
 Copyright 2020. 1

VotingWorks

ARLO DETAILED REPORT

 Copyright 2020. 2

Contents

Document Information .. 3

Introduction .. 4

SCOPE .. 4

Targets and Environment .. 4

Out-of-Scope ... 4

ASSESSMENT LIMITATIONS ... 5

Testing Observations ... 6

OVERVIEW ... 6

AUTHENTICATION AND AUTHORIZATION ... 7

SESSION MANAGEMENT ... 8

DATA VALIDATION ... 9

INFRASTRUCTURE TESTING ... 12

SOURCE CODE REVIEW .. 14

(MIS)CONFIGURATION REVIEW .. 16

Findings and Recommendations .. 16

RISK CLASSIFICATION ... 16

CURRENT VULNERABILITIES SUMMARY .. 17

DETAILED VULNERABILITIES .. 18

 Improper Session Termination .. 18

 Weak SSL/TLS Configurations .. 21

 Audit Board Enumeration ... 23

 Improper CSP Configuration ... 27

 Lack of Audit Board Passphrase Collision Handling .. 29

 Copyright 2020. 3

Document Information

Document/Testing History

Date Version Description

November 13, 2020
1.0 Detailed Report

 Copyright 2020. 4

Introduction

VotingWorks engaged Security Compass to perform an open-box web application security assessment

and a tool-assisted source code review. Testing was performed from October 26, 2020 to November 13,

2020. The goal of this engagement was to determine the overall security posture through the discovery

of security vulnerabilities and a qualitative assessment of the associated risk levels. Remediation

strategies are provided for each vulnerability to help VotingWorks mitigate or reduce identified risks.

SCOPE

TARGETS AND ENVIRONMENT

The scope of the assessment was limited to the environments and targets listed below:

Environment Targets

Production https://arlo.voting.works

Staging https://vx-arlo-pentest.herokuapp.com/

OUT-OF-SCOPE

The following components and tests were out-of-scope for this review:

 Any applications and infrastructure external to the Arlo application. In cases where the Arlo

application had inbound and/or outbound interfaces with another application, the interfaces and

communications were considered in scope. All other external elements were excluded.

 Supporting policies, procedures, and processes

 Social engineering

 Software development life cycle

 Detailed hardware and non-Arlo software configuration

 Auth0 authentication mechanisms

https://arlo.voting.works/
https://vx-arlo-pentest.herokuapp.com/

 Copyright 2020. 5

ASSESSMENT LIMITATIONS

The ever-changing technology landscape and the increasing sophistication of attacks against networked

systems are reasons for which no entity can truthfully claim to identify all security issues, nor guarantee

the lifetime-security of an organization’s network and applications. Note that this point-in-time

assessment was based on a best-effort basis and was performed only on the environment provided by

VotingWorks. Thus, changes to the environment may impact the applicability of results provided herein.

Security Compass cannot guarantee 100% coverage for any security assessment.

 Copyright 2020. 6

Testing Observations

The following section contains Security Compass’s observations from the security assessment. These

notes should be read as informational. Any vulnerabilities or significant risks that were discovered

during the assessment are explained in more detail in the Findings and Recommendations section.

OVERVIEW

VotingWorks’s Arlo application is a tool that is used to conduct post-election audits in the United States.

The application has the following types of functionality:

 A page that allows Super Admins to create, list, and delete organizations and to log in as any Audit

Administrator users who are registered to the application

 A summary page for Audit Administrators that lists all started, in-progress, and completed audits and

provides options for new audits to be created

 An Audit Setup functionality that allows users to set the audit specifications and settings

 An Audit progress page that allows Audit Administrators to track the progress of active audits

 A Member Sign-In page for Audit Board users to input their personal information, such as party

affiliation and full name

 A summary page for Audit Board users to review their audited ballots and batches so that they can

start a new batch of ballots or submit the audit results to the jurisdiction

 Ballot Card Data Entry functionality that allows Audit Board users to audit each of their assigned

ballots

 File-upload options that allow the following:

• Super Administrators to upload a list of Jurisdictions Administrators

• Jurisdiction Administrators to upload Ballot Manifest Files

 A File Download functionality that allows Jurisdiction Administrators to retrieve the following:

• Aggregated Ballot Retrieval Lists

• Placeholder Sheets

• Ballot Labels

• Audit Board Credentials

Users who interact with the Arlo application are external to the VotingWorks network. The Arlo

application has both regular and administrative users who have access to the application.

 Copyright 2020. 7

AUTHENTICATION AND AUTHORIZATION

The application leverages authentication that is performed via Auth0’s Universal Login login flow.

Therefore, authentication (e.g. the login functionality, password resetting, security question handling)

was deemed to be out of scope for this assessment. However, the assessment team did attempt to

bypass this login flow (i.e. authenticate without the use of the out-of-scope functionality). No means to

bypass authentication and no problems in the Universal Login flow were identified.

After authenticating with a username and a password, the user is redirected back to the application,

where the callback endpoint verifies whether the authentication results that Auth0 returns are valid.

Figure 1: The callback endpoint that verifies the authentication results that Auth0 returns

If the authentication is successful, a session cookie named “session” is assigned to the user. The cookie’s

value is a Base64-encoded signed token. The token’s signature is properly verified by the server, and all

attempts to alter the token’s value failed. The cookie has both the HttpOnly and Secure flags set. Each

request is validated to ensure that the user is authenticated before the request is processed by the

server.

Figure 2: The session token that is used by the application

The application was designed so that Audit Admins who belong to a given organization can view and

modify only audits within that organization. Audit Admins are not supposed to be able to modify the

audits of other organizations. During testing, this logic was consistent. The application displays an HTTP

403 Forbidden error to prevent users from accessing audits from other organizations.

 Copyright 2020. 8

Figure 3: An error message that is returned in response to attempts to access other users’ resources

The application has four user roles: Jurisdiction Admin, Audit Admin, Super Admin, and Audit Board.

Multiple attempts were made to access the resources of other users of the same role and to access

resources that are available only to a different role. These attempts failed, and the application returned

a generic Forbidden error message.

Note that although the staging environment leveraged standard Auth0 users without multi-factor

authentication (MFA) enabled, production users utilize Auth0 single sign-on (SSO) features via Google,

where VotingWorks is actively using MFA controls.

SESSION MANAGEMENT

Standard session-management test cases were used to test the Arlo application. The assessment

included attempts to identify the following issues:

 Session hijacking

 Session lockout

 Session puzzling

 Other session-related issues

 Cross-site request forgery

When a user logs in, the application assigns a new Base64-encoded cookie that is used as a session

token. The generated session token is sufficiently random and cannot be predicted. The token is also

properly signed, and its signature is verified by the server. However, the application does not invalidate

the user’s session when the user logs out, and the session is maintained for a long period. See F-01 for

more information.

The authentication cookie is set with the “Secure” and “HttpOnly” flags by default. The Secure flag

prevents the cookie from being transferred across unsecured channels where an attacker could

 Copyright 2020. 9

intercept the plaintext cookie and use it to hijack a user’s session. The HttpOnly flag prevents JavaScript

from retrieving the cookie’s value.

DATA VALIDATION

Attempts were made to perform HTTP Header, URL, and POST-body tampering attacks on identified

input parameters in the application. Attempts were also made to inject both raw and encoded cross-site

scripting (XSS), SQL injection, XML external entity (XXE), poorly encoded, and poorly formed payloads

throughout the service. These injections were made with the goal of tampering with the service’s data

handling and processing functions to trigger client-side or server-side code execution.

SQL-injection attempts were performed on various parameters in the application. No issues were

identified, and all attacks were unsuccessful. The application handled these attempts by demonstrating

no change in response.

The application handled the XSS payloads gracefully by encoding the output back to the user or

performing proper input validation.

Figure 4: The output is encoded to prevent XSS attacks.

Payloads that were inserted at the database level were also successfully output encoded and did not

trigger XSS.

Figure 5: Payloads injected at the database level did not render or execute in the browser when viewed.

 Copyright 2020. 10

Parameters in several requests were tampered with to determine whether the application would display

unauthorized content or an error message. The application handled these test cases gracefully, and no

issues were identified.

The xkcdpass library is used to generate hard-to-guess but easy-to-read Audit Board passphrases in the

event that an Audit Board member is unable to scan a QR code. Because these credentials are designed

to be printed and scanned on-location, this generation method allows these members to easily input the

values into their mobile or web browsers while maintaining a low level of credential predictability. The

implementation that is in use by Arlo uses the default word list but decreases the length from six words

to four.

Figure 6: From the audit_boards.py source code file, the numwords parameter is overwritten to generate four-word phrases.

Passphrases were manually replaced at the database level to simulate a collision scenario. If a duplicate

passphrase is created, the application will likely not fail gracefully. The public.audit_board table enforces

a unique value constraint on the “passphrase” column, but no code-level exception handling is present

to manage this scenario. More information can be found in F-02.

Figure 7: If an Audit Board passphrase collision occurs,
the key will not be written due to the constraints on the public.audit_board table.

 Copyright 2020. 11

Because multiple workflows accept comma-separated value (CSV) files as inputs, instances of exploitable

injection scenarios were explored. Although a Jurisdiction Administrator can entice an Audit

Administrator to download a malicious CSV (e.g. by uploading a malformed file, prompting the view

seen in Figure 8), the built-in controls in modern versions of programs such as Microsoft Excel

significantly decrease the likelihood of a user being unknowingly targeted by such an attack.

Figure 8: The “Ballot Manifest Upload Failed” view within the Audit Administrator’s audit progress page

Figure 9: The Security Notice prompt that appears when the malicious file is opened.

Subsequent warnings inform users that the links to external data in the workbook require the user to

enable specific settings. The warning is as follows: “This workbook contains links to external data

sources that use DDE (Dynamic Data Exchange) that may be unsafe and have been disabled. See File >

Options > Trust Center for DDE configuration options.”

 Copyright 2020. 12

Figure 10: The warning that indicates that the settings for enabling links to external data sources
via Dynamic Data Exchanges must be explicitly enabled by the user

INFRASTRUCTURE TESTING

Due to the targeted nature of this assessment, port scans were completed on all hosts even if they were

unresponsive to the initial host-discovery scans. A variety of scanning techniques were used to find

services listening on TCP and UDP ports. The scans included full connection scans, TCP SYN scans, UDP

data packet scans, and TCP source port scans. In most cases, TCP SYN scans were run against the entire

range of 65,535 TCP ports in an attempt to find any uncommon services, backdoors, or common services

running on non-standard ports. No services beyond HTTPS (port 443) and HTTP (port 80), which

redirected to HTTPS (port 443), were found.

The data that supports the Arlo application is stored in a PostGreSQL database that runs on an Amazon

AWS EC2 host. The version of the database in use is PostGreSQL 12.4 for Ubuntu 16.04.16. It does not

have any open, public vulnerabilities.

dd530ij5qorod2=> SELECT version();

version

PostgreSQL 12.4 (Ubuntu 12.4-1.pgdg16.04+1) on x86_64-pc-linux-gnu, compiled

by gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609, 64-bit

Figure 11: The query for version information reveals an up-to-date database instance.

The default “postgres” named database is not available. Instead, the main database name is sufficiently

random and hard to guess. The same attributes apply to the username and password that are required

to connect to the database. Note that the “superadmin” user, “postgres”, was not provided for testing.

However, the authentication methods that are configured for this user require a connection from a

specific address and the provision of valid Kerberos materials. Therefore, brute-force attacks (including

those performed with dictionary and word-list attacks) are not likely to be successful.

 Copyright 2020. 13

$ psql -h 50.16.219.58 -U postgres -d dd530ij5qorod2

Password for user postgres:

psql: error: could not connect to server: could not initiate GSSAPI security

context: Unspecified GSS failure. Minor code may provide more information

could not initiate GSSAPI security context: Server

postgres/50.16.219.58@SECURITYCOMPASS.COM not found in Kerberos database

FATAL: password authentication failed for user "postgres"

FATAL: no pg_hba.conf entry for host "174.142.184.236", user "postgres",

database "dd530ij5qorod2", SSL off

Figure 12: Attempts to access the postgres user on the target database reveal
the presence of additional authentication controls.

$ psql -h 50.16.219.58 -U u4llae62v5fn4r -d dd530ij5qorod2

Password for user u4llae62v5fn4r:

psql (12.4 (Debian 12.4-1))

SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits:

256, compression: off)

Figure 13: Successful connections are encrypted via TLS 1.2 using ECDHE-RSA-AES256-GCM-SHA384 ciphers.

The main database user has permissions to read from and write data to the necessary tables in the

“public” schema. However, no additional permissions or roles have been assigned that would allow for

privilege escalation to perform sensitive tasks such as reading from or writing to system files or

otherwise interacting with the underlying system. For example, neither the “pg_read_server_files” or

the “pg_execute_server_program” roles permissions are assigned or can be self-assigned.

Figure 14: The primary database user’s permissions, as configured within the dd530ij5qorod2 databse

 Copyright 2020. 14

Figure 15: The primary database user is not permitted to read server files.

Figure 16: The primary database user is not permitted to execute server programs.

Although the permissions above (Figure 14) do not present an immediate risk of privilege escalation,

they do allow for the successful retrieval of configuration data, pg_stat_* views, and the ability to signal

other back ends (cancel the query or terminate the back-end process). These actions should be granted

only to trusted users, which the primary user is designed to be.

The Arlo application is deployed within a default Heroku configuration, so the in-use services (such as

EC2 instances, Elastic Block Storage, and load balancers) are using at-rest encryption options as offered

by AWS. The PostGreSQL database, however, does not employ any encryption. Employing encryption is

a best practice, but sufficient defense-in-depth controls are in place to reduce the likelihood of data

leakage through external attacks.

SOURCE CODE REVIEW

The goal of this part of the assessment was to manually review critical code sections to determine the

overall security posture of the application, verify the vulnerabilities that were reported by Checkmarx,

and perform a qualitative assessment of the associated risk levels.

Checkmarx reported a total of 18 issues: three high-risk issues, 13 medium-risk issues, and two low-risk

issues. These issues were reviewed, and the assessment team determined that they were all false

positives or not applicable to the application.

 Copyright 2020. 15

Figure 17: The issues reported by Checkmarx

The three high-risk issues are instances of a vulnerability called OS_Access_Violation. The tool’s findings

suggest that the file operation methods use user-provided input from three sources without proper

validation. However, the assessment team determined that the scenarios in which these issues would be

exploited are not present based on the available circumstances in which these methods are used.

Figure 18: The “d” variable is used without proper validation.

The assessment team determined that the other issues either were false positives (e.g. missing HSTS

header, missing clickjacking protection, using deprecated React function) or did not pose any risk to the

application.

The missing security headers that were noted by Checkmarx (X-Frame-Options and HSTS) are configured

on the web server, not on the application level. The deprecated React function, ReactDOM.render(),

is deprecated if it is used to hydrate a server-rendered container, which is not the case for Arlo.

 Copyright 2020. 16

(MIS)CONFIGURATION REVIEW

The following libraries were determined to be the main components in use for the Arlo web application:

 React 16.9.0

 styled-components 4.3.2

 Flask 1.0.1

 Werkzeug 1.0.1

 Python 3.8.6

Each library is either the latest available version or otherwise a currently supported version. In each

case, no public vulnerabilities have been reported.

Open-source scripts such as testssl.sh were used to review the production host, arlo.voting.works, for

TLS configuration issues. The testssl.sh script checks for insecure versions of TLS and supported insecure

cipher suites. The host is configured to accept encrypted connections using insecure TLS versions, 1.0

and 1.1. For more information, see F-02.

The application was also reviewed for missing or misconfigured security headers. These security headers

provide an additional layer of defense-in-depth and would increase the security posture of the

application.

Generally, the application is using appropriate security headers: Content Security Policy (CSP), HTTP

Strict Transport Security (HSTS), and X-Frame-Options. However, the CSP header is not properly

configured to prevent or mitigate DOM-based injection attacks. See F-03 for more information.

Findings and Recommendations

The remainder of this report describes the vulnerabilities that Security Compass identified as part of the

assessment, their impact, and recommendations for resolving the vulnerabilities.

RISK CLASSIFICATION

The risk ratings below are established using the CVSS (Common Vulnerability Scoring System) but are

subject to changes as deemed appropriate by VotingWorks and Security Compass.

 Copyright 2020. 17

CURRENT VULNERABILITIES SUMMARY

ID Vulnerability Risk

F-01
Improper Session Termination Low

F-02
Weak SSL/TLS Configurations Low

F-03
Audit Board Enumeration Low

F-04
Lack of Audit Board Passphrase Collision Handling Info

F-05
Improper CSP Configuration Info

 Copyright 2020. 18

DETAILED VULNERABILITIES

 Improper Session Termination

LOW RISK

DESCRIPTION

The application’s session token is not invalidated on the server when the user clicks the “Log out”

button. Instead, the server merely assigns a new cookie with the “_user” value set to null. Therefore,

after a user has clicked the logout button, the session cookie that the user was using remains valid and

may be used to access the application normally.

Additionally, the session token does not expire, so the window in which an attacker can compromise a

valid session is increased, and the likelihood of an attacker who has compromised a session retaining

their access is also increased.

Consequently, an attacker who steals a legitimate user’s session token (e.g. as part of a cross-site

scripting attack) may retain indefinite access to the application while posing as the victim, even if the

user logs out of the application.

SUPPORTING EVIDENCE

The use of an HTTP proxy such as Burp Suite is required to reproduce the steps described below. Please

see the following: http://portswigger.net/burp/help/suite_gettingstarted.html

The following steps can be used to illustrate the vulnerability:

1. While capturing traffic with Burp Suite, log in to the Arlo application as an Audit Admin

http://portswigger.net/burp/help/suite_gettingstarted.html

 Copyright 2020. 19

2. Click the “Log out” button

Figure 19: The “Log out” button

3. Observe that the user has been logged out of the application
4. In the HTTP proxy, find the request that was sent to the “/api/me” endpoint while the user was

authenticated. Replay this request.
5. In the response, observe that JSON that contains information about the logged-in user and the

available audits is returned, even though the user has logged out of the application

IMPACT

 An attacker who successfully re-uses the session token of a previously authenticated user would gain

complete access to that user’s account, with all the same privileges. Doing so would have the same

results as a session-hijacking attack.

LIKELIHOOD

 The likelihood of a successful session hijacking is quite low. To obtain a user’s session cookies, an

attacker would have to capture the user’s requests to Arlo while the user is authenticated.

Alternatively, an attacker could perform an attack such as cross-site scripting to obtain valid session

tokens for the user.

 Copyright 2020. 20

RECOMMENDATIONS

 To mitigate the risk that this vulnerability poses, ensure that the application invalidates the user’s

sessions and clears their associated tokens from the server-side cache when a user clicks the logout

button.

 Copyright 2020. 21

 Weak SSL/TLS Configurations

LOW RISK

DESCRIPTION

The Arlo host supports insecure cipher suites and protocols. The presence of these SSL-based

weaknesses may lead to sensitive information disclosure because they either increase the likelihood

that an attacker will be able to decrypt traffic between two hosts or facilitate man-in-the-middle attacks

that would allow an attacker to impersonate the target host to a user. To exploit these vulnerabilities,

an attacker would need to be on the same physical or logical network as either a user or the target host

to be able to intercept or capture encrypted communications and reach the target host.

TLS Protocol Versions 1.0 and 1.1

The host is configured to accept encrypted connections using TLS versions prior to TLSv1.2. The TLS

versions prior to TLSv1.2 are vulnerable to various attacks due to known weaknesses in protocol design.

An attacker could abuse these protocols to execute an on-path attack and steal sensitive information.

The Browser Exploit Against the SSL/TLS (BEAST) vulnerability exists in TLS version 1.0 when a block

cipher is in use, which can allow an attacker to obtain plaintext information.

SUPPORTING EVIDENCE

The steps below require the use of the testssl.sh utility. Testssl.sh can be obtained at http://testssl.sh/

The following steps can be used to illustrate this vulnerability on a Linux or Windows machine:

1. Open the terminal prompt and enter the following command:
• ./testssl.sh ip_address:port

http://testssl.sh/

 Copyright 2020. 22

2. Observe that a list of all the supported ciphers and the server certificate information are
displayed

Figure 20: TLS versions 1.0 and 1.1 are offered by the Arlo host.

IMPACT

A successful attack could allow an attacker to decrypt part or all of a sensitive piece of information such

as a session cookie or specific target text. The attacker could then use stolen session cookies or sensitive

information to access the application while impersonating a valid user or as targeting information for

further attacks.

LIKELIHOOD

The likelihood of the vulnerabilities being exploited is low due to the number of resources and repeated

requests that would be required. Furthermore, the attacks would require that the attacker be able to

intercept encrypted traffic between the target server and a legitimate user.

RECOMMENDATIONS

Reconfigure the affected hosts to allow only strong TLS protocol versions (i.e. TLS 1.2 and above). See

the following for more information about recommended configurations:

https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

 Copyright 2020. 23

 Audit Board Enumeration

LOW RISK

DESCRIPTION

The Arlo application manages Audit Board member access via pseudo-randomly generated, multi-word

passphrases with a hard-coded delimiter. A resulting passphrase is appended to the /auditboard/ URL

path as a unique route to a specific audit. Generation is performed using XKCD’s xkcdpass Python

module, which ensures that Audit Board members can easily read and understand the URL that is

associated with the Audit Board that they belong to. The readability of the URL is important in situations

where an Audit Board member is unable to scan the QR code (which is generated to visually represent

the URL) and must instead manually type the URL into a web browser’s address bar. As the sole means

of authentication to an Audit Board, Arlo’s implementation of the xkcdpass module may present an

increased risk of unauthorized access.

SUPPORTING EVIDENCE

The steps below require the use of a Python module called xkcdpass, which can be retrieved from

https://pypi.org/project/xkcdpass/

The following steps can be used to illustrate the vulnerability:

1. Navigate to the following source code file in the Arlo GitHub repository and observe the
mechanism that is used to generate audit board passphrases:
arlo/server/api/audit_boards.py

Figure 21: audit_boards.py generates passphrases using the xkcd passphrase library.

https://pypi.org/project/xkcdpass/

 Copyright 2020. 24

2. Navigate to the following source code file and observe the way in which the passphrases
generated by audit_boards.py are used to redirect Audit Board members to the appropriate
audit context:
arlo/server/auth/routes.py

Figure 22: route.py defines Audit Board routes within the Arlo web application
using passphrases that are generated by audit_boards.py.

3. Using the xkcdpass module from the command line, generate a passphrase that is consistent
with the settings outlined in audit_boards.py

Figure 23: A four-word passphrase is generated using the xkcdpass Python module.

4. Attempt to access an audit board using the generated phrase

Figure 24: An Internal Server Error message indicates that no corresponding audit board was found for the given passphrase.

 Copyright 2020. 25

5. Using a passphrase that is known to correspond to an active audit, repeat step 4. Note that
during testing, a non-production host was used for this step to minimize the disturbance of
production assets.

Figure 25: A successful request may present an attacker with an in-progress audit.

IMPACT

A successful attack may allow an attacker to gain access to and interfere with in-progress audit

information, including submitting fraudulent ballot results. These actions may erode client trust in the

Arlo application.

LIKELIHOOD

The likelihood of a successful attack depends on the following:

 The default number of words used by the xkcdpass generator is six, but Arlo overrides this

configuration to use four words. This number materially reduces the entropy of the resulting

passphrase, which increases the margin of success for an attacker. Use of the default word list (eff-

long) combined with the known delimiter format may further increase success rates.

 The availability of in-progress audits to which an attacker may gain access. If no audits are pending

completion, the potential for malicious interaction is reduced. Because the lifecycle of an audit is

typically less than a week, an attacker would have a limited window in which to guess the valid

passphrase.

 Additional controls such a web application firewalls (WAFs). Arlo is configured to restrict access to

the audit board routes based on the requester’s country of origin via their IP address. Only US-based

IP addresses are permitted. Additionally, Cloudflare is configured to log data related to and alert

based on abnormal events such as high-frequency requests that are consistent with automated

enumeration attacks and attempts to access non-existent routes.

 Copyright 2020. 26

RECOMMENDATIONS

Reconfigure the passphrase-generation logic to produce passphrases that contains a greater number of

words. Doing so will further increase the entropy of the resulting passphrase, which increases the

possible enumerable key space and reduces the chance of an attacker guessing the passphrase of a

valid, in-progress audit.

 Copyright 2020. 27

Informational Findings

During the assessment, Security Compass discovered issues or errors that currently do not pose a risk to

the organization or its data. However, implementing the following recommendations as best practices

would provide defense-in-depth security and thereby improve the overall security posture of the

application.

 Improper CSP Configuration

INFORMATIONAL FINDING

DESCRIPTION

The Arlo application has a content security policy (CSP) that is not properly configured to prevent or

mitigate DOM-based injection attacks. The CSP is configured with the “frame ancestors” directive, but it

does not have the “script-src” directive to define which domains can load JavaScript.

SUPPORTING EVIDENCE

The following steps can be used to illustrate the vulnerability:

1. Navigate to Google’s CSP evaluator at https://csp-evaluator.withgoogle.com/
2. Input the application’s URL
3. Review the output. Notice the severe errors for “script-src” and “object-src”.

https://csp-evaluator.withgoogle.com/

 Copyright 2020. 28

Figure 26: Missing CSP headers

RECOMMENDATIONS

Define a content security policy that granularly specifies where the application expects to get data or

resources from and what is allowed to execute within the application. Review the recommendations of

the CSP evaluator website. Specifically, review and implement the script-src directive.

See the following for more information about the definition and use of a CSP:

 https://developer.mozilla.org/en-US/docs/Web/Security/CSP

 https://www.owasp.org/index.php/Content_Security_Policy

https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://www.owasp.org/index.php/Content_Security_Policy

 Copyright 2020. 29

 Lack of Audit Board Passphrase Collision Handling

INFORMATIONAL FINDING

DESCRIPTION

Audit Board members access their audits through a randomly generated, four-word, dash-delimited

passphrase that is generated using XKCD’s xkcdpass library. This functionality is defined in the

audit_boards.py source code file. The “create_audit_boards” function, from which this library is called,

does not include exception handling logic to detect and prevent attempts to write a duplicate

passphrase to the underlying PostGreSQL database. Because the target column in which the passphrases

are stored is configured to accept only unique values, a collision may result in an unhandled exception at

the application level.

Figure 27: Audit Board is committed without error-handling logic to mitigate write attempts for existing passphrase values.

 Copyright 2020. 30

RECOMMENDATIONS

Ensure that appropriate exception handling is included when data is committed to the connected

database.

