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1. Introduction

Population health research seeks to 
better understand the causes and 
consequences of ill health. It generates 
evidence to help inform decision making 
and action to protect good health, 
and ensures the capacity to benefit 
is equitable across all individuals 
irrespective of circumstances.

The most common studies which explore the 
relationship between causes (i.e. exposures) 
and outcomes are observational in design. 
They examine the characteristics of individuals, 
their experiences and surroundings using 
routinely available information (e.g. health 
and non-health data) or data collected for 
the specific question (e.g. in surveys). But this 
approach faces two key challenges (reverse 
causality and confounding – both described in 
more detail below) which may limit our ability 
to identify whether there is a true association 
between exposure and outcome. Mendelian 
randomisation is a different statistical 
approach harnessing the information contained 
within our genome to help overcome these 
challenges. 

This short report is intended for a  
non-specialist audience (including but not 
limited to health economists, academics 
in other areas of expertise, public health 
practitioners or policy makers) to increase 
awareness of the approach, its strengths and 
weaknesses and its application. 

This is not a full review of Mendelian 
randomisation, nor is it a technical reference 
document, but we have provided references  
for further reading for those who are 
interested in learning more. 

In this overview,  
we explain the  

principles of Mendelian 
randomisation, and  
illustrate how it is  

being used to  
challenge and inform 

population health. 
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2.  Why do we need to understand  
cause and effect?   

Understanding the relationships 
between cause (i.e. exposure) and 
effect (i.e. outcome) is essential to 
informing policy and practice. 

Reliable evidence is needed to help 
understand what we need to focus 
efforts on, if intervening could lead to 
benefits, and the potential magnitude 
of the benefits of intervention.

For example, an observational study may find 
that obesity is associated with poor educational 
outcomes. However, this conclusion may 
not be correct if there are other factors 
associated with both exposure and outcome. 
For example, people living in less affluent 
areas have lower educational attainment, 
and are also at higher risk of obesity (Figure 
1a). The higher risk of obesity amongst those 
with lower education attainment is likely to 
be due, in part, to deprivation (the challenge 
termed ‘confounding’) (Figure 1b). A further 
complication is that association may be in the 
other direction i.e. poor educational outcome 
is the cause of obesity, due to low self-esteem 
and increased uptake of health harming 
behaviours leading to obesity (the challenge 
termed ‘reverse causality’), (Figure 1c). 

Figure 1. Confounding and reverse  
causality in the association between  
obesity and education outcomes

Figure 1a

Question: does obesity cause poor educational  
outcomes, does poor education cause obesity,  

or does something else cause both?

Obesity
Educational 
Outcomes

Figure 1c

Obesity
Educational 
Outcomes

Reverse causality: poor education causes obesity,  
rather than obesity causing poor educational outcomes.

Confounding: deprivation causes both obesity  
and poor educational outcomes, making it seem  
like obesity causes poor educational outcomes. 

Obesity
Educational 
Outcomes

Figure 1b

Deprivation
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2.1. What is confounding? 

Confounding variables are factors that we 
know about, we can measure and control for 
in statistical analysis. However, even when 
we know about a confounder, we are unlikely 
to have measured it perfectly, especially 
for complex things such as socioeconomic 
circumstances. There will also be confounders 
we do not know about, have not measured and 
have not considered. This means there is still 
some confounding (residual confounding) in 
most observational studies. 

2.2. What is reverse causality? 
Reverse causality is assigning a direction to an 
association between two variables incorrectly, 
for example by stating that lung cancer causes 
cigarette smoking, rather than the reverse. 
Causality is very difficult to determine for many 
associations, even when confounding is not 
an issue. In the example above (Figure 1), did 
obesity lead to poor educational outcomes, 
or did poor educational outcomes lead to 
obesity? Statistical tests can, in general, only 
tell you whether two variables are associated 
– to determine causality, you need to consider 
study design, biological plausibility, and other 
relevant information.

2.3. Approaches to overcome 
confounding and reverse causality, 
and the limitations
The gold standard method to address both 
confounding and causality is a randomised 
controlled trial (RCT). RCTs usually work by 
randomly splitting a sample of participants 
into two or more groups, giving one group 
the exposure (usually an intervention), and 
the other group(s) (control group) a different 
exposure (or intervention). An intervention 
can be a drug, a diet, information; anything that 
might change the individual’s outcome in some 
way. Because which group a participant ends up 
in is random, the only difference between the 
two groups should be whether they received 
the intervention or not, which means there 
should be no residual confounding. In addition, 
there can be no reverse causality, as the 
intervention clearly comes before the outcome 
of interest.  

However, for many research questions, it is 
impossible or unethical to randomly assign the 
exposure. For example, it would not be possible 
nor acceptable to randomly allocate obesity. 
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3.  What is Mendelian randomisation  
and how might it help?  

Mendelian randomisation is a 
statistical approach that uses genetics 
to provide information about the 
relationship between an exposure 
and outcome (a type of instrumental 
variable analysis) (1). 

The combination of genetic variants a person 
receives from their parents is randomly assigned 
at conception - making Mendelian randomisation 
a natural experiment which is potentially less 
likely than observational studies to be subject to 
confounding and reverse causality, and relatively 
quicker and easier than RCT designs to complete 
a large scale research study. 

Mendelian randomisation as an approach has 
become widespread in the past decade. The 
expansion of large scale genome wide association 
studies (GWAS) has developed our knowledge 
about the genetic determinants of human 
characteristics and health conditions, and large 
scale research studies that include genetic data, 
e.g. UK Biobank (2) [www.ukbiobank.ac.uk] 
which have made data more available.

3.1. What is a genetic variant? 
Genetic variants are small parts of the genome 
(Box 1) which can be closely related to human 
characteristics (e.g. height, weight, blood 
pressure) and health conditions (e.g. diabetes, 
coronary heart disease, asthma). There can 
be multiple genetic variants for a single 
characteristic or health condition; for example, 
over 900 variants are known to affect our 
body mass index (BMI) (3). Collectively these 
genetic variants explain only a small amount of 
the variation in BMI across a population (6% in 
total), they are not deterministic (i.e. all people 
with genetic variants that predispose to high 
BMI do not necessarily have a high BMI), and 
their existence does not negate the important 
environmental influences on BMI. Nonetheless 
they can be used to help understand the 
consequences of BMI, since people who have 
differing genetic variants related to BMI will, 
on average, have different BMIs but should not 
differ with respect to other characteristics (See 
Box 2). 
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Box 1. Genome: A genome is an  
organism’s complete set of DNA,  
including all of its genes.

Each genome contains all of the 
information needed to build and maintain 
that organism. In humans, a copy of the 
entire genome – more than 3 billion DNA 
base pairs – is contained in all cells that 
have a nucleus. 

Box 2. Mendelian randomisation and body 
mass index (BMI)

If people with a higher number of genetic 
variants that predispose to higher BMI also 
have a higher rate of hypertension, this is 
evidence that higher BMI causes the risk 
of hypertension to increase. This inference 
is possible because people with higher 
and lower genetic propensity for high BMI 
should not differ according to background, 
family, socioeconomic or other factors, i.e. 
there is no confounding, and hypertension 
cannot affect genetic propensity for high 
BMI, i.e. there is no reverse causality. In 
2017, a study showed that the odds of 
having hypertension increased 1.64 times 
per ~5 kg/m2 increase in BMI (32). 

This is illustrated in Figure 2.

Figure 2. Illustration of using Mendelian 
randomisation to show BMI increases systolic 
blood pressure

1. People in the general population have many  
differences that could confound the relationship between 

BMI and hypertension (shown here as different shapes).
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2. However, these differences should not affect  
their genetic propensity for having a high or low  

BMI (shown here as different colours).

3. On average, people with a higher genetic  
propensity towards a high BMI will have  

higher measured BMI values

4. If, on average, people with higher genetic propensities 
towards a high BMI also have a higher rate of 

hypertension, then we have evidence that BMI causally 
increases hypertension risk, as genetic propensity can’t be 

affected by confounders or hypertension itself.
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3.2. When can Mendelian 
randomisation be applied? 
Mendelian randomisation is necessarily 
limited to exposures we know have a genetic 
basis – we can’t, for instance, use Mendelian 
randomisation to assess whether living in cities 
causes cancer since there are no known genetic 
variants likely to directly predispose towards 
living in a city. Although we have known genetic 
variants for many health-related factors and 
conditions, many things of great interest to 
public health are still difficult to study with 
Mendelian randomisation; for example, little is 
known about the genetic determinants of falls 
in the elderly or back pain. There are genetic 
variant markers for over 2,000 characteristics 
and health conditions currently available (more 
information available from the NHGRI-EBI 
GWAS Catalog (4)). 

3.3. What are the strengths of 
Mendelian randomisation compared 
to traditional study designs? 
Whilst observational studies can adjust for 
confounding it can only do that for variables 
which have been measured (see Section 1.1).  
The advantage of Mendelian randomisation is 
that it may be able to overcome the challenge 
of confounding between the exposure 
and outcome, regardless of whether the 
confounders were measured, because those 
confounders should not influence a person’s 
genetic predisposition towards the exposure. 
However, there remain some important 
potential sources of cofounding with the 
approach (see Section 3.4). 

Mendelian randomisation is likely to overcome 
the challenge of reverse casualty. Any genetic 
variant may cause the outcome, which in turn 
causes the exposure, rather than vice-versa as 
expected. However, this risk can be lessened 
if a mechanism of action of the genetic variant 
can be established. For example, a prominent 
genetic variant for smoking heaviness affects 
a nicotinic receptor, making reverse causality 
much less likely (5). 

Additionally, bi-directional Mendelian 
randomisation can be used to assess in which 
direction causality is most likely to flow (1). 
In bi-directional Mendelian randomisation, 
Mendelian randomisation analyses are 
performed in both directions (exposure to 
outcome, and outcome to exposure). If the 
exposure truly causes the outcome, then the 
genetic variants associated with the exposure 
will cause both the exposure and the outcome, 
but the genetic variants associated with the 
outcome will only cause the outcome, not the 
exposure. Conversely, if the outcome causes 
the exposure, the reverse will be true. Bi-
directional Mendelian randomisation can thus 
only be performed if there are genetic variants 
for both the exposure and outcome. 

For example, a 2019 study using bi-directional 
Mendelian randomisation looking at BMI and 
polycystic ovary syndrome found the genetic 
variants for BMI were associated with polycystic 
ovary syndrome, but the genetic variants for 
polycystic ovary syndrome were not associated 
with BMI, implying a higher BMI causes 
polycystic ovary syndrome and not vice-versa 
(6). Bi-directional Mendelian randomisation, 
however, does not work with exposures which 
have not been reported to associate with 
specific genetic variants, for example living in 
cities or back pain. 
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3.4. What are the limitations of 
Mendelian randomisation? 
Given the small effects of genetic variants, 
large sample sizes are needed to determine 
an effect. This has been made easier by the 
existence of large studies such as UK Biobank 
(2), but the populations recruited within  
such large studies are often not 
representative of the wider population 
(7,8). This can introduce selection bias into 
the results. The approach to overcome this 
in the future will be to encourage diversity in 
population cohorts, and the development of 
statistical approaches to account for potential 
selection bias in the analysis.

Like all statistical methods, Mendelian 
randomisation has certain assumptions  
which must be considered for it to be  
applied appropriately. 

These are; 

•   The genetic variants must be associated 
with the exposure, (1) in Figure 3 
This assumption can and should be verified  
by testing the association between the 
genetic variants and the exposure within  
the data being used. 

•   The genetic variants must not be directly 
associated with the outcome, (2) in Figure 3 
We can use biological knowledge about 
the genetic variants to tell us something 
about how likely this is, known as horizontal 
pleiotropy. (There are also a range of 
sensitivity analyses that can detect and adjust 
for pleiotropy (9–14)).

•   The genetic variant must not be associated 
with any potential confounder (3) in Figure 3 
Confounders can be associated with genetic 
variants if the choice of partner is non-random, 
for example if people were more likely to have 
children with people with similar BMI levels 
to themselves, or from similar populations 
(population stratification) – see below.

Figure 3. The assumptions of Mendelian randomisation

OutcomeExposure
Genetic 
Variant

(3)

(1)

(2)

Confounders
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More recently there is increasing recognition 
that the presumed random distribution of 
genetic variants (see Section 2.1) may not always 
hold as family and social factors can influence 
the genes we inherit, for example:

•   People do not choose partners at random, 
but rather select those who are more alike 
than would be expected (termed assortative 
mating). For example, people who drink 
alcohol choose partners who also drink alcohol 
(11), or people select partners who have a 
similar environmental/educational background 
to themselves (15). 

•   Parental (non-genetic) characteristics can 
influence outcomes. For example, more 
educated parents will support their own child’s 
education (termed dynastic effects). One way 
to address this bias is to compare outcomes 
across siblings (within-sibling analysis) (9,16), 
assuming siblings grow up in the same family-
environment (see Box 3).  

•   There are geographical patterns in genetics 
which may make it difficult to identify true 
differences in results (17) and methods to 
account for this are not readily available.

Box 3. Example of a within-sibling analysis

An MR study in 2019 showed that higher 
BMI reduced educational attainment across 
the population in the UK (33). However, 
this association disappeared when a 
within-sibling analysis was conducted, 
which accounted for the non-random 
distribution of genetic variants (16). This 
means that the parental influence on a 
child’s education is likely the driver behind 
the observed association between BMI and 
educational attainment, not a direct causal 
link between BMI and education.

However, because within-sibling or within-
family MR studies necessarily require 
siblings or families, these analyses have less 
power to detect effects than standard MR 
analyses that have fewer restrictions.
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3.5. Key considerations when 
interpreting the results
Perhaps the most important assumption for 
Mendelian randomisation is that we assume the 
effect of changing the genetic variants is the 
same as the effect of changing the modifiable 
exposure we are interested in through other 
means. For example, we assume that changing 
BMI by changing the number of BMI-increasing 
alleles a person has is going to have the same 
effects on the outcome as changing BMI through 
interventions we are interested in from a public 
health perspective, such as diet or exercise. 

For BMI, we know that genetic variants influence 
BMI through a range of mechanisms, including 
dietary intake, energy expenditure, and energy 
storage. This assumption, sometimes called 
‘gene-environment equivalence’, is therefore 
likely to be reasonable. Thinking about this 
assumption requires biological knowledge of 
the ways in which genetic variants affect the 
modifiable exposure. 

The more biologically proximal the exposure is 
(how close the exposure is to a protein made 
by only a few genes), the more likely the gene-
environment equivalence assumption is to hold. 

When we are studying the effects of individual 
proteins or metabolites, which are generally 
coded by a well-defined and well-understood 
set of genetic variants, this assumption is usually 
straightforward and non-controversial. For 
more complex exposures, such as educational 
attainment (for which we now know about over 
1,271 genetic variants that together explain 11-
13% of the variation in educational levels (18)), 
thinking about gene-environment equivalence 
is more complicated. However, it’s worth 
noting that even for a complex multi-factorial 
exposure like educational attainment, results 
of Mendelian randomisation studies looking at 
the causal effects of education on health and 
other outcomes have generally been consistent 
with other studies using different natural 
experiments, such as using raising of the school 
leaving age (19).
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Mendelian randomisation can give us an estimate 
of the causal effect of a change in an exposure 
of interest. However, this effect estimate does 
not necessarily map directly on to the potential 
effect of a clinical or public health intervention. 
An important reason for this is that Mendelian 
randomisation estimates a ‘lifetime’ effect of the 
exposure. For example, if our exposure is systolic 
blood pressure and our outcome is cardiovascular 
disease events, we can estimate the effect of 
having a lower systolic blood pressure by 10 
mmHg across the entire life course. Whilst this 
can tell us something about whether reducing 
systolic blood pressure is likely to have an effect 
on the frequency of cardiovascular disease 
events, it cannot give us an exact answer about 
how much we will change the incidence of 
cardiovascular disease events if we administer 
antihypertensives to adults in mid-life. 

Likewise, if we use Mendelian randomisation to 
assess the causal impact of BMI on income, we 
can say something about whether interventions 
that reduce population levels of BMI are likely 
to have an effect on income, but we cannot say 
anything about how feasible those interventions 
are, and how big an effect on income any 
specific intervention targeted at a specific age 
group is likely to have. 

One way of viewing this is that Mendelian 
randomisation tells us something about ‘states’, 
but not about specific interventions that alter 
those states. 

As such Mendelian randomisation is another 
tool to help us understand the causal links 
between exposures and outcomes, and that 
understanding can help to direct where action is 
needed to effect change in an outcome. 

To help support those who are new to 
Mendelian randomisation the following 
boxes include key points to interpret 
Mendelian randomisation within population 
health research including;

•   use of Mendelian randomisation (Box 4)

•   why observational and Mendelian 
randomisation studies might give different 
answers (Box 5).

•   factors to consider when reading and 
interpreting Mendelian randomisation  
studies (Box 6)

13Making sense of Mendelian randomisation and its use in health research



Box 4. Benefits and limitations of the application of Mendelian randomisation

Strengths
Confounding

•   The chance of confounding from both 
imperfectly measured and unknown 
confounders may be reduced for Mendelian 
randomisation studies, compared with 
other observational study designs

Reverse causality

•   The chance of reverse causality is equally 
reduced (for most associations), exposures 
are unlikely to cause differences in DNA.

A balance between causality and data 
availability

•   While well-conducted RCTs have no risk of 
confounding or reverse causality, they are 
expensive, time-consuming, limited in what 
data can be acquired, and not always ethical 
or practical

•   Mendelian randomisation studies strike a 
balance between RCTs, which are causal but 
limited, and observational studies, which 
are not causal but able to collect far more 
information. Mendelian randomisation 
studies can use observational data where 
the participants genomes are mapped 
(i.e genotyped), and the exposures have 
genetic variants, to improve estimate causal 
relationships

Limitations
Low statistical power

•   Mendelian randomisation studies typically 
have much lower statistical power than 
other observational study designs of a 
similar sample size, and so generally require 
more participants

•   This is being addressed by collecting data 
from huge numbers of participants, for 
example UK Biobank.

Reverse causality

•   Although typically much less of an issue 
than in observational studies, reverse 
causality can still exist in Mendelian 
randomisation studies when the genetic 
variants we think act only on the exposure, 
actually act on the outcome to cause the 
exposure

•   This can be addressed by assessing the 
biological mechanisms of the genetic 
variants, and, if possible, using bi-directional 
Mendelian randomisation

Confounding

•   Again, confounding of the exposure-
outcome relationship can be controlled 
for in Mendelian randomisation studies, 
but can suffer from genotype-outcome 
confounding due to assortative mating and 
population stratification

•   This can be addressed using within-siblings 
and within-family Mendelian randomisation 
study designs

Horizontal pleiotropy

•   The genetic variants associated with the 
exposure may affect the outcome through 
other variables than the exposure

•   This can be addressed by assessing the 
biological mechanisms of the genetic 
variants, as well as a range of additional 
analyses that have been designed 
specifically to test for horizontal pleiotropy.

Interpretation

•   Since genetic variants are present from 
conception, Mendelian randomisation 
estimates are for lifetime exposure, 
which may not map well onto specific 
interventions to change the exposure.
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Box 5. Potential reasons why observational 
and Mendelian randomisation studies 
might give different answers.

Box 6. Things to consider when reading  
and interpreting an Mendelian 
randomisation study, adapted from  
Reading Mendelian randomisation studies:  
a guide, glossary, and checklist for clinicians 
by Davies et al. 2018 (20)

Core assumptions
•   Are the genetic variants robustly 

associated with the exposure?

•   Are the genetic variants associated with 
potential confounders of the exposure-
outcome association, and do the authors 
present this information?

•   Do the authors present alternative 
Mendelian randomisation analyses to 
assess the risk of horizontal pleiotropy, 
such as MR Egger, median, and mode 
estimators, or use of “negative control” 
populations?

Methods reporting
•   Were the GWAS and analytical samples 

drawn from the same population?

Data presentation
•   Do the authors compare estimates from 

genetic and conventional observational 
analyses?

•   Do the authors attempt to remove 
genetic variants that show signs of 
pleiotropy?

•   Do the authors provide the data that they 
used to allow researchers to reproduce 
their findings?

Limitations
•   Have all the relevant limitations (see 

Box 3) been acknowledged, and could 
these limitations meaningfully affect the 
results?

Clinical implications
•   Do the results triangulate with 

other forms of evidence, e.g. RCTs, 
observational studies? 

The observational results may 
be confounded, or there may 
be reverse causation, while the 
Mendelian randomisation results are 
unconfounded and causal.

The populations may differ, which 
means both the observational and 
Mendelian randomisation results are 
true, but for different populations, 
and may not generalize beyond those 
populations.

The Mendelian randomisation 
results may be less precise than the 
observational results, even if more 
participants are included, meaning 
there is more variability around the 
estimated effect in the Mendelian 
randomisation result.

The Mendelian randomisation result 
may not satisfy the Mendelian 
randomisation assumptions, and 
so the genetic variant(s) may not 
be good enough, there may be 
horizontal pleiotropy, or there may be 
confounding from family effects or 
population stratification.
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4.  Where has Mendelian randomisation 
influenced the discussion or provided 
answers? 

Mendelian randomisation has now 
been applied to hundreds of different 
research questions. Below are three 
examples of key findings. 

4.1. Alcohol and Cardiovascular Disease
Alcohol consumption is difficult to measure 
accurately – for different reasons, people may 
either misremember or misreport how much 
they have consumed over time. Associations 
between alcohol and health outcomes are also 
likely to be heavily confounded, since lots of 
variables affect how much people drink, and 
these factors also plausibly affect many health 
outcomes of interest. People who abstain from 
alcohol completely are often very different 
from those who drink moderate quantities. 
When the outcome is a health condition, there 
may also be reverse causality – illness, even 
preclinical phases of many health conditions, 
can lead people to reduce their alcohol 
consumption. As such, the traditional J-shape 
curve you see when looking at observational 
data between alcohol and health conditions 
(especially cardiovascular disease, see Figure 4) 
may be due to both confounding and reverse 
causality, rather than any beneficial aspects of 
moderate alcohol consumption. 

Although RCTs have been conducted, 
randomising people to alcohol or no alcohol, they 
tend to be small studies with a short followup 
time, and thus are not suitable for examining the 
effects of alcohol on disease events.

Larger scale and duration RCTs are not feasible; 
it is very difficult to either force people to 
drink or not to drink over time, and expensive 
to follow people for many years. Therefore, 
Mendelian randomisation can provide insights 
that RCTs can’t.

The alcohol dehydrogenase enzyme is 
responsible for breaking down alcohol and 
has genetic variants that affect how well it 
functions. People with a non-perfect alcohol 
dehydrogenase enzyme tend to get a “flush” 
response to alcohol and may get headaches and 
nausea quickly after drinking alcohol. As such, 
people with a genetic variation in this gene 
tend to drink much less throughout their lives 
than people with fully functioning enzymes. 
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Thus, the genetic variants that affect the 
levels of alcohol dehydrogenase in the body 
can be used in Mendelian randomisation, to 
understand the effect of differing levels of 
alcohol consumption on health outcomes. 

Holmes and colleagues conducted a Mendelian 
randomisation study looking at the association 
between alcohol and cardiovascular disease, 
and concluded the following (21):

Individuals with a genetic variant associated 
with non-drinking and lower alcohol 
consumption had a more favourable 
cardiovascular profile and a reduced risk of 
coronary heart disease than those without 
the genetic variant. This suggests that 
reduction of alcohol consumption, even for 
light to moderate drinkers, is beneficial for 
cardiovascular health. 

Thus, this evidence suggests the J-shaped 
relationship between alcohol and cardiovascular 
disease seen in observational studies is likely 
to be driven by confounding and/or reverse 
causality. Because the Mendelian randomisation 
analysis is not subject to confounding or reverse 
causality, and we are reasonably certain that 

the genetic variant acts only through alcohol 
to affect cardiovascular health, we can be 
more confident in the conclusion than an 
observational study could be. 

Figure 4. J-shaped relationship between 
alcohol consumption (X-axis) and the relative 
risk (RR, Y-axis) of coronary heart disease 
seen in observational data, from (22)  [source: 
https://content.iospress.com/articles/nutrition-
and-aging/nua0052#ref041 

72 g/day

89 g/day

20 g/day

1.6

1.4

1.2

1.0

0.8

0.6
0              25           50             75           100         125          150

alcohol (g/day)

R
R

17Making sense of Mendelian randomisation and its use in health research



4.2. C-reactive Protein and  
Coronary Heart Disease
C-reactive protein (CRP) is a protein involved in 
inflammation that has been used for decades 
as a marker for cardiovascular risk – the 
higher a person’s CRP, the higher their risk of 
experiencing cardiovascular disease. Because 
of this, in the early and mid-2000s, CRP was 
considered to be a potential drug target, with 
drugs that lower CRP hypothesised to reduce 
the risk of developing cardiovascular disease.

Given the only evidence for this possibility came 
from observational studies, there was a chance 
that either confounding or reverse causality 
caused the association between CRP and 
cardiovascular risk. Mendelian randomisation 
offered the opportunity to assess this, to 
evaluate whether the lengthy and costly 
process of developing and testing a drug to 
target CRP would be likely to yield benefits. 

A Mendelian randomisation study looked at 
a genetic variant strongly associated with 
CRP in relation to coronary heart disease risk 
(23). Their analysis showed that there was no 
evidence that changes in CRP led to changes 
in coronary heart disease risk. This was entirely 
different to the strong positive association 
between CRP and coronary heart disease seen 
in observational studies. The team concluded:

This and similar examples have been used by 
the pharmaceutical industry to identify and 
prioritise potential drug targets, diverting 
resources away from avenues that are not 
causal and therefore not likely to be fruitful 
avenues for drug development research. 

4.3. Body-mass index and Hospital Costs
Body-mass index (BMI) is another variable that 
is difficult to study due to both confounding 
and the difficulty in performing RCTs that solely 
change BMI – eating healthier or exercising 
could have independent effects, limiting the 
ability to pin down the causal association 
between BMI and any outcome.

However, there are several genetic variants 
that predispose towards higher or lower BMIs. 
As such, a recent study has shown that as BMI 
increases, so do healthcare costs (more than 
in a comparable observational analysis) (24). 
This could be used as further evidence for the 
benefits of reducing BMI across the population.

We found no association of a genetic variant, 
which is known to be related to CRP levels, 
(rs1130864) and having CHD. These findings 
do not support a causal association between 
circulating CRP and CHD risk, but very large, 
extended, genetic association studies would 
be required to rule this out.
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5. Conclusion

Mendelian randomisation is a 
versatile tool that can be of great 
value in many research areas, notably 
when RCTs are not practical or 
ethical. Now we are well into the 
era of large-scale genetic studies, 
we know of genetic variants that 
affect many human characteristic and 
health conditions, and can quickly 
and easily use this information to 
answer questions about whether 
the associations between an 
exposure and an outcome are causal. 
Mendelian randomisation, like all 
statistical methods, requires certain 
assumptions, and it is important to 
assess these assumptions as far as 
possible within the data. 

The results from Mendelian randomisation 
studies represent a lifetime exposure and tell us 
about ‘states’ rather than specific interventions, 
but as Mendelian randomisation can be robust 
to exposure-outcome confounding and reverse 
causality, it can answer questions not possible 
to answer using observational studies. In 
effect, Mendelian randomisation strikes a 
balance between RCTs, which are causal but 
limited, and observational research, which is 
far less limited but rarely causal. The results of 
Mendelian randomisation studies (indeed, any 
study) should be considered within the context 
of the wider evidence – indeed, triangulation 
of evidence, where an association is assessed 
across a range of methods (e.g. Mendelian 
randomisation, cohort studies, RCTs etc.) can 
give the most reliable answers to scientific and 
clinical questions (25). 

We hope this guide will inform non-specialist 
audiences to help raise awareness of the 
Mendelian randomisation method, its strengths 
and weaknesses and help others to interpret the 
findings within the context of wider evidence to 
inform evidence-based practice and policy. 
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6.  A dictionary of terms for  
Mendelian randomisation:  
what does it all mean? 

Term User friendly description Reference

Assortative mating Similar people (behaviours or backgrounds) have children together (9)

Collider bias, also called 
selection bias

Bias in an analysis from adjusting for (conditioning on, or selecting 
for) a variable that is caused by both the exposure and the outcome. 
For example, fever is caused by both influenza and food poisoning. If 
you just look at people with fever, there will be a negative correlation 
between influenza and food poisoning, since if someone doesn’t have 
influenza, they must have food poisoning (and vice versa), making 
it look like influenza is protective for food poisoning. This is within 
people with a fever – if you looked at everyone, there would be no 
association between influenza and food poisoning.

(26)

Confounding Bias found when a third variable causes both the exposure and 
outcome in an analysis.

(27)

Dynastic effects When parental genotypes directly affect their children’s phenotypes, 
not through genes. e.g. more educated parents support their child’s 
education, or if parental smoking habits influence their child’s smoking 
habits, also known as genetic nurture, or gene-environment correlation. 

(16)

Horizontal pleiotropy 
& pleiotropic effects

When a genetic variant that associates with the exposure affects the 
outcome through a variable other than the exposure.

(20)

Genetic variant, also 
called single-nucleotide 
polymorphism (SNP)

A point-change in the genome (DNA) of a person, that may predispose 
that person to have a certain characteristic or health condition - GWAS 
typically look at millions of genetic variants to find those that are 
associated with an exposure.

(28)

Genome wide 
association studies 
(GWAS)

A study conducted to find genetic variants associated with an exposure 
– these studies inform which genetic variants are used in a Mendelian 
randomisation study. The GWAS and Mendelian randomisation 
study must be conducted in separate populations to avoid bias 
(independence of GWAS and Mendelian randomisation datasets).

(29)

Mendelian 
randomisation, often 
abbreviated to MR

An analysis using genetic variants to estimate the causal effect of an 
exposure on an outcome

(1)

MR Egger A sensitivity analysis used to detect horizontal pleiotropy 30)
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Term User friendly description Reference

Polygenic risk scores 
(PRS), also called genetic 
risk scores (GRS) 

Instead of using individual genetic variants for an exposure, a 
polygenic risk score is a weighted sum of all genetic variants, 
condensing all genetic information into a single variable, and 
improving statistical power.

(31)

Reverse causality When the outcome causes the exposure, rather than vice-versa  
as previously supposed.

(1)

Split-sample The same population can be used to conduct a GWAS and Mendelian 
randomisation study simultaneously, but only if the population is split 
in two – one for the GWAS, and one for the Mendelian randomisation 
analysis, to preserve independence of the GWAS and Mendelian 
randomisation datasets.

(33)

Within-sibling/ 
within-family analysis

Estimating the effects of an exposure using genetic variation occurring 
between siblings or parent-offspring trios. 

(16)
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