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Abstract: We propose an adaptive neuro-fuzzy inference system (ANFIS) with an incremental tree
structure based on a context-based fuzzy C-means (CFCM) clustering process. ANFIS is a
combination of a neural network with the ability to learn, adapt and compute, and a fuzzy machine
with the ability to think and to reason. It has the advantages of both models. General ANFIS rule
generation methods include a method employing a grid division using a membership function and
a clustering method. In this study, a rule is created using CFCM clustering that considers the pattern
of the output space. In addition, multiple ANFISs were designed in an incremental tree structure
without using a single ANFIS. To evaluate the performance of ANFIS in an incremental tree
structure based on the CFCM clustering method, a computer performance prediction experiment
was conducted using a building heating-and-cooling dataset. The prediction experiment verified
that the proposed CFCM-clustering-based ANFIS shows better prediction efficiency than the current
grid-based and clustering-based ANFISs in the form of an incremental tree.

Keywords: adaptive neuro-fuzzy inference system (ANFIS); context-based fuzzy C-means (CFCM)
clustering; fuzzy trees; incremental fuzzy inference system

1. Introduction

In optimizing the nonlinear system model, the neuro-fuzzy system has exhibited better
performance than the model based on the existing linear system [1-11]. In the case of a neuro-fuzzy
system that simulates human learning ability, decision judgment, etc., rather than a mathematical
calculation technique, the performance of the model may vary depending on the type of learning
model or learning method.

A grid-based rule generation approach and a clustering-based rule generation method can be
separated into the adaptive neuro-fuzzy inference system (AFNIS) model rule generation technique.
Studies on the grid-based rule generation method include the following: Dovzan [12] proposed a
hyperplane-based fuzzy space partitioning method by defining the superplane dividing the problem
space and introducing principal component analysis, in which the distance to the superplane is used
as a metric instead of the center-oriented cluster. In order to automatically design interpretable fuzzy
partitions with maximal granularity, Castiello [13] suggested a dual clustering (DC) method. DC is
advanced and works in a two-step phase for classification problems. The first step identifies a cluster
of multidimensional samples to derive a prototype with class labels. In the second step, these
prototype one-dimensional projections are further clustered at the same time along each dimension,
minimizing the number of clusters for each function. Alexandridis [14] proposed a new algorithm to
train radial base function (RBF) networks to produce models with increased accuracy and brevity.
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The proposed approach is based on the asymmetric deformation of the algorithm of the fuzzy means
(FM) with the potential to calculate the number and position of the centers of the silver-winged node
RBF, while linear regression is used for the synaptic weights. Verstraete [15] proposed a new
approach to remap grid data using the additional data provided so that the system can automatically
assume the underlying distribution. The proposed method uses correlation data to imitate intelligent
reasoning to provide insight into the distribution of the original data. In the grid-based rule
generation method, when the dimension of the input increases or the number of membership
functions (MFs) increases, the rule of the neuro-fuzzy system model increases exponentially. Various
studies have been undertaken to solve these problems. A typical example is a clustering method in
which a given input space and an output space are divided into subspaces, each having a meaning
to give a preamble MF.

Studies on creating a rule using a clustering method include the following: Lee [16] introduced
an enhanced Mobile Sensor Network (MSN) Low-Energy Adaptive Clustering Layer Protocol to not
only prolong the life of the network but also reduce the failure of the package using the fuzzy
inference method. Su [17] proposed a belief-peak-based clustering method as an idea, with evidence
that all data objects in each sample subsection led to a belief in the possibility that the sample would
become a cluster center. Xu [18] proposed a concise zero-order Sugeno-Takagi (TSK) inference
system based on enhanced soft subspace clustering (ESSC) and sparse leading (SL) to improve the
clarity and interpretability of fuzzy reasoning systems. Sujil [19] proposed wind power generation
prediction agents for multiple-agent-based energy management systems in smart microgrids using
subtraction clustering and fuzzy clustering methods. A fuzzy-based hyper-round strategy (FHRP)
was introduced by Neamatollani [20] to plan clustering operations easily and flexibly. The FHRP
performs clustering at the start of all hyper-rounds (HRs) consisting of several rounds other than each
round, and the length of the HR is not fixed during the network life and is calculated using the fuzzy
reasoning system. To improve the classification and rule-based analytical performance for
unbalanced datasets, Gu [21] proposed an imbalanced TSK purge classifier (IB-TSK-FC) for TSK
fuzzy classifiers. A hierarchical fuzzy inference tree (HFIT) was constructed by Ojha [22]. In order to
construct a natural hierarchy that supports simplicity, HFIT incorporates many low-dimensional
fuzzy logic structures with a structure close to the ideal tree. This natural hierarchy provides a high
level of approximation accuracy. The clustering-based rule generation method belongs to a cluster
that satisfies a given condition by measuring the degree of similarity with each pattern, under the
assumption that there are multiple patterns in one nonlinear data space.

Because the information used to create rules has uncertainty, the MFs of the conditional and
conclusion parts of the corresponding rules have uncertainty. Studies have been performed to adjust
the form of the MF to minimize this instability. Shi [23] proposed the fountain differential
proportional-integral-derivative (PID) and fountain differential type 1 purge PID controller to solve
this problem because the fountain differential gap type 2 purge PID controller cannot handle the
uncertainty of the system. In describing the system’s instability dependent on the general type 2 fuzzy
logic system, the proposed controller will thoroughly exploit the benefits of the general type 2 fuzzy
logic system. The definition of conditional fuzzy sets was suggested by Wang [24] and proved that
type 2 fuzzy sets are united with conditional fuzzy sets. Both the conditional fuzzy set and the fuzzy
form 2 set are fuzzy relationships for the primary and secondary variables’ product space. The
distinction is that the primary and secondary variables are usually independent of each one in the
conditional fuzzy set system. To resolve the effects of human-made artifacts and a self-regulating
interval type 2 neural purge inference system (SRIT2NFIS) to deal with these intrinsic anomalies, Das
[25] proposed a powerful general spatial pattern characteristic pursuit algorithm (RoCSP). Das [26]
indicated an emerging neural purge inference method (IT2FIS) gap type 2 and its total sequential
learning algorithm. Meta-aware learning manages the learning process by choosing the best learning
strategy and lets the recommended IT2FIS efficiently estimate the relationship between input and
output. The evolving IT2FIS using meta-cognitive learning algorithms is called McTI2FIS. Zhou [27]
conducted a study on how footprint of uncertainty (FOU) affects the analysis structure of a wide
range of IT2 Mamdani and TSK controllers (i.e., input-output mathematical relationships). A recent
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application of the hybrid learning approach to the optimization of membership and non-membership
functions of the newly developed Type 2 Interval Intuitive Fuzzy Logic Method (IT2IFLS) of the TSK
Fuzzy Rationing System using neural networks was introduced by Eyoh [28]. Sumati [29] proposed
the gap type 2 mutual subset purge neural inference system (IT2MSFuNIS). A reciprocal subset
measurement between the two gap type 2 fuzzy sets is derived and used to determine the similarity
between IT2FS inputs and sex items. Biglarbegian [30] proposed a new reasoning mechanism for the
interval type 2 TSK fuzzy logic control system (IT2 TSK FLCS) when the condition is a type 2 fuzzy
set, and the conclusion is a constant. Gracia [31] proposed a complete framework for type 2 FLS that
uses up-to-date perceptions of IT2 FS (a set of gap type 2 fuzzy sets in a typical subsubsidiary form)
in which secondary ratings could be nonconvex T1 FS.

As aresult of confirming the studies of the ANFIS models summarized above, the existing study
focuses on the model rule generation method. In this research, we propose a context-based fuzzy C-
means (CFCM) clustering-based rule generation approach instead of a general clustering-based rule
generation methodology that takes into account the patterns of the input space as well as the output
space and ANFIS in the form of an incremental tree structure rather than a single structure. Whereas
general clustering methods only take the input space into account, the CFCM clustering approach
often takes the output space pattern into account, so that the cluster can be generated more accurately.
There are many inputs when using big data in numerous application fields. In the neuro-fuzzy
system, as the number of inputs increases, the number of rules increases exponentially. Therefore, it
creates meaningful rules by designing a point-of-point tree structure using multiple ANFISs rather
than a single ANFIS structure. To evaluate the performance of ANFIS in an incremental tree structure
based on the CFCM clustering method, a computer performance prediction experiment was
conducted using a building heating-and-cooling dataset [32]. The building heating-and-cooling
dataset is a dataset used for energy efficiency forecasting created by Xifara. It consists of eight input
variables and two output variables and has a data size of 768 x 10.

The remainder of this paper is structured as follows. Section 1 explains the background of the
study. Section 2 describes the method and structure of ANFIS rule creation. In Section 3, the proposed
method, ANFIS, with an incremental tree structure based on the CFCM clustering method, is
described. Section 4 analyzes the predictive performance of the proposed method, and Section 5
addresses conclusions and future research plans.

2. ANFIS

Fuzzy inference has the characteristic of effectively explaining the system by organizing
professional empirical knowledge that is difficult to quantitatively express in the form of MFs and
fuzzy rule bases. [33]. In addition, because neural networks [34] have learning ability, they are highly
flexible in the configuration of the system, and they have excellent parallel processing and fault
tolerance capabilities. Neuro-fuzzy system neural network theories are actively studied in various
fields.

A typical example of this neuro-fuzzy system is ANFIS. The premise of ANFIS depends on how
the rule is created. The structure of the conclusion section consists of the form of the first equation
stone, the TSK [35] model. Section 2.1 describes how to create rules to determine the premise.

2.1. Rule Creation Method

You divide all dimensions of the input space consisting of input variables into separate areas
when you deduce a fuzzy law and organize them into segmentation and conquest methods that allow
the resulting values of the inference in those areas to be determined. In other words, the premise of a
fuzzy rule splits the input space into several regions, and the product of inference from each of those
areas is the conclusion of the fuzzy rule. The creation of these fuzzy rules is closely connected to how
the input space is separated. ANFIS has a method of grid-based rule development and a method of
clustering-based rule creation, mainly based on generating rules consisting of input variables at all
stages. Figure 1 shows how to create grid-based rules and how to create clustering-based rules based
on ANFIS.
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(a) (b)

Figure 1. Adaptive neuro-fuzzy inference system (ANFIS) rule creation methods: (a) grid-based rule
creation method and (b) clustering-based rule creation method.

Grid partitioning [36] is a method of dividing space into the same structure as the grid so that
there is no overlap in the input space. Generally, the application of the grid partitioning method
produces uniformly specific partitioning areas, that is, areas with fuzzy rules, which facilitate the
analysis of fuzzy rules. When the number of input variables is minimal, that is, when the input space
dimension is low, grid partitioning is used. If there are 10 input variables, for example, each input
variable is split into two member functions, or 27 = 128 specific areas. In other terms, for each
particular region, one rule is made, and the total number of rules is 128, which is a very complex
structure. Therefore, where the number of input variables is limited, the grid partitioning approach
is mainly used.

By improving the C-means clustering approach suggested by Bezdek [37,38], the fuzzy C-means
(FCM) clustering method is based on a fuzzy set and the least square method. By listing the values
belonging to the data in a cluster according to the degree of belonging of each data object in a cluster,
the FCM clustering system distinguishes particular subdivided regions. The methods of FCM
clustering include the m vector x;,i = 1,2, ..., m, set in c fuzzy clusters and locate the center in each
cluster as it minimizes the objective function of the non-similar calculation. In standard methods of
clustering, every data point belongs to a cluster with a membership of 0 or 1. However, there is a gap
in the degree of membership of the arbitrary date between 0 and 1 in the FCM clustering process, and
it belongs to n clusters. The number of clusters is fixed by the user. The number of clusters here is the
number of laws that are fuzzy. Next, we explain the procedure for FCM clustering methods.

Step 1: To have some value between 0 and 1 that satisfies the parameter and membership matrix,
initialize

-1
Z |l — v |m ! 1)
% = vl
here, the Euclidean standard is used to measure the distance between the input data and the middle
of the cluster:

1
2

dig = d(x, —vy) = Z(xki - vij)z 2)
j=1
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Step 2: The current cluster’'s center value is determined by the input data value E =
{e), ey, ..., e} and the previously acquired MF u:

Z;clzl(uik)mxkj

Vik =
' =1 )™

®)
Step 3: The membership matrix u; is continuously modified with increasing numbers of
repetitions using the center value v;; and input data E obtained in step 2, 7:
(r+1)
Uiy

[dfk] o [ 4)

Step 4: The above procedure is repeated until the repeated membership matrix U" and U"**
error is less than any threshold value given by the membership matrix U" or U"*!

A= UTH = UT] = maxfuftt - | 5)

2.2. Structure

A type of neuro-fuzzy inference method proposed by Jang [35] is the ANFIS model. For given
input and output data, the ANFIS model utilizes the least square method and back propagation
algorithms to optimally approximate the parameters used in the MF and output. A model consisting
of two inputs and n TSK rules with one output and an output from the first linear equation defines
the fuzzy inference mechanism briefly:

Rule! : IfX; is A; and X, is By, theny = kyq + ky1 X1 + ki2X;
(6)

Rule™ : IfX; is A; and X, is By, theny = kg + k1 X1 + k2 Xy

here, X; and X, represent input variables, and 4; and A, are fuzzy sets of X;. Similarly, B, and
B, represent fuzzy sets of X,, and k;y, k;; and k;, represent sets of arguments set in rule i. The
ANFIS model, a forward network structure which consists of two input variables and five levels with
four fuzzy rules, is shown in Figure 2. Nodes have multiple functions on each layer of the ANFIS
model that are refined through the learning process. The line of relation between two nodes indicates
only the flow path between the nodes and has no weight. Next, for the ANFIS model, we define any
layer structure and process.

Inputs

Output

Inputs

Inputs

Figure 2. ANFIS structure.

Layer 1: Every node in the first layer is able to output values belonging to the language level in
the first layer:
0f = uy (%), 041y = up, (), i =1,2 (7)

The MF selects and uses the following Gaussian MF:
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uy, (x) = exp {— (x ; Ci)z} (8)

i

In addition to the Gaussian MF, a variety of MFs are available, and the learning process selects
parameter values that minimize errors.

Layer 2: Every node in the second layer receives a membership value seen in the conditional part
of the fuzzy rule in the second layer and outputs it as a weight multiplied by the rule:

0F = w; = uy, (%) X ug,(y),i = 1,2 ©9)

The output on each node shows that the fuzzy rule is sufficient.

Layer 3: In the third layer, each node calculates the ratio of point firepower in rule i to the sum
of all point fire forces using;:

3 — Wi .
Oi =w, = m,l=1,2 (10)

The values obtained are displayed as normalized values.

Layer 4: Every node in the fourth layer conducts an operation in the fourth layer that multiplies
the output function of the conclusion component of each law by the uniform fit:

where w; is the Layer 3 output and the p;, q; and r; output function parameters denote the
parameters of the conclusion.

Layer 5: Each node consists of one single node in the fifth and last layer. The output value is
determined on the basis of all input values in the lower layer by using:

2

0} =y = ZWJZ _ il (12)

W.
i=1 Zwi

The output value has a continuous type value, not a fuzzy set type.

3. ANFIS with an Incremental Tree Structure Based on the CFCM Clustering Method

The number of laws increases exponentially as the number of inputs to the fuzzy system
increases. The computational utility of the fuzzy system is decreased by this large rule base. It also
makes the function of the fuzzy system difficult to understand and complicates the modification of
rules and MF parameters. Since many implementations have a small supply of training data, the
possibility of generalization of tuned fuzzy structures is diminished by a broad rule base.

The fuzzy inference system (FIS) can be implemented as a tree with smaller interconnected FIS
objects to solve this challenge, not as a single monolithic FIS entity. This fuzzy trees are also called
hierarchical enemy fuzzy structures [39] since fuzzy systems are organized in a hierarchical tree
structure. The output of a low-level fuzzy system is used as an input to a high-level fuzzy system in
the tree structure. The fuzzy tree is more effective and easier to grasp in terms of computing than a
single FIS with the same number of entries.

3.1. CFCM-Clustering-Based Rule Creation Method

CFCM clustering is a tool proposed by Pedrycz [40] to construct clusters and partition clusters
in order to maintain pattern characteristics related to output variable similarities, as well as input
space data. In the output variables, a traditional clustering approach does not take patterns into
account but generates only clusters using the Euclidean distance between the centroid cluster and the
input data. In comparison, by taking into account not just the pattern of input data but also the pattern
of output variables, the CFCM clustering approach generates a cluster, facilitating more detailed
space segmentation than the conventional clustering method.

The variations between FCM clustering and the strategies of CFCM clustering are seen in Figure
3. The FCM clustering approach produces two clusters if there is data in the input space, so it gives
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an initial centroid value and then uses the Euclidean distance between the middle and the data. The
CFCM clustering process, by comparison, takes into account the output variable patterns and
generates three clusters by taking into account the black and white characteristics of the data in the
input space. Next, the CFCM clustering process procedures are defined.

(a) (b)

Figure 3. Comparison of clusters between fuzzy C-means (FCM) and context-based FCM clustering
methods: (a) FCM clustering method and (b) Context-based fuzzy C-means (CFCM) clustering
method.

Step 1: Let m (1 < m < o) and set the number of clusters, ¢ (2 < c < n).
Step 2: Set the initial partition matrix U and the threshold value ¢, and select the number of
repetitions:

U(lwjli=1,..,c.j=1,..,n) (13)

Step 3: Compute the center of each cluster, ¢; (i = 1,2, ..., ¢), using the membership matrix U:

n m

]:

~n m (14)
j=1"%ij

(S

Step 4: The partitioning matrix U is modified with the center value of cluster c:
fi
. (dy %/ m-1) (15)
i (72

here, f; represents x;’s degree of inclusion in the created cluster. The linguistic type specified in the
output variable is, in other words, represented as a fuzzy set 4,{A: B — [0,1]} and computed by an

ul-j =

algorithm of fuzzy equalization. Then, the membership value of y; in A can be expressed by f; =
A(y;)),i=1,2,..,n.

Step 5: If ||J" —J7*!| < ¢ is met, where

J= Y S ult|lx -«

the procedure above will be stopped. Otherwise, proceed again from Step 3.
For ANFIS models, the methods of CFCM clustering mentioned above apply as follows: Input
space data in Layer 1 is broken into input space by CFCM clustering, which outputs the value by

2

, (16)

considering the output variable pattern. In Layer 2, the values belonging to the previous layer are
taken, the weights multiplied by the rules are given, and the impulse force proportion in Layer 3 is
expressed as a normalized value. The normalized Layer 4 values are multiplied by the final output
function and the final output is determined using Layer 5's weighted average.
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3.2. ANFIS with an Incremental Tree Structure

For applications, several fuzzy tree structures are available. The input values are integrated into
multiple stages in the incremental tree system used in this analysis to optimize the output values at
various steps. The previous diagram, for example shows a three-level incremental fuzzy tree with a
FIS] fuzzy inference method, where i represents the FIS index of the nth level. At each step, there
is only one fuzzy inference method in an incremental fuzzy tree; i = 1, that is. The jth input of the
ith FIS at level n is indicated in the previous figure by input x;}, where the kth output of the ith FIS
at level n is indicated by the x/;, input. n =3, j =1 or 2 and k =1 in the figure. Each FIS has a
complete m? rule set if each input has m MFs. The total number of laws, then, is nm? = 3 x 32 = 27.
The monolithic (n = 1) FIS is seen in Figure 4 with four inputs (j = 1, 2, 3, 4) and three MFs (m = 3).

4
Y11

Figure 4. Tree structure in incremental form.

Therefore, with the number of input sets, the cumulative number of rules in the incremental
fuzzy tree is linear. Based on the contribution to the final output value, input selection at various
levels of the incremental fuzzy tree uses input rank. Generally, the input value that contributes the
most is used at the lowest level, and at the highest level, the input value that contributes the least is
used. This implies that the input value of the low-rank depends upon the input value of the high-
rank. In the incremental fuzzy tree, irrespective of other important inputs, each input value usually
contributes to some degree to the inference method. In this paper, to prevent over-generation of fuzzy
rules due to large-scale databases and to generate meaningful rules, we propose a CFCM-ANFIS with
an incremental tree structure rather than a single type of CFCM-ANFIS. As seen in Figure 5, this
allows one to rank inputs using existing data to create the fuzzy tree.
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O

Inputs

Output

O

Inputs

Inputs

Cluster in each context Contexts

CFCM clustering

(a)

(b)

Figure 5. Design of three ANFISs with an incremental tree structure: (a) ANFIS structure based on
CFCM clustering and (b) ANFIS structure based on incremental-tree-structured CFCM clustering.

4. Experiment and Analysis

In this section, to evaluate the predicted performance of ANFIS with an incremental tree
structure based on CFCM clustering methods described in Section 3, experiments were conducted to
predict computer performance using the computer hardware dataset. In this experiment, for the
predictive performance of ANFIS using the grid-based rule generation method, which is a
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representative ANFIS, and ANFIS using the FCM clustering-based rule generation method, as well
as ANFIS using the proposed method, the incremental tree structure-based CFCM clustering-based
rule generation method is compared and analyzed.

4.1. Building Heating-and-Cooling Dataset

The building heating-and-cooling dataset is a dataset [41,42] used for energy efficiency
forecasting created by Xifara. It consists of eight input variables and two output variables and has a
data size of 768 x 10. Relative compaction, surface area, wall area, roof area, total height, direction,
glazing area and distribution of the glazing area are input variables. The heating and cooling loads
are the output factors, but this analysis uses only the heating load. To conduct the experiment, the
building heating dataset was equally divided into learning and verification sets and data values were
normalized to between 0 and 1.

4.2. Experimental Method and Analysis of Results

The predicted performance of grid-based AFNIS and FCM clustering-based ANFIS, which are
general rule generation methods, and of the increasing tree structure based on the CFCM clustering
method proposed in this study were compared and analyzed. As described above, a grid-based
ANFIS creates rules by dividing the input space into lattices, and FCM clustering-based ANFIS
clusters the input space using FCM clustering to create rules. The proposed method uses CFCM
clustering in input and output spaces to create contexts and clusters to create rules.

First, the grid-based ANFIS experiment confirmed the predicted performance by increasing the
MF by 1 from 2 to 5. By adjusting the number of clusters and the fuzzification coefficient, the FCM-
clustering-based ANFIS experiment was carried out. The number of clusters increased by 2 from 2 to
20 and the coefficient of fuzzification was set at 2 to confirm the performance anticipated. Finally, for
the experiment on AFNIS using the incremental tree structure based on the CFCM clustering method,
which is the method proposed in this study, we designed three CFCM-clustering-based ANFISs with
two inputs and one output as an incremental tree structure. The entire input variable was then ranked
according to the correlation coefficient and used as input to each ANFIS. In the CFCM clustering
method, the number of contexts (p) increased by 2 from 2 to 6, and the number of clusters (c) increased
by 2 from 2 to 20, confirming the predicted performance. Each ANFIS was performed 10 iterations,
and the value with the minimum verification root mean square error (RMSE) was used as the result
value. All experiments for Grid-ANFIS, FCM-ANFIS, Incremental-CFCM-ANFIS, LR and RBFN were
conducted using Matlab, and the OS is a window10 environment. Table 1 summarizes the prediction
performance of the grid-based ANFIS, and Figure 6 shows the prediction results of the grid-based
ANFIS. As can be seen in Table 1, when there are two MFs, 256 rules are created, and the verification
root mean square error (RMSE) is ~2.2471. When there are three, four, or five MFs, the number of
rules increases exponentially, indicating a calculation error.
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Figure 6. Comparison of the predicted and actual output values of grid-based ANFIS.

Table 1. Prediction experiment results from grid-based ANFIS.

Algorithm Number of MFs* Number of Rules Training RMSE" Testing RMSE
2 256 0.6728 2.2471
3 - - -
4 - - -
5 - - -
MFs (Membership Functions)

RMSE (Root Mean Square Error)

Grid-ANFIS

Table 2 summarizes the prediction performance of ANFIS based on FCM clustering, and Figure
7 shows the prediction results. As can be seen in Table 2, when there are 10 clusters, 10 rules are
created and the verification RMSE is ~2.0671. The prediction efficiency of the CFCM-based ANFIS in
the form of an incremental tree is summarized in Table 3, which is the approach suggested in this
report. Figure 8 shows the prediction results. As can be seen in Table 3, when there are 6 contexts and
20 clusters, 120 rules are created and the verification RMSE is ~1.8705, yielding the best prediction
performance. Table 4 compares and analyzes the prediction performance of grid-ANFIS, FCM-ANFIS
and Incremental-CFCM-ANFIS, and the linear regression (LR) model and the radial basis function
network (RBFN) model used for prediction problems. For LR and RBEFN, the verification RMSE
values were approximately 3.04 and 25.45 respectively, and a fuzzy rule was not generated. In Grid-
ANFIS, if there are 2 membership functions, 256 rules are created and the verification RMSE value is
about 2.25. In FCM-ANFIS, when the number of clusters is 10, 10 rules are created and the verification
RMSE value is about 2.07. Finally, the proposed method shows that when the number of contexts is
6 and the number of clusters is 20, 120 rules are generated and the verification RMSE value is about
1.87, showing the best prediction performance.
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Figure 7. Comparison of the predicted and actual output values of FCM clustering-based ANFIS.

55 T T T T T T T ' I
---------- Incremental-CFCM-ANFIS output
50 desired output l
45| |
R 40 |
o
)}
£ 35) [\ .
® ; :'
3 i : i
- A h ;
o m ! 1]
£ '
£ :
=]
o

U

40 60 80 100 120 140 160 180
number of testing data

Figure 8. Comparison of ANFIS predicted values with actual output values in an incremental tree
structure based on CFCM clustering.



Appl. Sci. 2020, 10, 8495

Table 2. Prediction experiment results from FCM-clustering-based ANFIS.

13 of 16

Algorithm  Number of Clusters

Number of Rules

Training RMSE Testing RMSE

FCM-ANFIS

2
4
6
8
10
12
14
16
18
20

2.5042
1.7882
1.7814
1.6466
1.6286
1.6702
1.0611
1.3782
1.4028
1.1791

2.6548
2.3150
2.2088
2.1173
2.0671
2.1142
2.2425
3.2958
3.5073
7.1332

Table 3. Results from ANFIS prediction experiment on the incremental tree structure based on CFCM

clustering.

Algorithm Number of Number of Number of Training Testing
Contexts Clusters Rules RMSE RMSE

2 4 2.6915 3.1126

4 8 2.3334 2.7517

6 12 1.7173 2.0464

8 16 1.5364 1.8881

10 20 1.5260 1.8742

2 12 24 1.5238 1.8738

14 28 1.5241 1.8725

16 32 1.5343 1.9118

18 36 1.5240 1.8725

20 40 1.5240 1.8724

2 8 2.5414 2.9155

4 16 1.5981 1.9542

6 24 1.5240 1.8730

8 32 1.5241 1.8729

Incremental- 4 10 40 1.5240 1.8726
CFCM-ANFIS 12 48 1.5296 1.8764
14 56 1.5248 1.8724

16 64 1.5241 1.8719

18 72 1.5241 1.8717

20 80 1.5241 1.8716

2 12 1.8964 2.2700

4 24 1.5186 1.8796

6 36 1.5232 1.8732

8 48 1.5253 1.8729

6 10 60 1.5241 1.8719

12 72 1.5241 1.8716

14 84 1.5242 1.8713

16 96 1.5242 1.8711

18 108 1.5242 1.8710

20 120 1.5242 1.8705
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Table 4. Analysis of experimental results from ANFIS based on grid-based ANFIS, FCM-clustering-
based ANFIS and the CFCM-clustering-based incremental tree structure.

. Number of Training Testing
Algorithm Hyperparameters Rules RMSE RMSE
Linear regression (LR) - - 3.3453 3.0352
Radial basis function Learning rate
- 26.9523 25.4493
network (RBFN) (0.0001) 6 >
Grid-ANFIS 2 MFs 256 0.6728 2.2471
FCM-ANFIS 10 clusters 10 1.6286 2.0671
Incremental-CECM-ANFIs ~ © contexts 20 120 15242 1.8705

clusters

5. Conclusions

ACFCM-based incremental tree-structured ANFIS was proposed. To confirm the validity of the
proposed method, the prediction performance was compared with the commonly used grid-based
ANFIS and clustering-based ANFIS. As a result of the experiment, the CFCM-based incremental tree-
structured ANFIS proposed in this study was confirmed to be superior to the existing ANIFS model
in terms of performance. In addition, it was confirmed that generating meaningful rules rather than
multiple rules can improve prediction performance. As a future research plan, we plan to design a
multi-ANFIS in various forms, rather than an incremental tree structure, and apply an optimization
algorithm to generate meaningful rules.
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