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1. Artificial intelligence and machine 
learning landscape

ARTIFICIAL INTELLIGENCE: BASIC CONCEPTS

Machine Intelligence

Artificial intelligence (AI) is the central focus of this book – it is therefore only 
fitting that we begin our deliberations by reflecting on the term itself.

The first word denotes something fairly easy to define: artificial simply 
means man-made. Naturally, any attempt to delve on specifics such as e.g. 
form, physical location or architecture of such a creation would significantly 
complicate things. As will be shown in the subsequent chapters of this book, 
at present, intelligent systems are basically computer programmes running 
on devices utilising silicon chips. They can operate ‘autonomously’, take 
advantage of remote intelligent services (e.g. in the Cloud Computing model) 
or engage with other objects to establish networks. These seemingly trivial 
observations are in fact anything but. These days, highly advanced operations 
can already be performed by quantum computers (inherently different from 
contemporary integrated circuitry), data can be stored in DNA codes (rather 
than on digital memory chips) and calculations can be performed with the use 
of protein structures (and one does not mean animal brains). As we can see, 
there is currently more than one way to potentially approach the issue of artifi-
ciality – anyone interested in the topic could do far worse than to read through 
Bostrom’s compelling analysis of the same (2014).

A concept far more difficult to put a finger on is intelligence. There have 
been many definitions over the years, mostly in the field of psychology. It has 
been a long-standing dream to create structures capable of assisting or replac-
ing people in solving various day-to-day problems. One of humans’ ‘compet-
itive advantages’ over animals is the ability to use tools – objects enhancing 
people’s innate potential, e.g. strength or speed. In time, such tools evolved 
into machines – still, their contributions continued to be limited to physical 
activities. The development of higher cognitive functions, in particular the 
ability to formulate complex goals, adopt and implement strategies and plan 
actions necessary to that end, inspired people to search for methods of enhanc-
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ing their abilities also in those specific areas (i.e. no longer exclusively phys-
ical but also mental). A sort of a ‘prototype’ in this context came in the form 
of mathematical theorems and algorithms which (due to their abstract nature) 
helped in categorising and correlating certain seemingly diverse problems and 
subsequently fairly easily solving them (e.g. the laws of geometry applied 
in the construction of the Tunnel of Eupalinos in ancient Greece). The next 
natural step was to ‘implement’ those originally abstract algorithms in physical 
devices: initially simple (e.g. the abacus) and then increasingly complex (e.g. 
Babbage’s difference engine) (cf. Davis 1949).

As algorithms continued to be developed, so did the range of problems 
to which they could be applied, which on the one hand created a demand 
for increasingly advanced computing machines, and on the other generated 
entirely new problems. There were certain rather narrow areas (e.g. arithmetic) 
where machines fairly quickly proved themselves to be more capable than 
humans. However, as computers began to become more popular, in particular 
more available to a wider group of programmers, the spectrum of problems 
that could possibly be solved by man-made machines grew exponentially – 
which soon inspired people to reflect on the machines’ intelligence.

Before committing to a definition of intelligence, let us first take a somewhat 
closer look at the problems one may reasonably expect intelligent machines to 
solve. To that end, we will use the slightly adapted classification first proposed 
by Russell et al. in their fundamental textbook on AI (2010).

Let us begin by characterising the environment wherein our machine might 
operate. As the given task is being performed, the same can remain unchanged 
(static as e.g. in the game of chess) or evolve – i.e. be dynamic.1 Moreover, the 
next consecutive state of the environment may depend solely on the actions of 
the machine (in which case the environment is deterministic) or be influenced 
by factors independent of the agent (a stochastic environment). The environ-
ment can also be discrete (described by variables with a finite set of possible 
values) or continuous. The latter distinction is particularly important from the 
computing perspective: in a world of infinite choices, the system must have the 
capacity for generalisation. Finally, our machine (often described as the agent) 
may act within the given environment either independently or be accompanied 
by other ‘beings’ (be it machines, animals or humans) – in which case we can 
talk of a multi-agent environment.

The next distinction is related to knowledge about the environment. The 
agent may know the rules and laws applicable in the given context (e.g. in 
board games) or not know them (as is often the case in real life). Another 
aspect of knowledge about the environment is access to information about its 
state: the agent may either have full knowledge of the environment’s state, only 
partial knowledge thereof or no knowledge whatsoever (be blind).
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The final classification relates to the character of tasks that our agent might 
aim to perform. They may be either episodic (have a clearly defined beginning 
and end, like in the case of most games) or continuous (have no natural end 
point).

As follows from the above, the complexity spectrum of potential problems 
is very wide: from the performance of episodic tasks in single-agent, deter-
ministic, fully observable worlds with readily available rulesets, to continuous 
tasks performed in stochastic environments without any knowledge of the 
applicable rules or ability to perceive anything.

The above classification is a good starting point when attempting to define 
intelligence. With full appreciation for the complexity of this issue, for the 
purposes of the deliberations to follow, intelligence will be defined as the 
ability to effectively act under new circumstances. A closer analysis of the 
proposed definition will also facilitate a first look at the concept of autono-
mous, self-learning systems whose business potential will be discussed in the 
subsequent parts of this book.

Let us begin with the word effectively. It assumes the existence of a certain 
goal function: in most cases, intelligent systems are expected to perform 
certain missions whose success or failure is possible to define. Measures of 
success are usually an integral part of the task and help the machine to monitor, 
on an ongoing basis, the progress of the learning process as well as the status 
of mission completion.

Formulating a viable goal function is a considerable challenge in itself. One 
of the most popular methods (discussed below in greater detail) is the trial 
and error approach: the agent decides to perform a given action and receives 
feedback from its environment containing data on the new situation and 
applicable reward or punishment. The reward, often described as enhance-
ment – a term derived from psychology – is one of the primary drivers of the 
learning process. On the one hand, the imperfection of many teaching methods 
manifests itself in particular in the necessity of engaging in a large number 
of interactions between the system and its environment – i.e. many trials and 
errors. This can prove not only costly but also risky.

For this reason, algorithms are often trained in virtual simulators. The cre-
ators of such solutions must not only ensure they carefully recreate the given 
environment but also construct a precise reward system to promote various 
behaviours, usually by relating the state of the environment resulting from the 
agent’s activity to mission-specific conditions. In practical terms, this can pose 
a considerable challenge: the system will operate on the premise of being moti-
vated while learning, consequently any errors in the definition of the reward 
function will have far-reaching consequences.

A separate, more commonly discussed question is who should determine the 
goal function. If we can learn anything from human history, the story of King 
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Midas and the like, fulfilling one’s dreams can actually have rather tragic con-
sequences. Therefore, maybe it would be in people’s best interest if AI were to 
decide what is and what is not good for them? In other words, at the operational 
level, independently map out its own way towards the target? This question 
has been the focus of research on so-called inverse reinforcement learning 
(RL): the purpose being to teach a system to identify goals, values and rewards 
applicable to a given object by observing its behaviour (cf. Heidecke 2019). 
Such an approach may not only impact the ways in which AI is designed but 
also redefine the very concept of intelligence. It may soon be the case that we 
will expect such systems to effectively solve problems posed to them as well as 
accurately identify even our unexpressed needs. Should this happen, the future 
won’t be what it used to be (to paraphrase Paul Valery).

For now, however, let us go back to our definition of intelligence. We 
described it as the ability to effectively act under new circumstances. As we 
have now briefly discussed effectiveness, it is time to look into action.

Action entails not only the ability to make decisions but also access to 
so-called actuators: physical devices or communication interfaces facilitating 
interactions with the environment. In the next section focusing on the basics of 
RL, the concept of the so-called agent will be introduced with his role limited 
solely to control. Our definition of intelligence expands the concept of action 
by including the ability to affect the environment.

Nonetheless, interaction is not the only type of action necessary for the 
successful performance of a mission. It is equally, or possibly even more 
important, to be able to effectively extract data, information and knowledge 
from the environment, and then use it for the improvement of one’s efficiency. 
The ability to pass on experience and knowledge, not just from generation to 
generation (e.g. through the process of evolution) but also within the same age 
group, in a scope far broader than mere genetic changes, has long constituted 
another element of human ‘competitive advantage’ over other living creatures. 
This allows our societies to learn at an accelerated pace, which, combined with 
the capacity for memory (both short term and historical) has also been the basis 
of our technological advancement. Given the above, another desirable skill of 
an intelligent system would be to have the ability to gather information and 
knowledge and use experiences, not only originating from oneself but also 
from others.

The final aspect of activity pivotal to our understanding of intelligence 
is the capacity for self-learning and self-improvement. Intelligent machines 
should not only effectively use their externally provided ‘brains’ but also 
relatively quickly gather new experiences and be able to independently learn 
from them. This is the central focus of machine learning (whose key premise 
will be discussed below) as well as studies conducted in the areas of so-called 
meta-learning (teaching machines to recognise the optimum strategies of 
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self-learning) and self-supervised learning (teaching machines to supervise 
their own learning processes). These are but a few fascinating areas of research 
that may strongly influence the future of the world we live in.

The final element of our definition refers to new circumstances. In this 
context, ‘new’ should be understood as synonymous to the notions of com-
plexity and uncertainty, whereas ‘circumstances’ refer to the given context 
(environment, world) wherein the intelligent system operates. The phrase is 
used here to facilitate reference to the aforementioned classification of prob-
lems with which machines may have to contend.

As already stated, the spectrum of such problems is vast: from things well 
known, observable and deterministic, to everything that is incomprehensible, 
non-observable and changeable. In our definition, new circumstances refer 
to the latter extreme, bearing in mind that it may be difficult to naturally 
distinguish between intelligence and automation stemming from the imple-
mentation of simple algorithms. An intelligent agent ought to effectively 
perform its tasks under circumstances that are inherently uncertain (stochastic 
environments where one cannot be certain about the viability of one’s actions), 
prone to change (with the rules of the game changing dynamically) and only 
partially observable (‘with limited visibility’). In this context, the ability to 
operate in continuous environments seems relatively trivial (after all, this is 
the natural human environment: the images we perceive are not composed of 
large ‘pixels’, our movement is fluid, etc.), but in practical applications this 
requirement (decision making when faced with information overload) turns 
out to pose a very significant challenge. Our definition of machine intelligence 
is, in a way, not particularly far removed from our intuition about human 
intelligence. The people we consider to be intelligent are often those capable of 
performing effectively when faced with completely new situations – the con-
dition of newness is therefore crucial to the distinction between intelligence 
and teachability.

Many of the technologies described in Chapter 2 fail to meet the require-
ments of such a strong definition of intelligence – nonetheless, their develop-
ment is a necessary step if the same is ever to be achieved. An intelligent system 
should be able to receive information from its surroundings – it will therefore 
have to heavily rely on various sensor technologies. It must also know how to 
interpret the same – recognise objects and situations, identify patterns – which 
will require the use of algorithms facilitating image recognition or natural lan-
guage processing. A machine will have to develop strategies and plans, learn, 
memorise and eventually also interact with its environment – not unlike us, 
humans. It is therefore hardly surprising that the trend of developing systems 
equipped with such higher abilities is referred to as cognitive computing.
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Machine Learning and Programming: How Then Does One Build an 
Intelligent Machine?

Let us imagine a manager responsible for the performance of a small business 
unit. How would he ensure the effective operation of his department, in par-
ticular timely performance of the designated goals?

Our hypothetical manager has a few available options. The first, somewhat 
crude but sometimes the only viable solution, is to do all the important work 
himself. This minimises the risk of failure (a highly experienced expert can 
often complete a given task much faster than a relative novice) but is unsus-
tainable in a long-term perspective. The subordinates will quickly get accus-
tomed to having his support, which will prevent them from developing their 
own competences. Soon, exertion will have the better of our hero and he will 
himself become the proverbial bottleneck. Clearly, this is not the best solution.

Another option is to issue precise commands and enforce their subsequent 
execution. This is already a step forward: instead of doing everything himself, 
the manager coordinates the work of others. The risk here? Employees will 
quickly get accustomed to working only under the influence of external 
stimuli, they will not have an internal locus of control and the entire structure 
will collapse at the first sign of leadership deficiency.

A somewhat better idea is to manage responsibilities. Employees are no 
longer assigned specific tasks but rather areas of responsibility. We formulate 
goals and leave it to the employees to make them happen.

Are there even higher conceivable levels of self-reliance? In a way, there 
are: one could teach employees to formulate performance strategies and learn 
independently – if their competences are lacking, even to formulate their own 
goals consistent with the organisation’s vision. This way, they could set their 
own targets and motivate others in the process. If all goes well, they will be 
able to independently solve new problems, create new rules of procedure and 
constantly improve their competences wherever necessary.

And how does this relate to building intelligent machines? Let us now 
imagine an engineer who aims to design an autonomous helicopter. Navigation 
would be a considerable challenge here: it would require adjusting the speed of 
the main (horizontal) rotor as well as the vertical rotor at the back. And all that 
not only while maintaining a certain fixed position but also while travelling 
in a certain direction in fast-changing (e.g. gusts of wind) conditions. So how 
should he approach building such a machine?

Our engineer has to choose between two options. The simplest he/she can 
think of would entail developing computer software that would instruct the 
machine telling it how to behave under given circumstances, naturally based 
on experiences of professional pilots. At the end of the day, this could be 
boiled down to rudimentary what-if rules, and in more refined environments to 
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dedicated functions capable of approximating such algorithms. What are the 
risks? It could soon turn out that the helicopter finds itself in a situation not 
supported by the algorithm – i.e. one in which it will not receive any instruc-
tions. In real-world applications this would be a sure recipe for disaster. This 
approach to machine building is referred to as programming.

So, what else can one do? Rather than programme the machine to perform 
tasks, he could ensure that it can actually learn how to perform them. In other 
words, the machine would need to be provided not so much with information 
on how to behave under given circumstances but rather the capacity to learn 
the same. This is the approach commonly referred to as machine learning.

To look back to our analogy of a manager responsible for a team: issuing 
commands can be compared to programming (the employees perform clearly 
defined tasks), with encouragement of independent work and self-improvement, 
to machine learning. An intuitive understanding of this distinction will prove 
very helpful when navigating the complex world of data science, machine 
learning and AI.

We could also use a somewhat different example to illustrate yet another 
aspect of the need to teach machines how to self-learn. Let us imagine 
a machine performing simple arithmetic calculations, e.g. a common calcula-
tor. In order to build it, a mathematician had to create an algorithm: procedures 
to follow for three input objects (for the sake of simplicity, let us assume two 
digits and an operator) and one output object (a number). Each digit can take 
ten different values, there are four possible operators (+, –, ×, /), and 82 pos-
sible results (0 to 81). A programmer then implemented this algorithm using 
a particular programming language, and an engineer uploaded it to the final 
device which is further composed of such elements as a keypad, processor or 
screen. Nonetheless, the key component remains the algorithm: the procedure 
of processing three ‘small’ (in terms of the number of dimensions and possible 
values) objects in order to produce the desired output. It is so simple in fact 
that mathematicians have long been able to utilise it even without machines.

Now, let us consider the process of recognising objects in photographs – for 
the sake of simplicity only two: a dog and a cat. In this case, there are consider-
ably more input ‘objects’ to consider: so-called pixels, i.e. the most elementary 
components of any digital image. Each pixel is described by three numbers 
(separately for red, yellow and blue) with the possible values ranging from 0 
(perfect black) to 225 (perfect white). Should we assume an average resolution 
of 800 × 600 pixels, the image would therefore be characterised by 1,440,000 
numbers, each with the value range from 0 to 255 – that is considerably more 
than three objects with a dozen or so possible values… Consequently, we end 
up with an algorithm that has to process over 1.4 million ‘objects’ to provide 
an output of merely two digits, each with the range of possible values from 
0 to 1: the first number to indicate the probability that the image is a cat, the 
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other the relative probability of the image depicting a dog. As we can see, 
an algorithm tasked with distinguishing between a cat and a dog will have to 
handle drastically more input information than a simple calculator. One could 
immediately ask: would a human be able to come up with a way of processing 
such amounts of information and distinguishing those two important animals? 
Obviously, our own brain is more than capable of doing that, but what we 
really want to know is if a programmer could implement the skill in software 
and an engineer get it to work on a dedicated device. It does seem that creating 
an algorithm of this type would be beyond human ability – but if that is the 
case, why not have a machine do it? This is a task exactly suited for machine 
learning: typically, the process yields its effects in the form of ‘brains’, 
nowadays increasingly taking the form of so-called neural networks capable 
of not only recognising objects in images, but also understanding spoken 
language and interpreting human emotions. A machine begins its ‘education’ 
with a completely fresh ‘brain’ and then proceeds to improve it in a variety of 
‘ways’. The entire process is typically described as ‘machine learning’ and this 
particular form of teaching as the ‘learning algorithm’. Both will be described 
in greater detail in the next section.

Methods of Machine Learning

The most popular criterion used for classifying machine learning methods is 
their level of autonomy: from supervised learning, through semi-supervised, 
unsupervised and RL, all the way to self-supervised and meta-learning. Each 
of the above will be briefly characterised below, including their most impor-
tant algorithms and common applications.

Let us start with supervised learning. In this case supervision means the 
presence of a teacher who supervises the learning process, usually by evaluat-
ing the correctness of the answers given. The basis for learning is provided by 
a so-called teaching set containing data characterising the problem as well as 
the correct answers. The task of the teaching algorithm is to guide the entire 
process in such a way that the structure trained (e.g. randomly initiated neural 
network or another set of rules, like a decision tree) could quickly evolve out 
of the random answer stage (beginning of the learning process) and up to 
a satisfactory level of accuracy (end of the learning process). This is not unlike 
teaching skills to humans: a beginner will have problems with e.g. recognising 
constellations in the night sky, but once trained, they will do it practically 
flawlessly.

As mentioned above, the starting point in this case is a man-made dataset. It 
usually comprises objects, their properties (explanatory variables, predictors) 
and labels (dependent variables). The properties correspond to questions and 
the labels to answers. For instance, if we want to teach our system to recognise 
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dog breeds from photographs, the teaching set should contain a large number 
(e.g. several thousand) photographs (predictors) with descriptions of the 
respective breeds (labels). In the course of the teaching process, we ‘show’ 
the system one photograph at a time, asking it to identify the breed. After 
each answer feedback is provided to indicate how correct the given answer is, 
which the teaching algorithm then uses to ‘streamline’ the trained structure. 
The process is then repeated until the incidence of errors is satisfyingly low.

The key element of the process is dividing the set of the correctly described 
objects (in our case photographs) into those that serve as the teaching base 
(training set) and those that will be used to test the system (test set). There 
is no point in testing the system’s ability to provide answers that were previ-
ously taught to it. Again, a parallel to human learning could be drawn: using 
problems solved during lectures as test questions yields only an illusion of 
competence.

The most common uses of supervised learning include discrete varia-
ble prediction (so-called classification) and continuous variable prediction 
(so-called regression). Classification may be binary (when dealing with only 
two properties, e.g. SPAM or NOT-SPAM in classifying email messages) or 
multi-label (e.g. the dog breed classification; Figure 1.1). In regression, the 
system is taught how to diagnose a variable whose potential values may even 
be infinite (Figure 1.2). Good examples here could include apartment prices 
(e.g. with location and floor area serving as dependent variables) or stock price 
forecasts.
In a sense, the objective of variable learning is to achieve better generalisation. 
Generalisation is the foundation of abstract thought, it allows us to simplify 
our surrounding reality by reducing it to a limited subset of concepts. Every 
time I look at my reflection in the mirror, my brain receives an entirely dif-
ferent image: facial expressions will change, as will angles of view, lighting, 
elements in the background, etc. And yet, I invariably identify this set of visual 
stimuli as my face. Not someone else’s but mine, not a leg but a face. Hence, 
my brain generalises: various images are equated to a single object.

A similar ordinal function is served by definitions and, more generally, 
many linguistic parts of speech. It is a matter of certain convention that an 
object slightly smaller than a person, with a small horizontal area and several 
(but at least three) elements attached below, will be called a table. There are 
literally millions of the concept’s possible ‘iterations’, and yet we will still rec-
ognise each of them as a table. Such generalisations can certainly make one’s 
life easier, so their utility is considerable. As discussed below, a similar ability 
should be available to intelligent systems – without it, each of such states 
would be treated differently, placed in a different reality. One of the purposes 
of supervised learning is to develop the capacity for generalisation.
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Figure 1.2 Illustration of a regression model

Note: As with classification, the purpose of the model is to prognose a certain feature, in this 
case, however, it is the explanatory variable that can have an infinite number of values. For 
instance, when projecting the price of an apartment depending on its floor area.
Source: Own elaboration.
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The most important algorithms (or ‘teaching methods’) used in supervised 
learning include linear regression, logical regression, support vector machines, 
decision trees, random forests and neural networks.

In summary: the key element in supervised learning is the man-made dataset 
containing pairs of questions and answers. It is used in the teaching process as 
a source of feedback on the system’s progress. The dataset is divided into train-
ing and testing subsets, the latter being used to evaluate the system’s quality.

It is often the case that no set of questions and answers is readily available, 
or that rather than prediction, our goals are focused on e.g. pattern recognition, 
limiting the number of variables, or simply visualisation. In such cases, it is 
common to turn to the methods of unsupervised learning, i.e. learning unla-
belled data.

One of the main roles of unsupervised learning relates to data compression, 
a skill that is, in a way, complementary to generalisation. As we contemplate 
reality, our brain is always searching for certain patterns, underlying princi-
ples of the world we live in. Such patterns emerging as ‘formulas’ allow us 
to ‘compress’ reality. For instance, rather than build a tabular listing of the 
possible terminal speeds of a body falling from different heights, we use the 
formula for speed in uniformly accelerated motion and save ourselves the need 
to do literally millions of calculations (individually for each of the possible 
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Figure 1.3 Illustration of a clustering model

Note: Here, the model’s task is to identify a pattern: divide objects into groups of objects that 
are similar to each other and different from other groups. Unlike in the case of regression, the 
Y-axis does not correspond to a dependant variable but another feature of the object (naturally, 
there may easily be more than two features concerned). The model identifies groups (clusters)
and labels them with its own, abstract designations. It is the job of the human to interpret the 
significance of the groups and rename them where appropriate.
Source: Own elaboration.
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elevations) and just do one – using the discovered formula. Once identified, 
a pattern compresses information. And in order to find it, we can turn to the 
methods of unsupervised learning.

A typical application of unsupervised learning entails clustering (Figure 
1.3). For instance, a telecom with access to information concerning details of 
its customers’ phone calls may be interested in identifying and clustering the 
same. The grouping could be done based on behaviour with the members of 
a single group sharing a certain common feature and clearly standing out from 
other groups in some respect. What is important, the company does not know 
the character of the respective groups – the customers are not labelled, there is 
no training dataset to use – it is the machine learning model that is expected to 
identify the same.

What is the point of clustering customers? The first obvious benefit stems from 
data compression: the human brain is equipped to better understand a situation 
with fewer qualitatively different elements (e.g. five to ten) rather than, say, 
millions of individual customers. Another benefit stems from personalisation 
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of offerings: it is easier to develop several distinct packages of diverse product 
offers than millions of almost identical ones.2

‘Compression’ can be applied not only to objects (e.g. customers) but also 
the number of features that describe them. Operators of popular social media 
sites can easily produce hundreds of different statistics about their users – the 
difficulty lies in extracting valuable information from such raw data. The 
human brain has its inherent limitations: we find it relatively easy to analyse 
two variables (by plotting two objects in a two-dimensional graph), three 
make the process somewhat more difficult (a three-dimensional graph or 
two-dimensional with the addition of e.g. another colour), and with every addi-
tional dimension, our capacity to understand reality suffers significantly. And 
what if the dimensions come in their hundreds? It turns out that supervised 
learning, in particular the methods of so-called dimensionality reduction, can 
significantly reduce the number of variables. When combined with constantly 
improving methods of visualisation, such solutions assist people in more effi-
cient interpretation of facts.

The primary difference between supervised and unsupervised learning 
stems from the aforementioned lack of the teaching set. However, this does 
not mean that the algorithms have to learn without data: they are still provided 
but without preassigned labels (dependent variables) – it is up to the model to 
interpret them. The most popular algorithms used in unsupervised learning (i.e. 
methods of developing models) include the K-means method, Hierarchical 
Clustering, DBSCAN and Principal Component Analysis.

An ‘in-between’ method combining elements of both of the above is called 
semi-supervised learning. The method is useful in cases where a teaching 
dataset (i.e. question and answer pairs) is available but relatively limited – and 
our aim is to generalise that knowledge to many more cases. For instance, 
social media websites may be interested in implementing a system capable 
of identifying people in photographs uploaded to the system. How could this 
be achieved? In the first stage, we use supervised learning methods to group 
people in millions of untagged photographs. The system learns to identify 
a given person in many photographs (in clustering, a person is the equiva-
lent of a group), still without knowing their name (the group code is always 
abstract, generated by the model and otherwise meaningless). Once this stage 
is complete, the system can conclude that e.g. person A115 appears in photo-
graphs 10, 14 and 167. In the second stage, the method of supervised learning 
is employed: based on the existing training set (in this case photographs of 
people associated with specific personal information), the model obtained 
in the previous step is taught how to associate abstract codes with specific 
people. Consequently, the combination of the two methods (supervised and 
unsupervised learning) yields a recognition model trained with a relatively 
small training set.
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Having discussed the methods of supervised, semi-supervised and unsu-
pervised learning, it is now time to move on to somewhat more ‘autonomous’ 
methods. But what exactly does autonomy entail here? Was the system not 
required to independently discover patterns and rules already in the unsuper-
vised approach?

In machine learning, intelligent systems learn from data. In the three cases 
described above, the data had to be prepared and provided by humans. Even 
though in unsupervised learning only the features of objects were provided 
(no labels, i.e. no explanatory variables), they were nonetheless fed to the 
system by a human operator – like food to a small child. Meanwhile, autono-
mous systems are expected to act, in particular learn, without external human 
support. The question is how to design a ‘didactical process’ where the system 
is capable of independently providing feedback.

The first such method is referred to as self-supervised learning and is an 
interesting hybrid of supervised and unsupervised approaches. Similar to 
supervised learning, the system learns to recognise objects based on labelled 
datasets (i.e. question <> answer pairs). The key difference is that in this 
case, the labels are assigned by the system itself, without outside support. 
The system supervises itself. There are many interesting applications for this 
particular approach. Image recognition systems learn to independently classify 
objects based on contextual and spatial data (cf. Doersch et al. 2016), and 
robots train their visual systems to recognise objects based on data from other 
perception systems (Nava et al. 2019). The method also allows intelligent 
systems to explore and learn about the world on the strength of actual curiosity 
rather than enhancement stimuli (punishment and reward) (Pathak et al. 2017).

Another interesting approach, referred to as reinforcement learning, was 
inspired by advances made in psychology. As humans, we are taught by 
parents and teachers from an early age, but also explore our surroundings by 
ourselves and learn by trial and error. In order to achieve a certain goal, we 
perform various possible actions and observe their results. In time, we are 
either able to develop an efficient sequence of steps or, which ultimately may 
prove more effective, learn about the operating principles of a given device 
or rules applicable to a given environment. Autonomous systems using the 
methods or RL follow similar learning patterns. They will be described in 
more detail below, but for now it is worth pointing out that the trained system 
does not have access to a man-made dataset. Instead, it independently extracts 
the necessary information from its environment, usually in the course of the 
following cycle: observation of the state of the environment > action > new 
information (new state of the environment and punishment/reward). The 
method is used in training and improving a large percentage of the solutions 
discussed in the subsequent chapters of this book, with the use of dozens (if not 
hundreds) of different algorithms.
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Last but not least, meta-learning is a very interesting class of machine 
learning solutions. In this approach, the intelligent systems learn to find the 
best learning strategies, which could be described as learning to learn. The 
idea is to accelerate learning processes, limit the amount of crucial data and 
number of necessary experiments (trial and error). It has been observed that 
the methods described above tend to require large sets of good-quality data, 
which can be both effort- and cost-intensive. Hence, there is a demand for 
more effective learning methods – in the case of meta-learning, this is achieved 
by learning to learn. In particular, meta-learning can be used in conjunction 
with RL (so-called Unsupervised Meta-Learning for Reinforced Learning, 
see e.g. Gupta et al. 2019), which basically entails teaching the agent how to 
apply algorithms developed in the performance of previous tasks to solve new 
problems. In other words, the system is taught how to identify and use previ-
ously learnt skills in the performance of new tasks, which is not unlike transfer 
learning in the context of psychology and traditional education.

As follows from the above, machines can be trained in a variety of ways. 
One of the ways in which such methods can be classified relates to their level 
of autonomy understood as the extent of human supervision and support. 
The supervised, semi-supervised and unsupervised learning methods require 
data to be provided by humans. In turn, self-supervised, reinforcement and 
meta-learning methods entail autonomous extraction of data from the envi-
ronment. In each case, the result of the ‘didactic process’ is an imparted model 
capable of effectively solving new problems. But this begs the question: how 
does one go about improving it further?

Much like in the case of machine learning, several possible strategies could 
be adopted here. Presented below are two of the most popular: batch learning 
and online learning (cf. Géron 2019).

In the case of batch learning, the system is taught based on all currently 
available data. Once the data are collected and processed, the algorithm is 
trained, tested and implemented in production upon approval. If new data are 
acquired (externally or on the basis of prior experience), the cycle needs to be 
repeated: training a new model and replacing the one currently in operation. Of 
course, the process can be automatised (and repeated e.g. on a daily basis) but 
such an approach would not be practical in the conditions of continuous inflow 
of new data significant to the quality of the model, e.g. in systems forecasting 
stock exchange price levels. The primary drawbacks of batch learning include 
the need for constant supplementary learning based on large sets of gathered 
data, high computing power requirement (the model is trained from the ground 
up every time) and lengthy learning processes. For those reasons, such pro-
cesses are usually performed ‘in the background’ – on external servers – i.e. 
offline from the perspective of the business process.
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The other option entails training with the use of online systems. In this 
approach, the model is improved incrementally, based on new incoming data. 
This can be done continuously (data stream) or in short intervals (data divided 
into mini-batches). The strategy tends to be employed in situations where data 
significant to the model’s quality are received in a continuous manner (e.g. 
a production line or stock quotations), or if hardware limitations are a factor: 
not enough computing power to retrain the entire model time after time, or not 
enough memory (operating or storage) to effectively manage large datasets.

The efficiency of online learning is affected by two key factors. First, a deci-
sion has to be made as to the extent to which model updates will rely on new 
experiences as opposed to previously gathered data. This factor is determined 
by the so-called learning rate. If the value setting is high, new data will have 
a considerable impact on the model, effectively forcing it to ignore historical 
experience. If the setting is low, the learning rate will minimise the impact 
of new data on the current mode of operation. This can be rather naturally 
referred to the way in which we, humans, update our knowledge: some people 
are quick to forget about the past and are able to flexibly adapt to changes in 
their environments. Others are more conservative: they survey the world, take 
new experiences and phenomena into account, but take considerably more 
time to alter their behaviour. Each of the options has advantages and disadvan-
tages. As with nearly everything else, the trick is to strike a reasonable balance, 
which strongly depends on the current situation and environment.

The other important factor in the context of online learning (although also 
significant in the offline approach) is related to data quality. As data influence 
the model, they also impact the decisions and behaviours of the intelligent 
system. Bad-quality data (incorrect, incomplete, etc.) will significantly hinder 
system performance – not unlike bad-quality food weakening the organism. 
For this reason, machine learning has to ensure not only high efficiency of the 
learning algorithms but also the quality and proper preparation of input data.

To recapitulate the key points presented above, let us once again refer to the 
metaphor of human learning.

The process of machine learning usually includes the stages of gathering 
and preparing data (or developing mechanisms of acquiring the same), select-
ing the learning algorithm, training the model and testing its performance. The 
same is mostly parallel to the classical didactic process of e.g. school teaching.

The learning subject, or student, is the model. The teacher is usually a human 
although, as mentioned above, intelligent machines should have the capacity to 
teach themselves. The model (i.e. our ‘student’) learns based on data. The data 
may be provided externally (e.g. by the teacher) or obtained independently, 
through active interactions with the environment or passive exploration.

Just like in a real classroom, the primary goal of the educator should be to 
make the student independent of the teacher. Thus, the teaching goal in our 
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context is to ‘train’ the model to be able to effectively solve new problems – 
ones never encountered before (e.g. during the training process). Moreover, 
a good teacher will also instil the capacity for independent self-improvement 
(see offline and online learning mechanisms). As with human education, 
machine learning takes advantage of a varied range of teaching (model train-
ing) methods. In our context, machine learning algorithms (e.g. k-means or 
hierarchical clustering) are a direct counterpart of teaching methodologies.

At the beginning of the process, the model (‘student’) usually has no compe-
tences to speak of (with ‘supplementary learning’ being a notable exception). 
The didactic goal is to develop a very specific set of competences. The edu-
cational results can be precisely measured at practically every step of the way 
by evaluating prediction errors, classification quality or levels of punishment/
reward received. The exact measures depend on the type of skill one wishes 
to train. For instance, in the case of classification, the same will be the surface 
area under the receiver operating curve, while for regression, it will be the root 
mean square error.

The purpose of evaluating learning progress is to determine the model’s 
ability to act under new circumstances. Hence, in supervised learning models, 
evaluation should be based on data not previously used in the learning process 
– similar to a school where examined students should not be asked to solve 
questions previously done in class.

As follows from the above, one could draw many, more or less justified, 
analogies between the methods of human and machine learning. The reason 
they were included in these deliberations was to help readers less interested 
in exploring the mathematical and technological particulars of the problem to 
nonetheless develop an intuitive grasp of how intelligent systems develop and 
operate. They also provide a good starting point for the next section which will 
discuss in greater detail various concepts applicable to RL – a crucial contrib-
uting factor in the development of autonomous solutions.

BASIC PRINCIPLES OF REINFORCEMENT 
LEARNING AS A FOUNDATION FOR AUTONOMOUS, 
SELF-LEARNING SYSTEMS

In the preceding deliberations related to machine learning, the ‘machine’ 
(hereinafter the agent) was trained with the use of previously prepared data. 
In supervised learning such data were labelled and in unsupervised learning 
they were not. The agent learned to be able to cope with a new situation and 
correctly identify the ‘features’ of new (previously unencountered) data (in 
supervised learning) or identify certain patterns (in unsupervised learning). At 
the end of the day, the problems solved by the methods described above could 
be reduced to three primary categories: classification (prognosis of a discrete 
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variable), regression (recognition of a continuous variable) and segmentation. 
Whatever the case, however, the same always boiled down to ‘recognition’, 
i.e. interpretation of externally provided data: the agent took no action, did not 
interact with its environment and had no specific ‘mission’ to perform.

But intelligent structures are expected to do more than simply recognise 
and interpret their surroundings. An autonomous robot performing a complex 
mission has to function within a specific environment, integrate with its sur-
roundings, receive feedback on the results of its actions and use all of that to 
achieve a certain ultimate goal. Such a process is considerably more complex 
and involves qualitatively new elements such as ‘actions’, ‘response from 
the environment’ or ‘goal’. Presented below is the concept of so-called rein-
forcement learning – a method that underlies a vast majority of contemporary 
autonomous systems, be it robots, drones or conversation bots. The following 
paragraphs will discuss the primary concepts involved, interactive learning 
methods and key algorithms, while the most important challenges faced by 
such systems will be mentioned in the summary. An intuitive grasp of these 
methods will facilitate a better understanding of solutions discussed in the 
following chapters as well as the rather fascinating relationships between 
mechanisms constituting the basis of decision making as observed in humans, 
organisations and machines.

Agent, Environment, Actions, Observations and Rewards

Our analysis should start with the explanation of some key concepts.
The computer program that we wish to teach how to effectively act under 

new circumstances is referred to as the agent. In this context, effective per-
formance is understood as the ability to solve sequential decision-making 
problems under conditions of uncertainty in order to maximise a pre-defined 
goal function.

It is noteworthy at this point that the agent is only the decision centre, 
a piece of software: its sole task is to make decisions, not implement them. 
Consequently, a robot working autonomically on a production line is not an 
agent; the agent is the software controlling its operation (which, notably, may 
just as easily be running remotely, e.g. in the cloud). Arms, motors and other 
actuators are considered elements of the environment as far as the decision 
centre is concerned. This distinction may become more compelling once 
we consider that robots often operate within stochastic environments, where 
a decision to move e.g. right does not guarantee (it may only provide a certain 
level of probability) that a move to the right will indeed be executed: in prac-
tical applications it may indeed happen that the resulting motion will be to the 
left. We have all experienced a similar situation at one time or another, e.g. 
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when trying to walk on ice: the decision is one thing, but actual execution is 
a different story. . .

The agent has a certain inherent structure: interfaces that allow it to com-
municate with its environment (receive information about the state of the 
environment and transmit decisions concerning respective tasks) as well as 
the decision centre itself (the ‘brain’), which makes decisions with the aim 
of maximising the so-called goal function, evaluates their effects and learns 
so that each subsequent iteration of the action yields even better results and 
contributes to mission execution. Therefore, the key components of the agent 
include interfaces and the ‘brain’, while the primary processes involved are 
interaction, evaluation and improvement.

The agent operates within a certain environment. It encompasses everything 
external to the agent, of which it has no complete control. In particular, the arm 
of a robot is an element of its environment: as already mentioned, the intention 
of moving it to the right cannot guarantee such motion (e.g. due to failure or 
an obstacle).

From the perspective of the agent, the environment is represented by a set 
of variables related to the problem. For a robot, these could include e.g. the 
position of the object that is to be moved or the position and speed of the arm 
it uses. For a drone, it could be its speed (in three dimensions) or position 
and rotational speed of the respective rotors. The state of the environment 
is defined by a set of values assigned to said variables at a given time. It is 
a subset of the so-called state space: the set of all variables describing the 
environment and all of their possible values. In turn, observation performed 
by the agent at any given moment is a part of the state it perceives at the time. 
The distinction between the state of the environment and observation is very 
important: it is often the case that the agent has access only to a small subset of 
information regarding everything that is happening to it and around it. A good 
parallel would be the spectrum of electromagnetic waves we are able to per-
ceive: only a fraction are visible but that does not mean we are not surrounded 
by e.g. radio waves.

The agent usually has a specific task to perform within the given environ-
ment. The task may have a definable conclusion (e.g. in the game of chess) 
or not (e.g. navigating a given space). The former are referred to as episodic 
and the latter as continuous tasks. In the case of episodic tasks, the sequence 
of steps from the beginning to the end of the task performance is called an 
episode, while the total of rewards collected in the course of a single episode 
(e.g. gold picked up while navigating a labyrinth) is referred to as the return. 
The agent is usually programmed to make decisions aimed at maximising the 
return; it may, however, repeat the episode several times to learn the optimum 
pattern. In the process of learning, continuous tasks are often limited by impos-
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ing certain finite stages (e.g. number of steps), which brings them somewhat 
closer to their episodic counterparts.

The goal of the task is indicated by a special signal transmitted to the agent 
by the environment and described as the reward. Its value may be positive, 
negative or zero – whatever the case, the RL terminology will refer to it as 
a reward. The manner in which the environment rewards the agent is critical to 
the learning progress – not unlike in human learning in fact. The issue will be 
discussed in greater detail in the rest of this chapter (cf. Morales 2020) but it 
should be noted at this point that rewards may be delayed in time to a varying 
degree, awarded with varying frequency or have a varying nature (evaluative 
or instructive).

In some cases, this delay can lead to a situation where the actual conse-
quences of the action taken will only become apparent after some time: imme-
diately after eating a cookie, we feel great (high reward), but after a month 
of having ten cookies for supper every day we will start receiving troubling 
signals. The rewards evaluating our actions may be given very frequently (e.g. 
after each activity) or more rarely (e.g. once in every ten actions). The former 
case could be compared to a mother praising or criticising her child every 
other minute – this can accelerate learning but puts the agent at risk of copying 
the behavioural patterns of the teacher (mother), therefore hindering its future 
self-reliance. In the context of machine learning such a situation is described 
as overtraining. Less frequent feedback will have the opposite effect: slower 
learning but more space for experimentation, which helps to develop inde-
pendence and discover new, more effective methods. Finally, evaluative feed-
back refers to the values of states achieved after the performance of actions, 
while instructive feedback reflects the values of the actions performed. The 
function determining the reward that the agent is to receive in the given state 
of the environment is called the reward function.

The goal of the agent is to perform a task posed to it by the environment. In 
order to do so, it must have the capacity to make decisions maximising the total 
reward (in the case of episodic tasks: the sum total of the returns accumulated 
during the task), which in turn requires long-term planning. The agent should 
also be able to gather information and, due to the fact that it cannot explore all 
the states of the environment, generalise its experiences to account for other, 
similar states. At the end of the day, it should have the ability to create the 
optimum policy: method of choosing actions in response to the given situation 
with a view to performing the task. From the mathematical point of view, it 
means the ability to learn the function mapping observation into action.

Tasks are performed through the agent’s interactions with the environment 
(Figure 1.4). This usually takes place in cycles comprising action, feedback, 
reflection and update. In the first stage, the initial state of the environment 
is surveyed. Next, based on the available knowledge, a decision is made to 

Andrzej Wodecki - 9781839104954
Downloaded from Elgar Online at 11/29/2020 08:28:10PM

via free access



Artificial intelligence and machine learning landscape 21

choose the optimum action. The action is performed, and feedback is received 
to determine the state of the environment resulting from the action (i.e. the 
influence exerted) and the reward received. Next, the effects are evaluated, 
policy is updated and the cycle begins anew.
The cycles can be scaled to very diverse time intervals – from milliseconds, 
through hours, to days – depending on the given problem and environment. 
After each cycle, the agent gains a certain experience represented by a spe-
cific dataset (often referred to as tuple in information technology jargon) 
pertaining to the initial state, undertaken action, resulting state and reward. 
The experience is usually gathered as a separate dataset used in the process of 
self-improvement, both by individual agents and entire teams.

In each state, the environment allows the agent to undertake certain actions 
– the scope of which can vary in time. As already mentioned, the action may 
(but does not have to) influence the environment. The function describing the 
way in which a given action affects a given state (i.e. mapping action > state) 
is called the transition function.

Now that we have discussed the basic terms and pattern of agent behaviour, 
we can turn our attention to two other, very important concepts: Markov 
Decision Process and world model.

When updating its performance, the agent has to make certain assumptions. 
One of the most important of the same is the so-called Markov property which 
can be explained in a single sentence: ‘The future is independent of the past 
given the present’. In other words, the future of a system depends solely on 
the decisions made in the present – the past is no longer a factor. This rather 
extreme premise proves to be very effective in practice, it greatly simplifies 
calculations and facilitates solving complex problems. Decision processes 
consistent with the Markov property are described as Markov Decision 
Processes.

A world model can be compared to a map of a new territory: having the 
same will greatly increase the chances of finding the optimum solution. With 
a map of a city, one can easily find the shortest route from point A to point B 
without having to explore, which reduces the scope of the problem to simple 
planning. If one has no map, one is forced to try different variants and gradu-
ally create one, which takes time and, if obstacles emerge, can also prove risky.

In summary: actions performed by an agent alter the state of the environment 
(which is described by the transition function) and, in the given state, reward 
is provided as dictated by the reward function. Within the framework of RL, 
knowledge of the world model comes down to knowing those two functions: 
transition and reward. In other words, we could say that we know the world 
model if we know (1) what state s’ will result from our action a performed in 
the state s and (2) what reward r will be received in the state s’.
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Learning through Interaction

With the basic nomenclature explained, it is time to take a closer look at some 
key concepts related to the methods of teaching agents as to how to efficiently 
perform tasks in an environment.

As already discussed, interactions between the agent and its environment 
take place in the cycles of observing the state of the environment, perform-
ing an action and gathering feedback (new state and reward). Each cycle is 
described as a time-step, while the complete set of information gathered during 
each time-step (initial state, action, final state, reward) is called experience. 
It was also mentioned that the gathered experience is evaluated by the agent 
(reflection) in order to update the decision-making policy. In other words, the 
agent improves its performance by learning through trial and error based on the 
experience gathered, which constitutes the essence of RL.

Feedback is crucial to the learning process. The forms and types of such 
information depend strongly on the given task and environment, which pose 
considerable challenges and greatly affect the learning strategies. The issue 
will be discussed in detail below – gaining an intuitive grasp thereof is not 
only key to understanding the problems of RL but may also prove useful in 
personal life.

Firstly, feedback from the environment can be staggered. The consequences 
of choosing a given action in the present state may only become apparent in 
a more distant future (not necessarily in the next time-step). The goal of the 
agent is to undertake here and now actions aimed at maximising the total of 
rewards gained during the episode, and not at maximising the rewards appli-
cable to subsequent states. The agent must therefore be able to learn from such 
staggered feedback as well.

Strategies can vary and are highly dependent on the problem. For instance, 
in the case of episodic tasks with the possibility of performing multiple 
episodes, the agent may learn the world model on an episode-by-episode 
basis (i.e. discover the transition functions and rewards), and based on the 
continuously perfected model, make decisions with the aim of maximising all 
the rewards (from all the time-steps). This becomes somewhat problematic if 
one has only a single ‘life’ at one’s disposal, calling for a different strategy, 
e.g. relying on the experiences and value systems of other agents (in our case: 
humans), which as we know, is hardly easy and in no way guarantees success.

Another factor diversifying information received from the environment 
is the character of feedback. In their acclaimed textbook, Sutton and Barto 
(2017) compared RL to other machine learning methodologies and concluded 
that a reward constitutes a signal evaluating the quality of action (so-called 
evaluative feedback) rather than an instruction indicating the correct action 
(so-called instructive feedback). This interesting classification of machine 
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learning methods based on distinguishing between two types of feedback 
received in the learning process (evaluative (assessment of the consequences 
of action) and instructive (recommendation of the best action in the given state 
regardless of the actual action of the agent)) may be easily applied also to the 
methods of human education.

Instructive learning basically boils down to imparting a certain set of 
what-if procedures: in this state you should do this. The role of the teacher is 
to determine whether the action was consistent with the procedure and evalu-
ate the discrepancy (i.e. error). The main limiting factor in this context is the 
experience of the teacher (or the available training dataset): future problems 
may emerge in situations that the teacher was not aware of (or simply did not 
think to account for in the process of generalising his knowledge). In the case 
of evaluative learning, the role of the teacher is assumed by the environment 
itself (i.e. the situation in which the agent finds itself). It informs the agent of 
the consequences of a given action (good, bad, neutral) without suggesting the 
optimum course of action. It is the learner that has to evaluate the action taken 
in the given state (situation), which is not easy as it requires disciplined exper-
imentation and honest self-assessment. At the same time, however, it creates 
the potential for exploration and finding new, more effective policies. In short: 
one can either be taught through instruction, by pointing out the adequate 
behaviour in a given situation, or through encouragement to undertake varied 
action, with the only support coming in the form of feedback on the conse-
quences thereof. The former approach is characteristic of supervised learning, 
the latter of RL. Naturally, in practical applications there are various methods 
seeking to find a middle ground between these two extremes; nonetheless, the 
above classification will be very useful to us.

To recap, in the case of RL, the agent must be able to learn from evaluative 
(rather than instructive) feedback. The knowledge as to which action is optimal 
in the given state should be generated by the agent itself, and then applied to 
making effective decisions. Interestingly and quite paradoxically, knowing the 
values of respective actions is, in itself, insufficient: were we to always make 
decisions that our experience indicates as best in the given situation, we would 
never have a chance of verifying the possible consequences of sub-optimum 
actions.

In RL this phenomenon is referred to as the dilemma of exploitation and 
exploration. Exploitation is the policy of always choosing the action that our 
experience tells us will yield the highest reward possible. Unfortunately, this 
approach has two inherent risks. The first is the already mentioned inability 
to test the effects of actions other than the alleged ‘optimum’: the value of an 
action can be determined through experimentation, and exploitation prevents 
it by its very definition. The second risk stems from the possible changes to 
the environment: a decision that was optimum ten years ago may be less than 
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so today. Thus, a given incentive system may be optimum in one group of 
employees but may fail completely and even disincentivise others. As evident 
from the above, striking a good balance between exploration and exploitation 
is quite the challenge, not only in the context of machine learning.

Another key competence of a digital agent is the ability to generalise. To 
reiterate the relevant point, the agent learns by interacting with its environ-
ment, which generates feedback. It surveys the state of the environment, takes 
action, checks the state resulting from the action and evaluates the potential 
reward. Let us now consider the same process from the perspective of action 
and state space.

Again: the state space is the set of all possible states which the environment 
can have, and the action space is the set of all possible actions available to the 
agent at a given time (or more precisely: that the environment allows in its 
given state). Spaces can be both discrete and continuous, and this character-
istic applies to all possible values assumed by variables describing the given 
environment or action. This sounds somewhat abstract, so it would be prudent 
to illustrate the point with a few examples.

Firstly, let us consider the so-called grid-world. Imagine an agent travelling 
across a 5×5 square board, starting its journey from the top-left square. The 
goal is to reach the bottom-right corner while maximising the reward collected 
on the way: there are various ‘positive’ (let’s say gold) or ‘negative’ (e.g. traps) 
rewards waiting on the respective squares of the board. In this case, both the 
state space and action space are discrete. Each state is described by two vari-
ables (x and y) with a finite range (1 to 5). The available actions are also dis-
crete: up, down, left, right (in some extreme positions only e.g. right or down).

Another ‘classic’ example is the so-called inverted pendulum problem. 
Imagine an agent whose task is to control a horizontal platform on which 
a vertical stick is balanced. The idea is to prevent the stick from tipping over 
for as long as possible (the scenario is performed with software simulating the 
laws of physics).

In this case the state space is continuous: even though the state of the stick 
can be described with only four parameters (horizontal position, horizontal 
speed, angle of inclination and angular velocity), each can assume an infinite 
number of values. Meanwhile, depending on the environment, the space can be 
discrete (e.g. move left or move right) or continuous (e.g. move left with speed 
vl). The question whether the state space is discrete or continuous is immensely 
important when choosing the RL method of training the agent. In the case 
of discrete spaces with a limited number of dimensions, one could easily 
imagine a situation where the agent, given sufficiently many episodes (e.g. 
when training on a simulator) will ultimately ‘visit’ all the states and perform 
all the actions possible therein. This may take some time but (assuming that 
the environment is deterministic) the agent will be able to develop a complete 
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world model based on experience, which in turn will practically reduce the 
problem of exploration to simple planning. After the subsequent update, 
the policy will be reducible to a function which, given sufficient input data 
describing the given state, will return parameters describing action. Notably, 
due to the limited number of possible values attributable to the parameters 
of states and actions alike, that function will be multivariate but with a finite 
number of dimensions, matrices. In other words: the policy will be reduced to 
a finite number of what-if rules, where both what (action) and if (state) will 
have a finite number of possible values.

However, things tend to get significantly more complicated if one of the 
spaces, be it states or actions, becomes continuous. In this case, the variables 
describing e.g. the state may take an infinite number of possible values – which 
means that compiling a complete world model (i.e. two functions: (state; 
action) > new state and state > reward) would require an infinite number of 
experiments (due to the need to ‘visit’ all the possible states and try all the 
possible actions). And clearly, that is an impossibility.

This is exactly why we expect our agent to have the capacity for general-
isation. It allows the agent to use its limited experience to formulate policies 
capable of recommending optimum action in a given state3 even if it is 
potentially infinite. Generalisation most commonly entails attributing a rec-
ommended action to a certain value range of variables describing a given state. 
For instance, in the case of the inverted pendulum, the policy could include 
rules such as: if the inclination is in the range of 85–90 degrees left and the 
speed does not exceed 10 cm/s, move left. Notably, the agent should be able to 
generalise not just the policy (function of action > state) but also the transition 
function (map of (state, action) > next state) as well as the so-called value 
function (map of (state, action) > value).

In practical implementations, strong, non-linear approximate functions are 
used for this purpose: multiple mathematical transformations of input variables 
(cf. Nielsen 2015). The methods and techniques of machine learning, in par-
ticular neural networks, prove rather useful in this context. RL models utilising 
deep-learning neural networks go by the name of deep RL.

To recapitulate, in order to effectively operate in environments where 
continuous spaces of states and/or actions are present (i.e. nearly all practical 
applications), the agent should have the capacity to learn from fragmentary 
feedback: i.e. information reflecting only a small subset of all possible state <> 
action configurations. This can be achieved if the agent is able to generalise, 
which in turn is facilitated by approximators such as artificial neural networks.

Before we proceed to present the strategy of developing the above-mentioned 
skills in RL agents, let us reiterate (after Russell et al. 2010 and Morales 2020) 
the classification of environment features, levels of agent knowledge and types 
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of feedback, which will significantly aid us in navigating the dozens (if not 
hundreds) of different possible problems and RL algorithms.

Let us first have a look at environment features. As already mentioned, 
the spaces of states and actions can be either discrete (finite) or continuous 
(infinite). In turn, the functions of transition (i.e. map of (state, action) > new 
action) and reward (map of state > reward) may be either deterministic (when 
it is certain that e.g. action a in state s will produce state s’) or stochastic (when 
there is no such certainty and one can only estimate, based on previous expe-
rience, the probability P of action a performed in state s producing state s’).

Another element facilitating the classification of RL problems is the level 
of the agent’s knowledge about the environment. As far as the space of avail-
able action is concerned, in practice it is always assumed that the agent had 
complete knowledge of the same. It is another matter entirely, however, when 
it comes to knowledge of the state of the environment – here, there are three 
possible scenarios: the agent has exhaustive knowledge about the state of 
the environment (i.e. observation = state of the environment), the agent has 
only partial knowledge (observation is a subset of the state: the agent knows 
something but does not have full insight) or the agent has no knowledge of the 
state (it is ‘blind’). When it comes to knowledge of the world model (i.e. of the 
transition and reward functions), the agent can either know them (each taken 
individually) or not (in which case it will be forced to learn). Agents can also 
have varying access to information about the reward: again, this knowledge 
can either be exhaustive or sampled.

Finally, the determination of reward characteristics is also helpful in clas-
sifying RL problems. Firstly, the moment of receiving it is a factor: the agent 
may be rewarded immediately after completing an action (so-called one-shot 
reward) or over a certain period of time (reward is delayed) – in which case it 
is said that the reward is sequential. Another factor is the actual character of 
the reward: as already mentioned, it can reflect the consequences of actions 
(so-called evaluative feedback) or simply constitute an instruction (supervised 
feedback).

The classification in Table 1.1 can significantly facilitate the identification 
of optimum strategies and algorithms applicable to the agent’s training. For 
instance, the agent can operate in an environment characterised by a discrete 
state space, continuous action space, stochastic transition function and deter-
ministic reward function, with only sampled knowledge of the current state, 
no knowledge of the transition function, but exhaustive knowledge of the 
reward function, with an evaluative reward being provided immediately after 
the action.
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Table 1.1 Classification of reinforcement learning problems

feature of the environment agent’s knowledge

states discrete / continuous space exhaustive / limited / none

actions discrete / continuous space known

feedback immediate / sequential exhaustive / sampled

feedback evaluative / instructive exhaustive / sampled

transition function deterministic / stochastic exhaustive / none

reward function deterministic / stochastic exhaustive / none

Source: Own elaboration.
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Before we proceed to present the main RL algorithms, let us first summarise 
our deliberations up to this point by indicating the most interesting challenges 
faced by an agent aiming to learn how to effectively perform in a given envi-
ronment. Above all, the agent must resist the temptation to immediately aim 
for the maximum reward. It often needs to assume that although the choice of 
a given action promises to yield a high reward in the short term, all hell might 
break loose later on… If the reward is to be maximised in the perspective of 
the entire episode (‘life’), adequate balance must be struck between fast but 
minor immediate gratification and delayed but overall much larger reward in 
the future. Naturally the key word in this sentence is balance: excessive ascesis 
is also not without many inherent dangers – indeed, this is the very source of 
the challenge.

Another problem relates to the infinite multitude of states and choices. 
Too much choice is not a good thing: a fact that any sales person or aspiring 
violinist will readily corroborate. Hence, due to often limited possibility of 
experimentation, the agent must learn the art of wise generalisation: to classify 
states and actions so that ultimately, a finite, manageable number of choices 
is returned. In this case wise is the key word: overly simplified classification, 
e.g. binary – reduced to dichotomies such as good–bad or red–blue, tends to 
be a dead end (leading to overly stereotypical thinking). On the other hand, an 
excessive number of categories yielding thousands of potential options will 
prolong and complicate decision-making processes, thus negatively affecting 
performance. In short, the agent should be able to generalise, but wisely.

The last important dilemma derives from the type of feedback and comes 
down to the choice between exploitation and exploration. Should I always act 
based on knowledge, backed with experience of what is the best for me? In 
other words, should I always choose actions which, based on my knowledge, 
are optimum? Or should I go wild from time to time: take a risk in the hope 
of unexpectedly arriving at new, even more attractive states? And if I were 
to combine the two, how do I decide on the ratio? Clearly, this is yet another 
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case where the agent should strive for a certain optimum balance – between 
following the safe route and taking risks in search of better ones.

Such inherently human dilemmas are approached, in a variety of ways, at 
the level of algorithms which, when implemented in software and end devices 
(e.g. a robot controller), allow the machine to become increasingly autono-
mous and, in a sense, more rational. The specific business applications thereof 
will be discussed in Chapter 2; for now, let us focus on the most important 
algorithms used in RL.

Key Reinforcement Learning Methods and Algorithms

As already mentioned above, RL algorithms come in a wide variety of shapes 
and forms, while the dynamic growth of this field of study continuously stimu-
lates the development of new ones. To gain some measure of understanding of 
their possible applications, strengths and weaknesses, one needs to first adopt 
a simple, manageable taxonomy thereof.

One of the most popular classifications of RL algorithms (cf. OpenAI: 
Spinning Up 2018) distinguishes them first in terms of the level of knowl-
edge about the environment, and then based on the object of learning as 
such. Knowledge about the world can be based on a certain world model 
(model-based RL) or not (model-free RL). Furthermore, model-based algo-
rithms can be divided into those where the model is externally provided 
(given the model) and those that require it to be learnt (learn the model). In 
turn, model-free algorithms come in value learning and policy optimisation 
variants. Each of the mentioned categories will be briefly characterised below.

Let us first consider algorithms teaching the agent how to evaluate its deci-
sions in a situation where it has exhaustive knowledge on the state of the envi-
ronment, the reward is delayed in time and the agent uses a world model when 
making decisions. It is a rather rare and untypically convenient situation for 
the agent; nonetheless, it will provide a good starting point in the introduction 
of the ideas underlying RL algorithms. A classic example of such a problem 
is the already discussed task of navigating a labyrinth: travelling from point 
A to point B in such a way, so as to maximise the reward in a situation where 
the rewards waiting on respective squares can be either ‘positive’ (e.g. gold) 
or ‘negative’ (e.g. traps).4 At any given moment, the agent has exhaustive 
knowledge about the state of the environment (agent’s position), its task is 
to maximise the reward sum total and it can make an unlimited number of 
attempts in the learning process (it has endless lives).

The goal of the agent (i.e. also the ‘didactic goal’ of the RL process) is to 
identify the sequence of events that yields the maximum cumulative reward 
in the given episode (return). The goal can be reformulated as finding the 
optimum policy, where optimality refers to maximum return in the course of 
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the episode, and policy means the manner of choosing the action to be per-
formed in each of the possible states.

Policy is a key concept in this context. From the perspective of mathematical 
formalism, it is the function (map) of state > action.5 Naturally, the agent will 
have a choice of several possible policies within a single environment: e.g. 
in our labyrinth it can determine that it will always start by turning left, then 
proceed two squares forward, or turn right and move three squares forward, 
etc. Notably, such policies can be deterministic (specifying only a single action 
in a given state) or stochastic (recommending the probability distribution of 
actions in a given state).

Another vital element of the training process is the level of knowledge about 
the world model (i.e. the functions of transition and reward). As already stated, 
the function of transition is the map of (state, action) > state’, whereas the 
reward function is the map of state > reward. If the agent knows both these 
functions, it has exhaustive knowledge of the possible consequences of actions 
in the respective states as well as the rewards it can expect to obtain. If com-
plete and accurate, such information reduces the problem to mere planning:6 
identifying the optimum policy, rather than learning the optimum course of 
action.

So how does one define the policy in a situation where one has full knowl-
edge of the consequences of any action in any state? The problem basically 
boils down to the following question: of all the possible policies, which one is 
the most valuable?, which in turn leads to the problem of determining the value 
of a given policy.

The policy for each possible state indicates the course of action that the 
agent should take: in the case of the example grid-world, knowing the world 
means being able to identify the route for traversing it in accordance with any 
given policy. At the same time, the agent is perfectly aware of the reward that 
any given state can yield. Consequently, assuming that we always start on 
square A and finish on square B, and that the world does not change in the 
course of the model (admittedly, some very strong assumptions…), the value 
of each strategy can be calculated as the sum total of all rewards collected by 
navigating the route indicated thereby. And that value provides the basis for 
identifying the optimum policy.

Naturally, in practical applications the calculation of policy value tends to 
be somewhat more complex than that. Two new concepts come into play in 
this process: the state-value function (V) and the action-value function (Q).

The state-value function Vπ(s) allows a certain value to be attributed to 
a state. This value is understood as the expected sum total of all the rewards 
that will be collected by an agent beginning its ‘journey’ from the given state, 
provided that it proceeds in accordance with the given policy. In our case 
(grid-world) calculating the function will assign each square on the board with 
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a certain value, which informs the agent: if you start your action from this 
square and follow the policy π, this is the reward you will get.

An interesting question worth considering when calculating the state-value 
is the delay of reward. The dilemma is this: when we find ourselves in a given 
state, to what extent should we account for rewards obtainable in a very 
long-term perspective when assessing its value? RL methodology solves the 
dilemma as follows. The value of a given state is calculated as (1) the reward 
obtainable immediately after achieving the same, plus (2) the value of the sub-
sequent state (i.e. the next state to be reached when following the given policy) 
times the discounting factor which can assume values from 0 to 1. The decision 
on the actual level is, in a way, a measure of the agent’s (or more specifically, 
the teacher’s) hedonism. If the value is 0, it means we proceed solely based 
on the benefit generated by the given state (extreme hedonism): subsequent 
rewards have no importance whatsoever. If the value is 1, all possible future 
rewards are equally as important as the immediate reward obtainable upon 
reaching the given state: this extreme means maximising the reward in the 
perspective of the entire episode (‘life’).

Another fundamental function in many algorithms is that of action-value 
Qπ (s, a). It determines the total cumulative reward to be obtained by an agent 
beginning its journey in the state s and taking action a in this state. At first 
glance, it would seem that the function’s role is only auxiliary: knowledge of 
the value function and policy should be sufficient to evaluate a given policy. 
But this approach has been found to work only in the situation of exhaus-
tive knowledge of the world model, which is rather uncommon in practical 
applications.

With the defined and calculated functions of states and actions (without 
complicating things with many important methods that allow the same to be 
actually plausible in practice, e.g. Bellman equation or dynamic program-
ming), we can now turn to the problem of identifying the optimum policy.

To once again use our example, let us imagine an agent in square s faced with 
the choice of one of four available actions: go up, down, left or right. Which 
one should it choose? The answer can be fairly easily obtained on the basis 
of (1) one’s knowledge of the world (in this case knowledge of the state one 
will end up in after choosing each of the options), and (2) the pre-calculated 
function of the state-value. The first policy that immediately springs to mind 
is simple: let us choose the action that will lead us to the state with the highest 
value. In fact, this is so inherently tempting that the RL nomenclature tends to 
refer to it as the greedy policy – but, as will be demonstrated next, it does not 
necessarily have to be the best choice.

In our previous example, the agent knew the world model: it was able to 
precisely predict the consequences of its actions in all the states; in particu-
lar, it knew what states would follow from all of the possible actions and 

Andrzej Wodecki - 9781839104954
Downloaded from Elgar Online at 11/29/2020 08:28:10PM

via free access



Artificial intelligence in management32

what rewards would be gained as a result. Hence, the problem of identifying 
the optimum policy came down to proper planning: using the functions of 
state-value and action-value, the agent could identify the optimum policy 
without the need for experimentation (exploration). However, the process 
becomes somewhat more complex in a situation where the agent cannot use 
such a model. We then have only two possible options: either find a way to 
learn the same or find another method of identifying the optimum actions. 
Methods following the former approach are classified as model-based (the 
agent initially does not know the model but decides to learn it), while algo-
rithms that do not rely on a world model at all are called model-free (as it turns 
out, one can do pretty well even without a ‘map’).

Let us first discuss the methods of cognising the world. As mentioned 
before, knowledge of the world is equivalent to knowledge of the transition 
function (map of (state, action) > state’) and reward function (map of state > 
reward). But how does one acquire this knowledge?

Firstly, we could consider a rather convenient situation where the task is 
episodic in nature (it has a beginning and an end), and the agent can learn 
by performing an unlimited number of episodes (there are no limitations to 
exploration). In this case, learning can be based on complete episodes by 
repeating the experiment numerous times and registering all the states reached 
by the agent, consequences of the actions taken and rewards gained. In time 
(with sufficiently many repetitions), we would end up with the complete set of 
information needed to build the world model (transition and reward functions), 
which in turn would be sufficient to identify the optimum policy (calculate the 
function of state- and action-value, etc.). The methods allowing calculation of 
the action-value function based on complete episode iterations are referred to 
as Monte Carlo (MC) methods.

However, in the real world, the agent’s situation is hardly ever convenient 
enough to allow actually ‘visiting’ all the states and testing all the possible 
options (imagine trying to taste all the dishes offered in all the restaurants in 
your city…). This may be due to time or resource limitations (e.g. the power 
of computers used for simulations) and, naturally, the greater the ‘density’ 
of states (number of possible values of the respective parameters describing 
a state) and actions (number of actions possible in a given state), the greater 
the number of options that need to be examined. Consequently, it becomes 
crucial to develop a strategy for approximation (rather than exact calculation) 
of the action-value function. RL terminology refers to this as the problem of 
prediction: the quality of prognoses relative to the value of a given action in 
a given state is key to identifying the optimum policy, which comes down to 
the simple observation that a policy is only as good as the prognosis used in 
its development. A well-estimated action-value function (i.e. knowledge of the 
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value of the given action in the given situation) constitutes the basis for identi-
fying the optimum policy (solving the so-called control problem).

In situations where estimating the functions of state-value and action-value 
based on complete episodes is found to be unfeasible, methods other than MC 
have to be employed. The first of such methods entails prediction on the basis 
of temporal difference (aptly called the temporal difference method (TD)). The 
initially randomly initiated function of value is later updated step by step (and 
not at the end of the episode as in the case of MC), whereby a step is under-
stood as any single interaction between the agent and the environment (i.e. 
a sequence of observation > action > feedback). Updating the value of a given 
action in a given state comes down to adjusting the current value by accounting 
for the so-called prediction error: the difference between the current estimate 
and the actual experience. In considerably simplified terms, this means that if 
the value of the new state calculated based on the current state-value function 
is at level V (estimate) and the actually experienced value is at level T (target), 
we should adjust the value function for the given state by T−V (i.e. so-called 
prediction error). The difference between MC and TD methods stems from the 
fact that in the former, the value function is updated only at the end of each 
episode, whereas in the latter, after each consecutive step, which significantly 
reduces the time needed to learn what is preferable (the value function).

Methods such as TD and its variants (e.g. n-step TD or TD-Lambda) aim 
to address one of the major limitations of RL – that is, limited availability of 
samples or possibility of conducting experiments (so-called sample efficiency). 
Learning by trial and error is safe in environments simulated by computers 
(although even then we can encounter limitations such as available computing 
power) but can be less than that when conducted in the actual physical world; 
just imagine using this method when training an autonomous vehicle, with the 
length of one episode defined relative to the life expectancy of the driver or 
other road users.

The methods of identifying the optimum policy described so far were based 
on learning the value (so-called Q-learning) of both states and actions. It turns 
out, however, that an effective policy can also be developed by directly opti-
mising the policy itself – some of the major methods following this approach 
will be presented below.

First, however, let us reiterate some of the main points already discussed. 
Knowledge of the world model (i.e. functions of transition and reward) allows 
one to identify the optimum strategy (one that maximises the total attainable 
reward) without the need to interact with the environment. However, the prac-
tical applicability of such an approach is negligible, hence the agent is forced 
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to learn by trial and error. As it explores the environment, in each new situation 
it encounters it must answer the following questions:

1. What do I ask the environment? What information about the given state is 
the most important to obtain?

2. How good are my current estimated action-values?
3. What task should I engage in now?

a. Should I act based on my previous experience (choose the action with 
the highest value score)? < exploitation

b. Or should I take a chance and attempt a sub-optimum action in this 
situation? < exploration

As clearly follows from the above, the exploit or explore dilemma plays a very 
significant role in the process, becoming one of the key elements of the ulti-
mate policy.7 The key to finding the right balance can be expressed as follows: 
our goal is to develop the best possible policy, so that we can later exploit it; 
but in order to do so, we must first engage in intensive exploration. In this 
sense exploration builds the foundation for future, effective exploitation. 
Morales (2020) illustrates this with a rather apt analogy: It is like searching for 
a gold vein in El Dorado: before you can effectively exploit it, you must first 
spend a lot of time looking for it (perform a lot of explorations).

Exploration strategies in RL can be divided into random, optimistic and 
based on the space of information states. An agent following the policy of 
random exploration, in most cases chooses the action with the highest value 
(maximum result of the state-value function Q), but at times will also opt for 
a lower value action. The term at times is defined by the parameter ε which 
can take values from 0 to 1 and denotes the probability of taking a chance and 
selecting an action other than the one known to yield the highest value (based 
on our current experience). The value of ε is a policy parameter. If it is set to 
0, the agent will follow the greedy policy (no experimentation), whereas if 
ε=1, the agent will completely ignore previous experience and always opt for 
exploration. Notably, after each such experiment, the function of Q is updated 
– the learning process continues. A good example of a practical application of 
the 0.25 value could be a policy where in 75 per cent of the cases, we select 
our favourite food at the restaurant, while in the other 25 per cent of the cases, 
we follow the recommendation of the waiter. Clearly, as with the dilemma of 
delayed pleasure determined by the parameter of (hedonism <> salvation after 
death), here too (conservatism <> recklessness) many analogies can be found 
with everyday choices. The primary difference, however, lies in the number of 
available episodes: reinforced learning usually provides many more than we 
can hope to enjoy in real life.

Andrzej Wodecki - 9781839104954
Downloaded from Elgar Online at 11/29/2020 08:28:10PM

via free access



Artificial intelligence and machine learning landscape 35

Naturally, random policies come in many diverse variants. In practical 
applications, training a model begins with a high level of exploration, which 
tends to be gradually reduced as the process progresses through subsequent 
episodes (by lowering the ratio). A somewhat more refined model (so-called 
SoftMax exploration strategy) correlates the probability of choosing a given 
sub-optimum action with the value of such action – one could describe it as 
random with a preference for…

Optimistic strategies such as optimistic initialisation strategy, upper con-
fidence bound or Thompson sampling strategy are based on the assumption 
that high uncertainty is welcome in the decision-making process (somewhat 
along the lines of no risk, no fun). By randomly assigning the initial values of 
the value function, we initiate it together with the function associating each 
action with a certain level of confidence. Next, in each subsequent step, we 
quantify the uncertainty related to respective decisions made and promote the 
decisions with higher uncertainty in the process of exploration. In information 
state-space strategies, the information states (including uncertainty) of the 
agent are treated as features of the environment. It perceives uncertainty as 
an additional dimension of information about the state, and consequently less 
explored states are perceived differently.

How can one approach the task of streamlining policies? The most popular 
method employed in a variety of algorithms is the so-called General Policy 
Optimisation, which entails an iteration of three, deceivingly simple steps:

1. Take the current policy.
2. Evaluate it.
3. Improve it.

 (repeat until you reach satisfactory results)

Although seemingly trivial, these steps have been practically employed in the 
development of many inspiring methods and techniques.

Let us then have a closer look at what exactly is meant by evaluation and 
improvement.

Starting from the beginning, the ‘entry level’ policy determines the agent’s 
actions in a given state. It could be e.g. the greedy policy: where in each state 
the agent always opts for the highest-value action.8 Or one of the more or 
less explorative ones: the highest-value option is chosen in most cases but, 
now and again with the probability of ε, one lets luck decide the outcome. It 
can also be any of the other possible variants. What matters is that the policy 
is ‘accompanied’ by estimation of the action-value function Qπ (s, a) which 
assigns each of the possible actions in each of the possible states with a certain 
value understood as the total reward expected when performing the given task 
in the given state in accordance with the initial policy.

Andrzej Wodecki - 9781839104954
Downloaded from Elgar Online at 11/29/2020 08:28:10PM

via free access



Artificial intelligence in management36

The second stage entails evaluation of the policy’s effectiveness. The key 
word in the previous paragraph was estimation. Our goal is to improve the 
current policy – i.e. we humbly acknowledge that we have less than complete 
confidence in the estimated value of function Q and agree to conduct an experi-
ment to verify it. This is particularly important in the context of early iterations 
when estimations of action-values are pretty much random (or assumed based 
on experience from other projects, available heuristics, etc.).

And how does one go about verifying the accuracy of one’s estimates as to 
what is and what is not correct? By experimenting of course! The agent gains 
new experiences, usually through interactions (i.e. sequences of observing 
the state > taking an action > gathering feedback) but also, in the case of the 
model-based method, by consulting the world model. After conducting the 
experiment, i.e. gathering new experiences, the agent updates its assessment 
of the value function using methods such as MC, TD Learning or others. This 
is a key stage in the learning process: we begin with the ‘old’ assessment of 
the action-value and state-value (function Q) and arrive at a new assessment 
backed by experimental results (function Q’).

The final, third stage entails updating the policy. It usually comes down to 
replacing the original function of Q with the updated value function Q’ and/
or modifying other parameters, e.g. ε. The thus modified policy becomes the 
‘entry-level’ policy in the subsequent iteration.

At this point it is worth underscoring the critical value of stage 2: estimat-
ing the quality of the policy. This could be compared to broadly understood 
critiques: customer opinions, feedback from the trainer or self-reflection. The 
idea is simple: we have certain rules, we implement them, ask for feedback 
from the environment and change accordingly. In this context, it is very impor-
tant to remain aware of certain factors such as that our critic may be biased 
or have bad habits himself, as well as remember that pleasing everyone is 
a widely recognised impossibility. For these and other reasons, the process of 
improving value function estimations should always be meticulously planned 
and executed.

There are many other aspects of General Policy Iteration that ought to be 
considered, for instance, which policy to employ when generating new experi-
ences: our current policy (in which case methods are categorised as on-policy, 
a good example being the SARSA algorithm) or an entirely different one (e.g. 
someone else’s experiences – such methods are categorised as off-policy – e.g. 
the Q-learning family of algorithms). There is also the question of when to 
update the policy value estimation: after each episode (as in MC methods – the 
approach is described as offline learning) or after each step (online learning).

The limitations of this analysis prevent a more in-depth look into those 
interesting but very technical issues. One should note, however, that contin-
uous state and action spaces create an entirely separate category of problems 
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forcing agents to develop a capacity for generalisation and stochastic policies 
(i.e. ones that recommend only a certain probability distribution of action in 
a given state). The method of generalisation takes advantage of deep neural 
networks and such methods as deterministic policy gradients, including an 
entire range of actor-critic algorithms.

Challenges

There are still many challenges related to RL. At the same time, the field con-
tinues to dynamically develop and RL algorithms are used in a growing range 
of applications, which only adds to the complexity of the matter. Dulac-Arnold 
et al. (2019) provide an interesting synopsis of problems faced by autonomous 
system developers:

1. Effective learning offline, i.e. based on already gathered experience rather 
than direct interactions between agents and their environments. Trial and 
error methods are not always safe (e.g. vehicles) or effective (e.g. exper-
iments with various strategies in online marketing where the perceivable 
effects of actions can be significantly delayed).

2. Fast learning based on limited data (the problem of sample efficiency).
3. Learning in multivariate continuous state and action spaces.
4. Safety issues in learning processes.
5. Learning tasks performed in conditions of high uncertainty (e.g. only par-

tially observable or stochastic environments).
6. Learning in situations where the goal functions (reward systems) are 

underdefined, susceptible to risk or oriented towards multiple goals.
7. The ability to explain the learnt action rulesets to operators supervising 

autonomous systems (so-called self-explainable AI).
8. Inference that has to take place in near real time.
9. Extensive and unpredictable operating delays related to the operation of 

actuators, sensors, or reward signals.

Clearly, there is no shortage of challenges. But one hopes that weighed against 
the rapid development technologies auxiliary to AI (e.g. computing power) 
and undeniable business potential, those challenges will ultimately contribute 
to the development of this very interesting field of research.

Studies analysing methods of training agents to effectively act under new 
circumstances and often in fast-changing environments are very inspiring: they 
bring together many seemingly distant fields such as algorithmics, optimisa-
tion, psychology, cognitive neuroscience, management and decision making. 
At the same time, many mechanisms developed to improve RL processes 
could also be successfully applied to everyday life or management. For this 
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reason, this field of study is certainly worth learning about, even if one were 
not to pursue a career in the development of autonomous, self-learning systems 
– the entry barrier may be high, but the effort is still likely to prove worthwhile.

SELF-LEARNING AUTONOMOUS SYSTEMS IN THE 
MODERN WORLD

Before we proceed to discussing the business potential of self-learning auton-
omous systems, let us briefly summarise the main points related to the devel-
opment of intelligent solutions.

The goal of studies on AI is to create systems capable of performing at 
least as well as their human counterparts. Such solutions are able to operate in 
a variety of environments, at different levels of predictability and complexity. 
In order to be effective, they should be provided with a clearly defined function 
of purpose, capacity for effective perception (of both the environment and 
internal parameters), build-in or developable behavioural rules and the ability 
to undertake action influencing the environment.

The advancement of a solution and the related complexity of algorithms are 
most strongly dependent on the predictability of the environment’s behaviour 
and the agent’s own perception capacity. The methods currently employed in 
AI aim to minimise the impact of such uncertainties. They aid digital agents 
in reducing the uncertainty related to registration of parameters (e.g. image-, 
text- and speech-recognition algorithms), environmental dynamics (predic-
tive algorithms), evaluation of actions taken and the consequences thereof 
(machine learning methods). Additionally, precise motor solutions contribute 
to the capacity for adequate response, while new methods of gathering experi-
ence and forms of presenting knowledge facilitate the process of determining 
the impact of specific actions in specific environments.

One of the main goals in this context is to provide systems with autonomy. 
But what does that mean in practice?

The first aspect of autonomy was already discussed in the section focusing 
on machine learning. The methods described therein were categorised relative 
to the level of human supervision: from supervised learning to meta-learning. 
The level of human involvement in the learning process is a natural measure of 
its autonomy – the best autonomous solutions not only do not require human 
support but can also select the methods of learning that best suit their respec-
tive purposes (learning to learn).

Varying levels of autonomy can be observed in the context of Business 
Intelligence or more generally decision-making systems. One of the methods 
employed in the classification of different types of business analysis assumes 
the distinction between descriptive (What happened?), diagnostic (Why did 
it happen?), predictive (What might happen?), prescriptive (What should 
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be done about that?) and adaptive analyses (How do we build a system that 
would effectively adapt to the environment?). Let us consider this classification 
from the perspective of a decision maker. Contemporary managers often make 
decisions based on descriptive and diagnostic analyses whose forecasts are 
typically treated as a point of interest (with the possible exception of stock 
exchange brokers for whom effective prediction is the very basis of decision 
making). Overall, they rarely base their choices on the results of prescriptive 
analyses, and hardly ever on adaptive analyses. Meanwhile, even the full 
inclusion of only predictive analyses in the decision-making processes can 
significantly change the playing field: let us imagine a board meeting during 
which the decision makers, rather than consider a course of action dictated 
by the past, look instead to the future and decide what would be the optimum 
choices should one assume that the algorithm’s predictions are indeed accu-
rate… Naturally, this would go against some deeply ingrained habits but could 
also bring an entirely new quality to the decision-making table.

Prescriptive analyses go a step further: they recommend the optimum 
course of action. A system developed by Aera Technologies, which will 
be discussed later in the book, utilises advanced analytical and predictive 
systems processing large amounts of data gathered from various other systems 
operating in an organisation to provide managers with recommendations of 
future action in many functional areas: from logistics, through production and 
sales, to finance. It is not difficult to imagine that as such solutions become 
more effective and flexible; the role of managers may ultimately be reduced to 
formulating relevant questions, evaluating the quality of recommendations and 
their ultimate approval, modification or rejection. In turn, this may eventually 
allow for the materialisation of the so-called self-driven enterprise concept. At 
present, this vision remains somewhat utopian but as such systems continue 
to dynamically develop, one would be wrong to entirely dismiss it as a viable 
future possibility.

To a varying extent, autonomous systems have long had a place in industry. 
In fact, robotics has already been heavily studied in terms of interesting tax-
onomies of autonomy levels. Beer et al. define robot autonomy as ‘the extent 
to which a robot can sense its environment, plan based on that environment, 
and act upon that environment with the intent of reaching some task-specific 
goal (either given to or created by the robot) without external control’ (2014, 
p.77). The authors proposed helpful questions (guidelines) applicable when 
evaluating the autonomy level of a given robot, e.g. What tasks are to be per-
formed by the robot? What aspects of said tasks are to be included? To what 
extent are those tasks to be performed independently? Answering the same 
will help one to determine the autonomy category of the robot. In this context, 
Beer et al. propose ten distinct levels (from minimum to maximum auton-
omy): manual operation, remote operation, assisted remote operation, batch 
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processing, decision-making support, joint human-supervised control, joint 
robot-supervised control, operating supervision, supervision and full auton-
omy. The resulting evaluation of the autonomy level is later used to determine 
its potential impact on human–robot interaction with due consideration for the 
perspective of the robot, the human and the social milieu.

Surgical robots constitute a particularly interesting subset of autonomous 
machines. Ficuciello et al. (2019) identify four levels of autonomy applicable 
thereto, based on the level of so-called meaningful human control. At level 0, 
a surgent is in full control of the robot – its role is reduced to increasing the 
efficiency and precision of surgical operations with the view to compensating 
for certain sensory and motor limitations of the human operator. At level 1, 
the robot assists in the surgery – serving the role of a so-called robotic surgery 
assistant. Its primary function, particularly valuable in the context of so-called 
micro-surgery, is to actively limit and modify the movement trajectory of 
surgical instruments. At this level, the surgeon has the option of disabling this 
functionality, thus forcing the choice of the human-defined trajectory. This 
could be compared to mechanisms evening the movement of pencils or brushes 
in drawing applications on e.g. a tablet. At level 2, the human operator defines 
a task and the robot proceeds to autonomously perform it. The surgeon’s role is 
reduced to hands-free monitoring of the task’s performance and stepping in to 
adjust it where necessary – in this case, the robot is under discrete rather than 
continuous control (as opposed to level 1). Finally, at level 3, the robot inde-
pendently prepares strategies for the performance of surgical tasks and the role 
of the human comes down to selecting and approving the optimum strategies 
and then supervising their execution. Clearly, we are now only a step away 
from medical devices previously only seen in science fiction movies.

Let us now proceed to autonomous cars. This industry is probably the 
most advanced in terms of practical application of AI solutions. Hence, quite 
naturally, it has long developed its own dedicated taxonomy. The Society of 
Automotive Engineering identified six levels of vehicle autonomy based on 
a detailed identification of respective human- and vehicle-controlled tasks (cf. 
SAE 2018).

And so, at levels 0, 1 and 2, the human driver is responsible for controlling 
the vehicle’s movement (acceleration, braking, steering, etc.), even if certain 
assistance functionalities are engaged. At level 0, the vehicle itself provides 
little support, mainly in the form of alerts or rapid response, e.g. automatic 
braking in hazardous situations, blind spot or lane departure warnings. Level 
1 provides assistance in terms of steering or acceleration/braking, e.g. line 
centring or adaptive cruise control. Level 2 is similar, although in this case 
steering and acceleration/braking assistance is provided simultaneously.

Higher levels of autonomy are available at levels 3 through 5. Here, the 
driver is no longer actively involved in the functional processes: only at level 
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3 is his or her input required when the vehicle ‘demands’ it. At levels 3 and 4, 
the vehicle operates autonomously as long as certain conditions are met. Level 
5 entails full autonomy of the vehicle, irrespective of conditions: driver input 
is unnecessary and sometimes even impossible (e.g. if steering implements are 
not even provided).

It is equally interesting to consider autonomy from the perspective of 
autonomous aerial vehicles. Derenick (2020) defines drone autonomy as the 
ability to answer three questions: Where am I?, Where am I going? and How 
do I get there? Apparently, in the sometimes very difficult conditions that such 
machines have to cope with, these problems turn out to be anything but trivial. 
Let us imagine a drone used for mapping out a mine. Firstly, it will have no 
access to geolocation (e.g. GPS), it will therefore have to rely on advanced 
analyses of data received from various sensors and maps, often generated in 
real time, to independently answer the first of the questions: Where am I? The 
answer to the question Where am I going? requires planning, which basically 
entails decomposition of the mission goal into partial tasks, and the latter 
into elementary behaviours. At the level of behaviours, optimum trajectories 
are established to help the drone to reach its designated destination. Finally, 
the question How do I get there? requires autonomous performance of the 
task, without any external supervision, often without viable communication 
systems. When this is coupled with obvious weight limitations, which also 
translates to limited computing power (a drone cannot carry a powerful com-
puter), limited energy (battery) and susceptibility to external hazards such as 
gusts of wind, we can begin to appreciate the considerably more convenient 
‘situation’ of autonomous vehicles.

As follows from the above, the specific definition of autonomy is strongly 
dependent on the context and application of an intelligent system – nonethe-
less, it always comes down to a gradual reduction of dependence on the human 
operator. Still, it is up to the human to decide what competences are to be 
delegated to the machine. So far, these have been limited to the performance of 
tasks – soon, however, we might allow machines to also identify goals, and not 
only particular (e.g. when planning the course of a surgery) but also strategic 
ones. There is much to suggest that researchers are now gradually laying the 
groundwork for just that (e.g. inverse RL methods described in Chapter 4). 
One should remain aware of these trends and be able to recognise the various 
methods of extracting value from intelligent systems, which will be the topic 
of the rest of this book.

SUMMARY

At the beginning of this chapter, intelligent systems and technologies were 
defined as capable of effectively operating under new circumstances. A detailed 
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explanation of the respective components of this definition was then provided, 
with a particular focus on the ability to respond to fast-changing circumstances 
characterised by high uncertainty and only partial availability of information. 
Next, a whole range of machine learning methods were discussed, with a more 
in-depth consideration of RL, which demonstrated the complexity of issues 
related to training effective solutions intended for real-world applications.

One could get the impression that advanced machine learning algorithms 
remain the domain of researchers testing their effectiveness in technical simu-
lations or at laboratories, research centres and industrial facilities. This could 
not be further from the truth: autonomous robots have long been successfully 
implemented on production lines, and autonomous cars have already travelled 
millions of miles on ‘real’ roads. Indeed, one could hardly think of a better test 
for an intelligent system (within the meaning of our definition) than a crowded 
highway travelled at night in heavy sleet. The systems are already so mature 
that regulators have initiated legislative processes aimed at officially allowing 
such vehicles to participate in public traffic (cf. reports from the work of the 
National Highway Traffic Safety Administration in the United States (Reuters 
2020)).

Clearly, the vision of intelligent systems capable of effective operation 
under new circumstances is no longer a utopian idea. Their gradual prolif-
eration is commonly expected – which begs the question: How does one 
effectively utilise their potential to generate value in one’s organisation? This 
problem will be the focus of the subsequent chapters of this book.

NOTES

1. It is also possible that while the environment remains unchanged, the task itself 
evolves – such an environment is described as semi-dynamic.

2. It is noteworthy that the benefits for the customer are also considerable: a vast 
majority of people actually tend to opt for fewer rather than more options.

3. I.e. a function of state > action that ensures the maximum possible reward yield for 
the episode.

4. Again, in RL nomenclature feedback is referred to as reward regardless of whether 
its value is positive, zero or negative.

5. In a general case: the map of state > actions probability distribution.
6. As a result, one cannot talk of RL relying on the trial and error approach. However, 

this example is often evoked in RL handbooks as it facilitates a fairly simple intro-
duction of certain key concepts, which will later provide the basis for developing 
learning methods applicable to environments that require exploration.

7. As already mentioned, the strategy entailing the choice of the highest value action 
in each state (described as greedy) is one of many rather than the only available 
choice.

8. Technically, it comes down to searching among the available actions for one with 
the highest value of function Q in the given state.
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