSVd) in test (cf. [53]), where the
number of support vectors NSV ≤ Ntr can be as large as
Ntr (Ntr and Ntest are the number of instances in training and
test sets). Hence, the online algorithms (NP-NN and OLNP)
are computationally highly efficient and scalable, however,
the batch algorithm NPROC-SVM is prohibitively complex
both computationally and space-wise. Note that, also, the
online algorithms (NP-NN and OLNP) require negligible
space complexity that is only O(1).

We point out that the main complexity difference be-
tween the algorithm NPROC-SVM and the online algo-
rithms NP-NN and OLNP stems from the number of data
instances (N ) whereas the same difference between our
proposed algorithm NP-NN and OLNP stems from the
number of hidden units (2D), i.e., the kernel space ex-
pansion cost, in NP-NN. We next observe these differ-
ences in terms of the actual running times, and devise
an experiment for this purpose that is controlled with
respect to the variables N and D. This experiment is
based on three datasets with the properties (n−, n+, d) ∈
{(5000, 5000, 5), (50000, 50000, 5), (150000, 150000, 5)}.
Here, D is set as D = 5 × d = 25, N = n− + n+ and
n+ (n−) is the number of class 1 (class -1) labeled instances,
and the datasets are randomly generated as bimodal Gaussian
distributed with random means and covariances around 0.
We run the algorithms 10 times on random permutations of
such datasets and report in Table 3 the mean running times
in seconds (s) with the corresponding standard deviations.
Note that we report separately for training and test phases
in the case of NPROC-SVM. TFPR is set as τ = 0.1. Our
online algorithm NP-NN and the compared algorithm OLNP
are implemented in MATLAB, and the compared algorithm
NPROC-SVM is implemented in Python with the original
code provided in [28]. Computations are conducted on a
computer containing 2.2 GHz Quad-Core Intel i7. Our mean
running time observations (Table 3) are in line with the
complexity analysis above. The online algorithms NP-NN
and OLNP both run fast where NP-NN takes slightly more
time due to the cost of the hidden layer of our SLFN with
2D hidden units. Note that, here, we use a straightforward
unoptimized MATLAB implementation (for both NP-NN
and OLNP), and thus the kernel space expansion cost in the
hidden layer of our algorithm NP-NN can be significantly
reduced with a more CPU-friendly and optimized imple-
mentation in a low level language. Therefore, our algorithm
NP-NN can significantly speed up and the running time
difference between NP-NN and OLNP can further decrease.
On the other hand, the algorithm NPROC-SVM quickly be-
comes impractical and prohibitively complex, as the required
running time polynomially increases as ∼ 2000× when

the number of data instances increases only 30×. Hence,
NPROC-SVM is not scalable.

C. DISCUSSION
As extensively demonstrated in Section V, Section VI-A and
Section VI-B, in summary, our performance results (in terms
of both the AUC and NP-score) and significance as well as
complexity analyses statistically significantly and firmly con-
clude that our online algorithm NP-NN either outperforms
the state-of-the-art (e.g. the compared algorithm OLNP in
our experiments) at a comparable complexity, or performs
comparably (to the compared algorithm NPROC-SVM in
our experiments) while providing huge computational and
space advantages. In the following, we explain the underlying
reason for the superiority of our proposed algorithm NP-NN
over the state-of-the-art (i.e. the competing algorithms OLNP
and NPROC-SVM).

The kernel inspired SLFN of the proposed NP-NN has
two benefits: expedited powerful nonlinear modeling and
scalability. Namely, first, it enables an excellent network
initialization as random Fourier features (RFFs) are already
sufficiently powerful to learn complex nonlinear decision
boundaries even when kept untrained. This speeds up and
enhances the learning of complex nonlinearities by relieving
the burden of network initialization. Second, the hidden layer
is compactified thanks to the exponential rate of improve-
ment in approximating the high dimensional kernel space
due to Hoeffding’s inequality [12]. As a result, the number
of hidden nodes, parameter complexity and the computa-
tional complexity of forward-backward network evaluations
reduce, and therefore the scalability substantially improves
while also mitigating overfitting. Moreover, thanks to the
learning of the hidden layer, the randomly initialized Fourier
features are continuously improved during SGD steps for
even further compactification and better nonlinear modeling.
We point out that the competing algorithm NPROC-SVM is
also powerfully nonlinear but it does not exploit Fourier fea-
tures and explicit kernel space expansion for scalability and
computational as well as space-wise efficiency. Whereas the
competing algorithm OLNP is also online and efficient but
it is not designed to model nonlinearities. Hence, our online
NP classifier is powerfully nonlinear (which clearly explains
the superiority over the competing algorithm OLNP) and
computationally highly efficient with O(N) processing and
negligible O(1) space complexity (which clearly explains
the superiority over the competing algorithm NPROC-SVM),
where N is the number of data instances.

While the learning (i.e. optimizing) of Fourier features
significantly strengthen the capability of nonlinear modeling,
our method can find features that are only locally optimal
due to the nonconvexity of the optimization we studied. This
appears as a limitation of our technique. On the other hand,
those learned locally optimal Fourier features do not neces-
sarily define a proper kernel which satisfies the Bochner’s
theorem that we use to initialize the network with the radial
basis function kernel. This is perhaps not a limitation but
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Dataset
(n− ,n+ , d)

OLNP NPROC-SVM (train) NPROC-SVM (test) NP-NN

Dataset 1
(5000, 5000, 5)

0.197± 0.033 s 0.931± 0.238 s 0.014± 0.001 s 0.547± 0.048 s

Dataset 2
(50000, 50000, 5)

1.444± 0.028 s 240.153± 6.325 s 0.170± 0.008 s 3.709± 0.091 s

Dataset 3
(150000, 150000, 5)

4.265± 0.087 s 1899.047± 27.088 s 0.454± 0.009 s 10.877± 0.134 s

TABLE 3: Mean running times are reported along with
standard deviations for all algorithms across 10 different
trials. Datasets are generated randomly as bimodal Gaussian
distributed with random mean and covariances around 0.
Training and test observations are provided separately for the
algorithm NPROC-SVM since it is not online.

certainly an indicator of that our method is not appropriate
for learning a nonisotropic rbf kernel. Then, if desired, one
can attempt to enforce positive definiteness of the weights
in the hidden layer of our SLFN as a constraint to the net-
work optimization, which would be a point of improvement.
Similarly, it is true that Fourier features is a powerful means
for nonlinear classification but it also makes it prone to
overfitting. For this reason, one has to carefully tune the
parameters kernel bandwidth and the hidden layer size for
which we successfully use extensive cross validations. How-
ever, in the case of a very large dimensionality (e.g. images),
overfitting may still appear as a limitation. For this issue,
we suggest using a strong regularization while incorporating
the introduced network as the fully connected layers of a
deep architecture. Then, as a remedy, the earlier layers can
be designed to extract features and reduce dimensionality for
our network following in the deeper layers.

VII. CONCLUSION
We considered binary classification with particular regard to
i) a user defined constraint on the type I error (false positive)
rate that requires false positive rate (FPR) controllability,
ii) nonlinear modeling of complex decision boundaries, and
iii) computational scalability to voluminous data with online
processing. To this end, we propose a computationally highly
efficient online algorithm to determine the pair of asymmet-
rical type I and type II error costs to satisfy the FPR con-
straint and solve the resulting cost sensitive nonlinear classi-
fication problem in the non-convex sequential optimization
framework of neural networks. The proposed algorithm is
essentially a Neyman-Pearson classifier, which is based on a
single hidden layer feed forward neural network (SLFN) with
decent nonlinear classification capability thanks to its kernel
inspired hidden layer. The SLFN that we use for Neyman-
Pearson classification is compact in principle for two reasons.
First, the hidden layer exploits -during initialization- the
exponential convergence of the inner products of random
Fourier features to the true kernel value with sinusoidal
activation. Second, learning of the hidden layer parameters,
i.e., Fourier features, help to improve the randomly initial-
ized Fourier features. Consequently, the required number of
hidden nodes, i.e., the required number of network param-
eters and Fourier features, can be chosen relatively small.
This reduces the parameter complexity and thus mitigates

overfitting while significantly reducing the computational as
well as space complexity. Then the output layer follows as
a perceptron with identity activation. We sequentially learn
the SLFN parameters through stochastic gradient descent
based on a Lagrangian non-convex optimization to goal of
Neyman-Pearson classification. This procedure minimizes
the type II error rate about the user specified type I error
rate, while producing classification decisions in the run time.
Overall, the proposed algorithm is truly online and appropri-
ate for contemporary fast streaming data applications with
real time processing and FPR controllability requirements.
Our online algorithm was experimentally observed to either
outperform (in terms of the detection power and false positive
rate controllability) the state-of-the-art competing techniques
with a comparable processing and space complexity, or per-
form comparably with the batch processing techniques, i.e.,
not online, that are -however- computationally prohibitively
complex and not scalable.
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