symmetry MbPy

Article
Applying a Hybrid Sequential Model to Chinese
Sentence Correction

Jun Wei Chen !, Xanno K. Sigalingging 1*, Jenq-Shiou Leu 1 and Jun-Ichi Takada 2

1 Department of Electronic and Computer Engineering, College of Electrical Engineering and Computer Science,

National Taiwan University of Science and Technology, Taipei City 10607, Taiwan;
m10602138@mail.ntust.edu.tw (J.W.C.); jsleu@mail.ntust.edu.tw (J.-S.L.)

Department of International Development Engineering, Graduate School of Science and Engineering,
Tokyo Institute of Technology, 2-12-1-56-4, O-okayama, Meguro-ku, Tokyo 152-8550, Japan;
takada@ide.titech.ac.jp

* Correspondence: d10502810@mail.ntust.edu.tw

check for
Received: 12 November 2020; Accepted: 23 November 2020; Published: 25 November 2020 updates

Abstract: In recent years, Chinese has become one of the most popular languages globally. The demand
for automatic Chinese sentence correction has gradually increased. This research can be adopted to
Chinese language learning to reduce the cost of learning and feedback time, and help writers check
for wrong words. The traditional way to do Chinese sentence correction is to check if the word exists
in the predefined dictionary. However, this kind of method cannot deal with semantic error. As deep
learning becomes popular, an artificial neural network can be applied to understand the sentence’s
context to correct the semantic error. However, there are still many issues that need to be discussed.
For example, the accuracy and the computation time required to correct a sentence are still lacking,
so maybe it is still not the time to adopt the deep learning based Chinese sentence correction system to
large-scale commercial applications. Our goal is to obtain a model with better accuracy and computation
time. Combining recurrent neural network and Bidirectional Encoder Representations from Transformers
(BERT), a recently popular model, known for its high performance and slow inference speed, we introduce
a hybrid model which can be applied to Chinese sentence correction, improving the accuracy and also the
inference speed. Among the results, BERT-GRU has obtained the highest BLEU Score in all experiments.
The inference speed of the transformer-based original model can be improved by 1131% in beam search
decoding in the 128-word experiment, and greedy decoding can also be improved by 452%. The longer
the sequence, the larger the improvement.

Keywords: BERT; transformer; RNN; deep learning

1. Introduction

As communication and transportation technology advances, communicating with foreigners is more
common than it used to be. Chinese has become one of the most popular languages. In a globalization era,
speaking a few foreign languages is a common thing. However, it is sometimes hard to tell if our grammar
is correct; it would be wonderful if there would be a system that can automatically correct sentences.

The traditional way may correct sentences is with a predefined dictionary. Although this can be
easily scaled up because of its low computational cost, it is challenging to correct semantic errors and
grammatical errors without capturing sentence-level information.

Symmetry 2020, 12, 1939; doi:10.3390/sym12121939 www.mdpi.com/journal /symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-7197-9912
https://orcid.org/0000-0002-9108-3010
http://www.mdpi.com/2073-8994/12/12/1939?type=check_update&version=1
http://dx.doi.org/10.3390/sym12121939
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 1939 2of 16

With the deep learning method, the learnable neural network is able to capture context and
sentence-level information to correct semantic errors and grammatical errors. Several researches have
developed methods to use machine learning for Chinese language correction [1-3]. However, deep learning
methods have intrinsic disadvantages. With higher computational costs, it is hard to scale up to
commercial services.

We introduce hybrid models as the solution, using Bidirectional Encoder Representations from
Transformers (BERT) [4] and Transformer [5] as the baseline, the hybrid model speeds up the inference
speed, without reducing the correctness.

2. Existing Work

Several researches have been done which in turn are able to solve problem of capture context and
sentence-level information to correct semantic and grammatical errors. Some of the researches are:

2.1. Sequence to Sequence (Seq2Seq)

Our task to correct an incorrect Chinese sentence can be viewed as a sequence transformation problem,
transforming an error sequence to a correct sequence. Sequence to sequence [6] is a model which can
be used for sequence transformation [7-9]. While encoder captures the concept of the input sequence,
decoder generates sentences corresponding to the concept that encoder have captured.

2.2. Recurrent Neural Network

Using a recurrent neural network (Figure 1) to process sequential data has become a tradition in the
deep learning field. Many models are based on recurrent neural networks. Its chain-like structure and
hidden state mechanism make it possible to process sequential data [10]. However, the chain-like structure
also leads to harder parallelization and may lose information after many steps of hidden state updates.

o () (o) [oo
(o) >(()
) Le) (%) [

Figure 1. Recurrent Neural Network.

2.3. Long Short-Term Memory (LSTM)

Vanilla recurrent neural network cells update the hidden state at each step thoroughly [11], even if
there is a piece of information for which it is essential to remain in the hidden state. LSTM [12] uses
multiple learnable gates to control the update flow, to decide which information should be cleaned,
remained, and written into the hidden state. This mechanism makes the hidden state update more efficient
and loses less information. This can be seen in Figure 2, ¢ means sigmoid.

2.4. Gated Recurrent Unit (GRU)

Although LSTM can deal with most problems, the 3 learnable gates mean a more complicate structure,
which may suffer from lower training speed, higher memory cost, and being harder to train. GRU [13],

Symmetry 2020, 12, 1939 3of 16

with only two gates, update gate and reset gate (Figure 3), which is more lightweight than LSTM.
However, some research [14] shows that GRU may have comparable results to LSTM in some tasks.

ht
A

~

(D—&
fit it Ot o
<) @) (o

Figure 2. Long Short-Term Memory.

k

./ Y,
V

Xt

A\ 4

Ct

ht

A 4

ht-1

/

Xt

~ |

+ >

M

L EAE

Figure 3. Gated Recurrent Unit.

2.5. Transformer

Transformer as a novelty architecture, which can also be used in the sequential task, but its core
concept is far from that of the recurrent neural network. There is no hidden state and chain-like structure
in Transformer, but only self-attention. Self-attention is a method that allows each token in the sequence
to calculate the correlation with all other tokens and extract relevant and useful information at the same
time. The graph for self-attention can be seen in Figure 4. It is based on the attention mechanism [15].
The most significant advantage of self-attention is that the distance between each token in the sequence is
fixed, and it will not be affected by the length of the input sequence. It can also prevent a network from
losing some information while processing long sequences such as RNN, thereby reducing training time
and gradient vanishing.

The disadvantage of self-attention is that the computational cost will be relatively large.
Without having the chain-like structure as RNN, a Transformer composed of self-attention does not
need to wait for the completion of the previous state to process the next state, like RNN does, which makes
the Transformer parallelizable.

2.6. BERT

BERT (Bidirectional Encoder Representations from Transformers), as its name suggests, is a pre-trained
language model based on a Transformer encoder, which can be adopted to many different natural language
processing tasks.

Symmetry 2020, 12, 1939 4of 16

The reason to use a pre-trained language model is that sometimes we may lack data in some specific
task. Because the model is pre-trained on large-scale datasets first, it may compensate the for lack of
data, and it can also speed up the training since the pre-training-made model has already learned the
language modeling.

Layern

Layern+1

Figure 4. Self-attention.
3. Proposed Method

The correction system architecture that we implemented is shown in Figure 5. First, the text to be
corrected will be used as input into the system, and it must be pre-processed before performing other
operations. Because the correction system cannot understand the human-readable text, the text must be
converted into a format that can be read by the machine before it can be input to Seq2Seq for correction.
When the encoder understands the sentence’s meaning, it will correct the errors and output it through
different decoding methods according to the training phase and the inference phase.

Training Phase Inference Phase
Preprocessing i, .Groundtruth =~

Teacher Forcing U Prediction

. __Prediion]

Groedy Decoding

prmmmm sy
' Concept '

Sequence to Sequence

Prediction]

Figure 5. System Architecture.
3.1. Preprocessing

The preprocessing can be divided into three parts: tokenizer, vocabulary, and embedding layer.
The tokenizer, dictionary, and embedding layer are inseparable, and the dictionary is usually used to
determine how the tokenizer should segment the sentence.

Symmetry 2020, 12, 1939 50f 16

3.2. Vocabulary

Vocabulary is essential in a natural language processing system, and the use of vocabulary can
be divided into two categories, word-based vocabulary, and character-based vocabulary. We use
character-based vocabulary, because character-based vocabulary is more flexible, unlike word-based
vocabulary, which is not prone to encounter out-of-vocabulary words. Because we were implementing a
sentence correction system, the input is more likely to contain unknown words than other systems.

3.3. Tokenizer

The purpose of the tokenizer is to split a sentence into multiple words or combinations of
characters. However, it must be used with a vocabulary in practical applications. The type of tokenizer is
determined according to the characteristics of the dictionary. Becuase we use a character-based vocabulary,
the tokenizer also uses a character-based tokenizer.

3.4. Embedding Layer

The embedding layer converts the characters or words that have been segmented by the tokenizer
into a machine-readable format. The converted product is called embedding or word embedding,
which represents words and characters with a high dimensional vector, and can also express the
relationship between each words and characters.

3.5. Language Model

The language model is a way to represent the probability of a sentence through a distribution.
Without a good language model, a good natural language processing system cannot be achieved. We use
a fine-tuning-based language model. Fine-tuning-based refers to the second training on a pre-trained
language model so that the language model can be better applied to different natural language process
tasks, and the fine-tuning-based model we used in the experiment is BERT. BERT is a language model and
also an encoder. Therefore, for the rest of the non-BERT-based encoders in the experiments, we still use the
BERT vocabulary, but the language model itself has not been pre-trained.

3.6. Encoder Properties

Since the encoder’s input sequence is known in both the training phase and the inference phase,
the encoder can be parallelized in the training phase. The inference phase is roughly the same, and mainly
depends on the model’s architecture. As is the case with Transformer architecture, it is parallelizable
because of the self-attention mechanism. In contrast, the encoder-based on recurrent neural networks are
more difficult to parallelize. Because of the existence of the hidden state mechanism, the encoder must
wait to complete the previous hidden state before proceeding to the next one. The model architecture
mainly determines the directionality of the encoder. For example, the structure of the recurrent neural
network is uni-directional by default. However, the bi-directional encoding can be achieved by using two
encoders from different directions, while the Transformer encoder is bi-directional by default. The Encoder
properties are shown in Tables 1 and 2.

Table 1. Encoder Properties at Different Phase.

Phase Parallelizable Direction

Training Depends on model Depends on model
Inference Depends on model Depends on model

Symmetry 2020, 12, 1939 6 of 16

3.7. Decoder Properties

The parallelization of the decoder may be different during the training phase and the inference phase.
The decoder cannot be parallelized at the inference phase as it has to wait for the previous output to be
complete. However, the decoder acts differently at the training phase depending on its architecture and
training method; it still has to wait for previous output at the training phase. However, it is possible to
undertake parallel training with the specific training method.

Teacher forcing is a method that given the decoder groundtruth sequence at the training phase, so the
decoder only needs to predict one step. Because of the existence of groundtruth, the decoder can see
through the complete sequence, which makes parallel training possible. However, RNN needs to wait for
the hidden state at each step, so it is still challenging to achieve parallel training even if teacher forcing is
used. As for the directional decoding, the decoder cannot know the complete sequence in advance, so the
Transformer-based decoder can only perform uni-directional decoding. Although teacher forcing is likely
to let the decoder see the complete sequence, it will lead to inconsistency between the training phase and
the inference phase. The Decoder properties are shown in Tables 3 and 4.

3.8. Analysis

BERT is a pre-trained language model based on Transformer, so it inherits both the advantages and
disadvantages of Transformer. We found that a Transformer-ased sequence to sequence model has high
performance in Chinese sentence correction, but it is very slow at the inference phase. By inspecting the
property of the encoder and decoder, we found that the Transformer-based sequence to sequence model is
slow at the decoder.

The Transformer-based decoder is slow at the inference phase because it is based on self-attention.
With self-attention, the Transformer does not have the chain-like structure of the RNN-based
model, which makes the Transformer powerful and parallelizable but also suffers from higher
computational complexity.

At the inference phase, the encoder knows the complete input sequence in advance, which makes
Transformer encoder parallelizable, but the decoder generates the next token based on the previous token,
which makes the decoding process hard to parallelize.

Though the Transformer encoder has higher computational complexity, we found that parallelization
has a significant effect on reducing execution time. However, the Transformer decoder has no such feature,
which slows down the whole sequence transformation process.

To speed up the inference speed of Chinese sentence correction, we introduce the hybrid model by
combining the BERT and RNN-based models, which speed up the inference speed but still preserve the
Transformer-based model’s performance.

Table 2. Model Encoder Properties.

RNN Transformer
Direction Uni-Direction Bi-Direction
Parallelizable False True
Performance Low High

Computational Cost Low High

Symmetry 2020, 12, 1939

7 of 16

Table 3. Decoder Properties at Different Phase.

Phase Parallelizable Direction

Training Depends on training method, model =~ Uni-Direction
Inference False Uni-Direction

Table 4. Model Decoder Properties.

RNN Transformer
Direction Uni-Direction Uni-Direction
Parallelizable False False
Performance Low High
Computational Cost Low High

3.9. Hybrid Architecture, BERT-RNN

The Transformer-based model is very different from the RNN-based model, so they cannot be
combined directly. We usually have to initialize the decoder hidden state for RNN-based sequence to
sequence model. There are many ways to initialize the decoder’s hidden state, such as using another neural
network to predict the initial state. However, we use the most straightforward method, averaging BERT’s
output to avoid the extra computation, as seen in Figure 6.

BERT-RNN

Figure 6. Bidirectional Encoder Representations from Transformers (BERT)-Recurrent Neural Network (RNN).

Symmetry 2020, 12, 1939 8of 16

3.10. BERT-LSTM

As shown in Figure 7, the first hybrid model is BERT-GRU. It concatenates the BERT encoder and
GRU decoder, containing the fast and high-performance characteristics of the BERT encoder, and the
lightweight, adequate performance of the GRU decoder, which is specialized in improving inference speed.

3.11. BERT-GRU

The second hybrid model is BERT-LSTM (Figure 8). It concatenates the BERT encoder and LSTM
decoder. LSTM has more parameters than the GRU model, but theoretically, it has better performance.
Therefore, this hybrid model is specialized in improving performance rather than improving inference
speed compared to BERT-GRU.

L%

Ciq (%) (+)

-

Figure 8. BERT-Long Short-Term Memory (LSTM).

Symmetry 2020, 12, 1939 9of 16

3.12. Training Methods

The simplest way of training sequential tasks is by generating the target sequence directly and
calculating the loss function according to the inference phase. This method is called free running (Figure 9).
Its most significant disadvantage is that training is hard to converge because sequential tasks are a
structured prediction problem. That is, the outputs are dependent on each other. In the beginning,
the correctness of the prediction from the sequential model is still low, so if the previous step prediction is
wrong, it may also turn the next step prediction into a wrong prediction. The accumulation of errors will
lead to larger oscillations during training, which will take a long time to converge. Besides, the gradient
will have to be calculated back along the time axis, which requires a larger amount of memory.

Therefore, in the training phase, we will use teacher forcing for training (Figure 10). Teacher forcing is
a training technique proposed to solve the training instability. We will shift groundtruth one step to the
right and add a special symbol to indicate the start signal. BOS in Figure 10 stands for the beginning of the
sequence, so for the Decoder, the input at each step would be correct. Thus, the error mentioned above
will not occur in teacher forcing. However, this training method also has side effects, that is, the sequential
model trained with teacher forcing just has to learn to predict one step, and does not consider the output
of the next few steps and the overall structure of the sentence. Such a problem is called exposure bias.
The solution we use is beam search, which will be introduced in detail in the following sections.

) @& () [] omone

Prediction

Loss Function

Free Running

Figure 9. Free Running.

) [[[o) comnn
Loss Function
Y—{6) & @ () &) e

Teacher Forcing

Figure 10. Teacher Forcing.

3.13. Greedy Decoding

Greedy decoding is the most basic decoding method in sequential tasks. At each step of decoding,
the token with the highest probability is selected as the output. It is called greedy decoding because the
algorithm always selects the best option while decoding. The decoder does not consider the long-term

Symmetry 2020, 12, 1939 10 of 16

future with more foresight. However, in the long run, the best choice now at each step may not necessarily
be the best sequence. This problem is called exposure bias, and one of the reasons for exposure bias is
teacher forcing.

Although teacher forcing makes the training process relatively stable, it causes the sequential model
learning only to predict one step during training and will not consider the long-term future, which leads
to inconsistency between the inference phase and training phase. One of the solutions is beam search.

3.14. Beam Search

Beam search, as shown in Figure 11, is a method of searching existing sentences without training and
trying to find a better sentence than greedy decoding. When beam search is decoding, it selects multiple
outputs with the highest probability as candidate outputs for each step, forming a tree with multiple
branches. The number of candidate outputs selected at each step is called beam size. The decoder generates
multiple branches at each step until each branch receives the end signal, or the sentence exceeds the length
limit and then selects a branch with the highest probability as the final output. Although beam search can
choose a better answer, it requires a more extensive computation than greedy decoding. Greedy decoding
can be regarded as a beam search with a beam size of 1, which means that the best output is selected as a
candidate each time.

T = U T =1 T = 2
Current) Current . Courrent)
Hypotheses Candidates Hypotheses Candidates Hypotheses Candidates
mas| » b [s ® .
0
a . .
[BoE) b
L] L L] Bos] L B L]
1
a d
o5 & b -
L] e e |

Figure 11. Beam Search.

4. Experiment

For our experiment, we prepare the dataset, environment, settings, and certain metrics. The subsection
below explains the experiment thoroughly.

Symmetry 2020, 12, 1939 11 of 16

4.1. Dataset

We use NLPCC 2018 grammatical error correction (GEC) dataset [16] to do the experiment.
However, groundtruth of GEC’s testing set is not available, so we split the GEC'’s training set into a
custom training set and custom testing set. We perform the experiment on three different sequence lengths,
25,50 and 128 respectively as Table 5 shows. We chose the lengths based on presumption the sequences
lengths are able to reflect the relation between length and the results, according to the sequence length
distribution seen in Figure 12.

Table 5. Dataset Distribution.

Length Train Set Test Set

25 686,130 49,157
50 1,056,324 69,446
128 1,093,564 71,653
20,000
17,500
15,000 1
o
= 12,500
£
&
5 10,000
g
g 7500
=
5000
2500 -
0 - - T T T T
] 50 100 150 200 250 300 350 400

Sequence Length
Figure 12. Sequence Length Distribution.

4.2. Environment

The experiment was done on a single machine using Arch Linux as the operating system, Intel i7 6700
as CPU, Nvidia 1080 Ti as GPU. We use MXNet [17], GluonNLP [18] as framework.

4.3. Experiment Settings

We use Adam (Adaptive Moment Estimation) [19] as the neural network optimizer in the experiment.
Adam will refer to the previous update direction when updating the parameters, and adjust the learning
rate according to the gradient. The learning rate in the experiment is set to 0.0001. We use both greedy
decoding (GD) and beam search (BS) in the experiment.

4.4. Vocabulary Setup

As we use BERT in the experiment, the source vocabulary we followed the default BERT vocabulary,
including simplified Chinese character, traditional Chinese character, lowercase English character,
and some punctuation marks, 21,128 characters in total.

Symmetry 2020, 12, 1939 12 of 16

In the experiment, we convert all simplified Chinese characters into traditional Chinese characters,
which means our target vocabulary only has to contain traditional Chinese characters, English characters,
punctuation marks, 10,991 characters in total, nearly half of the source vocabulary, which also reduces the
memory usage and training time.

4.5. Evaluation Metric

We use BLEU (Bilingual Evaluation Understudy Score) [20] to evaluate the performance. It was originally
used as a tool to evaluate machine translation. The principle is to compute the overlap ratio of consecutive
characters between prediction and groundtruth. In the experiment, we use the NLTK [16] package, and N =4,
which calculates a single character’s overlap rate to the overlap rate of four consecutive characters.

4.6. Model Performance Comparison

The naming convention of the model is encoder-decoder. For example, GRU-GRU means that the
model’s encoder is GRU, and the decoder is also GRU. The unit of inference speed and training speed is
sample per second.

From the results above, we can see that the pure RNN-based model has lower performance than the
pure Transformer-based model, but it has faster inference speed. However, our hybrid model has similar
performance with the Transformer-based model, but faster inference than the pure RNN-based model and
our hybrid model BERT-GRU showed the best performance and fastest inference speed in 3 experiments,
no matter whether it used beam search or greedy decoding.

From the pure RNN-based model’s perspective, replacing the RNN-based encoder with a
Transformer-based encoder accelerates the encoding process for the inference phase and training phase,
which also improves performance. However, from the perspective of the pure Transformer-based model,
replacing the Transformer-based decoder with an RNN-based decoder accelerates the inference phase
decoding process. However, it slows down decoding process at the training phase.

We use teacher forcing at the training phase, which is a training method for a given groundtruth to
the decoder to know the entire decoding target in advance, which makes decoder possible to parallelize,
without teacher forcing. The decoder has to wait for the previous token to be predicted, but the RNN-based
model also has to wait for the previous hidden state, so it still cannot be parallelized, even if training with
teaching forcing. As a result, it slows down the training speed of the hybrid model.

The experimental result also shows that our hybrid model speeds up more while we turn our pure
Transformer-based model into the hybrid model using a beam search. The reason for this is that the beam
search has more load at the decoder, so when we replace hte Transformer-based decoder with a lightweight
RNN-based decoder, it speeds up more.

4.7. Experiment Comparison

The data used in the three sets of experiments are not precisely the same, so the following comparison
will focus on the improvement of speed.

Figure 13 shows the percentage increase in the hybrid model’s inference speed for the RNN-Based
original model under different lengths. The vertical axis represents the percentage increase in the inference
speed, and the horizontal axis represents experiments of different lengths. We can see that both the
beam search and the greedy decoding speed has been improved. The longer the sequence, the more the
improvement. Since the RNN-based encoder is replaced with the Transformer-based encoder, the beam
search which focuses on the decoding stage has poorer improvement. In contrast, using greedy decoding,
the longer the sequence, the higher the ratio of improvement. Therefore, Figure 13 shows that the two
lines using greedy decoding are non-linear.

Symmetry 2020, 12, 1939 13 of 16

Figure 14 shows the percentage increase in the inference speed of the hybrid model for the
Transformer-based original model under different sequence lengths. The vertical axis represents the
percentage increase in the inference speed, and the horizontal axis represents experiments of different
lengths. Both the beam search and greedy decoding’s inference speed are improved. The longer
the sequence, the more the improvement, as we replace the Transformer-Based decoder with the
RNN-based decoder, so the beam search, which focuses on the decoding stage, has a greater improvement.
Moreover, Figure 14 does not have apparent non-linear improvement, as shown in Figure 13. The main
reason for this is that the decoder itself cannot be parallelized during inference. Therefore, the increase
of speed relies on GRU and LSTM'’s lightweight, while in Figure 13 we replace the non-parallelizable
RNN-based encoder with the parallelizable BERT encoder, and the non-linear improvement is more
significant. Detailed results can be seen in Tables 6-8.

Table 6. Result of Experiment 25.

BLEU Score- Inference Speed- BLEU Score- Inference Speed-

Model BS BS GD GD Training Speed
GRU-
GRU 0.7591 447.246 0.7553 793.454 221.48
LSTM-
LSTM 0.7549 425.297 0.7490 692.05 197.106
TRANS-
TRANS 0.7645 115.955 0.7596 410.753 362.085
BERT-
TRANS 0.7667 112.603 0.7625 403.235 359.804
BERT-
GRU 0.7676 535.172 0.7627 1038.811 277.962
BERT-
LSTM 0.7669 504.521 0.7617 952.377 261.673
Table 7. Result of Experiment 50.
BLEU Score- Inference Speed- BLEU Score- Inference Speed- ..
Model BS BS GD GD Training Speed
GRU-
GRU 0.7975 214.261 0.7953 417.462 132.446
LSTM-
LSTM 0.7970 200.268 0.7945 363.304 114.758
TRANS-
TRANS 0.7995 30.857 0.7966 149.292 264.928
BERT-
TRANS 0.7997 33.657 0.7959 141.639 265.218
BERT-
GRU 0.8021 272.526 0.7986 579.366 176.705
BERT- 0.8017 243.564 0.7982 533.153 162.79

LSTM

Symmetry 2020, 12, 1939 14 of 16

Table 8. Result of Experiment 128.

BLEU Score- Inference Speed- BLEU Score- Inference Speed-

Model BS BS GD GD Training Speed
GRU-
GRU 0.8042 111.094 0.8022 233.648 55.635
LSTM-
LSTM 0.8034 100.455 0.8010 203.333 47.137
TRANS-
TRANS 0.8068 10.91 0.8041 68.936 142.064
BERT-
TRANS 0.8069 12.362 0.8039 70.803 142.21
BERT-
GRU 0.8092 152.276 0.8059 391.5 76.775
BERT-
LSTM 0.809 130.146 0.8057 359.848 69.633
100%
0%
< so% 7%
£
g 0% £7.55%
g o
T s0%
“E A% 37.51% 38.78% 06%
£ 0% 30.52% /s_m/”/m 5%
..E - 13.55% gu_m—————”—/—__—%-s
= 12.26%
10%
0%
25 50 128
Sequence Length
——GRU-GRU -> BERT-GRU (BS) ——LSTM-LSTM -> BERT-LSTM (85) GRU-GRU -> BERT-GRU (GD) ——LSTM-LSTM -> BERT-LSTM (GD)
Figure 13. Hybrid model improvement with respect to RNN-based model.
1200%
1%
+ 1000%
g P
E
z soox
E
T 600%
LE‘ 45p%
g aoom 375%
g 3a8%
£ 0% 1573
1383
0%
25 50 128
Sequence Length
~——BERT-TRANS -> BERT-GRU (BS) ——BERT-TRANS -> BERT-LSTM (BS) ——BERT-TRANS -> BERT-GRU(GD] =——BERT-TRANS -> BERT-LSTM (GD)

Figure 14. Hybrid model improvement with respect to Transformer-based model.

Symmetry 2020, 12, 1939 15 of 16

5. Conclusions

As Transformer architecture is gradually being popular, the field of natural language processing has
seen the deprecation of RNN series models. By inspecting the advantages and disadvantages of RNN and
Transformer, we introduce a hybrid model with faster inference speed and better performance.

In addition to the pre-training of the BERT encoder itself, the Transformer encoder also has the
characteristics of parallelization, which makes up for the shortcomings of GRU and LSTM as encoders in
terms of speed and performance. In contrast, GRU and LSTM as decoders make up for the slower inference
speed of the Transformer-based model, so we can say that they compensate for each other’s shortcomings.
Through multiple sets of experiments, we have also proved that this combination can indeed be applied
to Chinese sentence correction. Among them, BERT-GRU has obtained the highest BLEU Score in all
experiments. The inference speed of the Transformer-based original model can be improved by 1131% in
beam search decoding in the 128-word experiment, and greedy decoding can also be improved by 452%.
The longer the sequence, the larger the improvement.

Author Contributions: Conceptualization,] W.C. and X.K.S.; Methodology,] W.C.; Project administration, J.-S.L.
and J.-I.T.; Software, J W.C. and X.K.S.; Supervision, J.-S.L. and J.-L.T.; Visualization,] W.C.; Writing—original draft,
X.K.S.; Writing—review and editing,].-S.L. and J.-L.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by a collaborative research project between the National Taiwan University of
Science and Technology (Taiwan-Tech) and the Tokyo Institute of Technology (Tokyo-Tech), funded under number
Grant TIT-NTUST-107-05.

Acknowledgments: The authors gratefully acknowledge the support extended by the Taiwan Tech-Tokyo Tech Joint
Research Program, under number Grant TIT-NTUST-107-05.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

1. Huang, CM.; Wu, M.C,; Chang, C.C. Error Detection and Correction Based on Chinese Phonemic Alphabet in
Chinese Text. In Proceedings of the International Conference on Modeling Decisions for Artificial Intelligence,
Kitakyushu, Japan, 16-18 August 2007; Volume 16, pp. 463-476, doi:10.1007 /978-3-540-73729-2_44. [CrossRef]

2. Shiue, Y.T.; Huang, H.H.; Chen, H. Correcting Chinese Word Usage Errors for Learning Chinese as a Second
Language. In Proceedings of the COLING, Santa Fe, NM, USA, 20-26 August 2018.

3. Cheng, SM.; Yu, C.H.; Chen, HH. Chinese Word Ordering Errors Detection and Correction for Non-Native
Chinese Language Learners. In Proceedings of the COLING 2014, the 25th International Conference on
Computational Linguistics, Dublin, Ireland, 23-29 August 2014; Technical Papers; Dublin City University
and Association for Computational Linguistics: Dublin, Ireland, 2014; pp. 279-289.

4. Eason, G.; Noble, B.; Sneddon, I. On certain integrals of Lipschitz-Hankel type involving products of bessel
functions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 247, 529-551.

5. Papineni, K;; Roukos, S.; Ward, T.; Zhu, W.]. BLEU: A Method for Automatic Evaluation of Machine Translation.
In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA,
USA, 7-12 July 2002; doi:10.3115/1073083.1073135. [CrossRef]

6. Bahdanau, D.; Cho, K,; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv
2016, arXiv:1409.0473.

7. Ge, T,; Zhang, X.; Wei, E; Zhou, M. Automatic Grammatical Error Correction for Sequence-to-sequence Text
Generation: An Empirical Study. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy, 28 July—2 August 2019; Association for Computational Linguistics: Florence, Italy,
2019; pp. 6059-6064, [CrossRef]

http://dx.doi.org/10.1007/978-3-540-73729-2_44
http://dx.doi.org/10.3115/1073083.1073135
http://dx.doi.org/10.18653/v1/P19-1609

Symmetry 2020, 12, 1939 16 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Schmaltz, A.; Kim, Y.; Rush, A.M.; Shieber, S. Sentence-Level Grammatical Error Identification as
Sequence-to-Sequence Correction. In Proceedings of the 11th Workshop on Innovative Use of NLP for Building
Educational Applications, San Diego, CA, USA, 16 June 2016; Association for Computational Linguistics:
San Diego, CA, USA, 2016; pp. 242-251, doi:10.18653 /v1/W16-0528. [CrossRef]

Li, S.; Zhao, J.; Shi, G.; Tan, Y.; Xu, H.; Chen, G.; Lan, H., Lin, Z. Chinese Grammatical Error
Correction Based on Convolutional Sequence to Sequence Model. IEEE Access 2019, 7, 72905-72913.
doi:10.1109/ ACCESS.2019.2917631. [CrossRef]

Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)
Network. arXiv 2018, arXiv:1808.03314.

Recurrent Neural Network. Available online: https://www.cs.toronto.edu/~tingwuwang/rnn_tutorial.pdf
(accessed on 20 November 2020).

Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. arXiv 2014,
arXiv:1409.3215.

Hochreiter, S.; Schmidhuber,]. Long Short-Term Memory. Neural Comput. 1997, 9, 1735-1780.
doi:10.1162 /neco.1997.9.8.1735. [CrossRef] [PubMed]

Chung, J.; Gulcehre, C.; Cho, K,; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling. arXiv 2014, arXiv:1412.3555.

Kingma, D.P; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.

Loper, E.; Bird, S. NLTK: The Natural Language Toolkit. arXiv 2002, arXiv:0205028.

Zhao, Y.; Jiang, N.; Sun, W.; Wan, X. Overview of the NLPCC 2018 Shared Task: Grammatical Error Correction.
In Proceedings of the 7th CCF International Conference, NLPCC 2018, Hohhot, China, 26-30 August 2018;
pp. 439-445, doi:10.1007/978-3-319-99501-4_41. [CrossRef]

Chen, T,; Li, M,; Li, Y,; Lin, M.; Wang, N.; Wang, M.; Xiao, T.; Xu, B.; Zhang, C.; Zhang, Z. MXNet: A Flexible and
Efficient Machine Learning Library for Heterogeneous Distributed Systems. arXiv 2015, arXiv:1512.01274.
Devlin, J.; Chang, M,; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. arXiv 2018, arXiv:1810.04805.

Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.18653/v1/W16-0528
http://dx.doi.org/10.1109/ACCESS.2019.2917631
https://www.cs.toronto.edu/~tingwuwang/rnn_tutorial.pdf
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1007/978-3-319-99501-4_41
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Existing Work
	Sequence to Sequence (Seq2Seq)
	Recurrent Neural Network
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)
	Transformer
	BERT

	Proposed Method
	Preprocessing
	Vocabulary
	Tokenizer
	Embedding Layer
	Language Model
	Encoder Properties
	Decoder Properties
	Analysis
	Hybrid Architecture, BERT-RNN
	BERT-LSTM
	BERT-GRU
	Training Methods
	Greedy Decoding
	Beam Search

	Experiment
	Dataset
	Environment
	Experiment Settings
	Vocabulary Setup
	Evaluation Metric
	Model Performance Comparison
	Experiment Comparison

	Conclusions
	References

